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Abstract

We introduce a novel dataset and evaluation approach for

long-range depth prediction of small objects that enables

consistent comparison across direct time-of-flight (ToF)

sensors and learned depth estimation methods. In au-

tonomous driving, accurate depth perception is essential

for identifying and locating surrounding elements and de-

termining safe driving paths. Traditional depth metrics fo-

cus on distance accuracy but fail to evaluate a key factor at

long ranges: distinguishing small, slightly elevated struc-

tures from the ground — crucial for anticipating obstacles

and making safe driving decisions. At far distances, image-

based systems suffer from resolution limitations that tend

to oversmooth the ground plane, causing elevated objects

to be mistaken as texture patterns on the surface. Con-

versely, scanning LiDAR systems may return only a sin-

gle point from an elevated object due to steep incident an-

gles and sparse returns, preventing accurate differentiation

from the ground. This hampers a fair comparison of object

presence and shape. To address this, we propose a frame-

work that evaluates how well the estimated point clouds pre-

serve semantic content relative to ground-truth data. We

leverage neural network-based feature extraction to assess

structural similarity, enabling a modality-agnostic evalua-

tion of object-level fidelity. Our method also supports anal-

ysis of the trade-off between resolution and accuracy, inves-

tigating performances across sensor types — such as high-

resolution cameras versus LiDAR — and conditions, includ-

ing day and night scenarios. This enables a more compre-

hensive understanding of the capabilities and limitations of

current depth prediction approaches in real-world settings.

1. Introduction

Depth estimation has seen significant progress in recent

years, driven by advances in learning-based techniques

[30, 37, 51, 79, 81, 86, 89] and increasingly diverse sensing

modalities [12, 64, 77]. Approaches leveraging monocular

cues [30, 37, 54, 89], stereo image pairs [18, 47, 51, 81, 86],

generalized multi views setups [46, 79, 80], depth com-

pletion with sparse input [87, 91, 92], cross-spectral fu-

sion [12, 76, 93], and time-of-flight (ToF) sensors [64]

have all contributed to increasingly robust depth predic-

tion pipelines. These methods enable dense scene un-

derstanding across a wide range of applications including

robotics [53, 56], autonomous driving [16, 67, 73], and

augmented reality [52, 57, 78]. Despite these strides, the

standard evaluation of depth prediction methods remains

largely centered on global, pixel-wise error metrics such

as Root Mean Squared Error (RMSE), Mean Absolute Er-

ror (MAE), Squared Relative Error (Sq Rel), and Absolute

Relative Error (Abs Rel) [24, 66, 73]. While effective in

measuring overall prediction fidelity, these metrics inher-

ently emphasize regions of high pixel density, typically the

dominant planar surfaces in a scene such as roads and walls

[19, 40, 41, 68]. Fine grained details, especially small or

distant objects, are likely to contribute negligibly to overall

error metrics [38], so safety critical elements such as pedes-

trians, bicycles, or traffic cones [28, 32] can be present in the

scene yet exert almost no influence on evaluation outcomes.

Because these objects cover only a small image region, they

are often oversmoothed in predicted depth maps [55, 60],

as sharp depth discontinuities are hard to model and op-

timization is geared towards standard metrics. However,

accurate depth map representation of small objects is crit-

ical, as their shape and height provide essential cues for au-

tonomous driving, enabling systems to determine whether

an object can be safely driven over or not. To address this

gap, we propose a novel evaluation approach that isolates

performance on such foreground objects, with a focus on

shape preservation. Our method enables a principled com-

parison between sensing modalities by explicitly consider-

ing the trade-off between resolution and distance accuracy.

This allows us to assess not only how well a depth map es-

timates global structure, but more importantly, whether it

preserves the geometry of small, distant, and semantically

meaningful objects. Furthermore, we build upon prior work

in perceptual image [23, 26, 90] and point cloud [2, 25]

quality metrics, where learned representations are used to
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evaluate structural similarity beyond pixel-wise error. Sim-

ilar to learned perceptual image patch similarity (LPIPS) in

the 2D domain [90], we extend this idea to 3D point clouds,

using features extracted from neural networks to quantify

semantic and geometric similarity between predicted and

ground-truth object representations.

In summary, our contributions are as follows:

• We present the first long-range dataset designed to evalu-

ate the detection of very small or hard-to-find objects, ad-

dressing the critical challenge of obstacles in autonomous

driving.

• We introduce the first metric enabling cross-modality

evaluation of relative improvements and trade-offs, cap-

turing the contrast between LiDAR’s low resolution but

high precision, camera’s high resolution but reduced dis-

tance accuracy, and hybrid sensors such as gated cameras.

• We provide an evaluation showing that, particularly at

long ranges, high-resolution camera-based predictions

enable more reliable detection of distant objects, consis-

tent with the behavior captured by our proposed metric.

2. Related Work

Autonomous systems depend on reliable depth perception

for planning and safety-critical decisions. Fair benchmark-

ing becomes fundamentally important for this task, yet

common metrics often miss thin structures, and occlusions.

Depth Estimation. Camera depth estimation encompasses

three main families. Monocular methods are fundamentally

limited by scale ambiguity [24], with recent approaches at-

tempting to alleviate this by learning scale priors from sin-

gle images [29, 33, 37, 48, 50]. Stereo-image methods re-

solve this scale ambiguity by triangulation [18] and include

both classical and learned methods [6, 18, 49, 88]. Unsu-

pervised counterparts [27, 29, 30, 33, 94] have also been

presented to exploit multi-view geometry consistency as su-

pervision signal. Camera-LiDAR fusion finally uses Li-

DAR to set metric scale and for geometrical cues [20, 36,

58, 70, 71, 82, 91], at the cost of strict cross-sensor calibra-

tion/synchronization. LiDAR is a common ground truth but

struggles in adverse weather. Its measurement accuracy sets

the precision limit, yet depth methods predict maps at much

higher spatial resolution.

Depth Measurement with Time Of Flight. ToF sen-

sors recover range by timing active illumination. Cor-

relation (AMCW) ToF use flood illumination and phase

shifts for per-pixel depth, but are fragile under strong am-

bient light [35, 42, 43]. Pulsed ToF (scanning LiDARs)

attain high range accuracy but lower spatial resolution,

and performance degrades in fog/snow due to backscatter

[10, 17, 39, 64]. Gated imaging integrates flood-illuminated

returns within microsecond windows to suppress backscat-

ter and provide coarse depth [3, 11, 13, 14]. Beyond

analytic/Bayesian reconstruction [1, 44, 45, 62, 85], re-

cent learning methods infer depth from gated bursts and

multi-view setups [31, 75, 77]. These systems, however, are

tailored to gated sensors and can be resolution- or power-

limited under bright ambient conditions. Recently, this lim-

itation was mitigated by coupling NIR gated sensing with

high-resolution visible-spectrum RCCB imagery [12].

Benchmarking. Fair comparison between sensor-

measured and algorithmically-estimated depth requires

metrics to reflect both accuracy and perceptual relevance.

Standard ones such as MAE, RMSE, ARD and Scale-

invariant Log Error are commonly used [24, 34, 73] to

benchmark performances of environmental reconstruction

algorithms, but ignore semantics, structure, and are un-

informative for small-objects geometry. Beyond pixels,

3D-space measures such as Voxel Intersection-over-Union

(IoU) and Chamfer Distance [7, 22] are common. Cham-

fer Distance, used in benchmarking and training of 3D re-

construction algorithms, measures the dissimilarity between

point sets as the sum of nearest neighbor distances. Al-

though improvements exist [72], the nearest neighbor for-

mulation remains insensitive to non-uniform point densities

and under penalizes missing regions that are semantically

important. Voxel occupancy–based scores provide an intu-

itive measure of volumetric consistency, but are dependent

on voxel size and suffer from discretization artifacts, with

small structures or fine details being lost at coarse resolu-

tions and noise becoming dominant at finer resolutions.

Feature-Based Metrics. Departing from raw-signal-

differences metrics, deep feature–based approaches lever-

age intermediate CNN activations (e.g., VGG) to assess

perceptual similarity, super-resolution, and style transfer

[23, 26, 90]. A canonical example is the Learned Perceptual

Image Patch Similarity (LPIPS) metric [90], which com-

pares images via distances in deep feature space, capturing

semantics and structure better than raw-signal differences.

Such deep feature–based measures have also been applied

to image retrieval [4, 5], face verification [63], and cross-

modal tracking and localization. In 3D perception, related

concepts appear in large scale place recognition with point

cloud encoders [15, 74], SSIM-inspired quality assessment

comparing local geometric and color statistics [2], and no-

reference quality prediction on orbit videos with 3D CNNs

[25]. However, despite demonstrating that deep feature em-

beddings can encode meaningful semantic and geometric

cues, feature-based similarity metrics remain largely under-

explored for depth estimation and 3D hazard detection.

3. Dataset

To study the geometric similarity of small ground-level ob-

stacles at long distances, we present a dataset centered on

lost cargo—objects that may appear in a vehicle’s path,



Figure 1. Sensor Setup and Depth Modalities Limitations. We present the sensor setup used to capture our dataset, on the left, with the

two car-mounted rigs. The center shows a recorded scene with the VLS-128 LiDAR, with lost-cargo objects placed at 30 meters. On the

right, the reference RGB image is paired with cropped 3D point clouds from three methods: Gated RCCB Stereo [12] yields dense, well-

shaped geometry where the cargo is clearly recognizable; RGB stereo produces over-smoothed clouds in which objects are barely visible;

the VLS-128 LiDAR remains very sparse, obscuring small objects and height cues. These perceptual differences, obvious to humans, are

poorly captured by standard metrics, motivating our deep similarity metric, which better reflects pointcloud quality.

Sensor Make Type Resolution FOV (H×V) Wavelength

RGB Camera OnSemi AR0230 1920× 1024 39.6◦ × 21.7◦ 380− 740 nm

RCCB Camera OnSemi AR0820AT 3848× 2174 52.8◦ × 28.9◦ 380− 1050 nm

Gated Camera BrightwayVision BrightEye 1280× 720 31.1◦ × 17.8◦ 808 nm

LiDAR Velodyne VLS-128 2000× 128 360◦ × 40◦ 905 nm

LiDAR Luminar H3 1660× 64 120◦ × 30◦ 1550 nm

LiDAR Livox HAP — 120◦ × 25◦ 905 nm

Table 1. Sensors Specifications. We present the list of sensors

used in the dataset and their specifications.

such as small items fallen from preceding vehicles and other

potential hazards. The dataset consists of scenarios with

various lost cargo obstacles manually placed on pavement,

and the measurement sensors capturing data at varying dis-

tances. The selected lost cargo objects vary in size, mate-

rial, and shape to capture a range of detection challenges.

They include common items such as wooden pallets, car

tires, exhaust pipes, and bumpers and motorcyclist dummies

(’biker’), with example layouts shown in Figure 1.

Data Collection. We collected a multi-modal dataset to

evaluate lost cargo detection performance across diverse

sensing modalities using three stereo camera systems and

three different LiDAR sensors. The stereo RGB camera

features a narrow 0.23 m baseline, operates at 30 Hz, and

delivers 1920 × 1024 pixel images with a 39.6° × 21.7°

FoV. The RCCB stereo system has a wider 0.75 m baseline

and operates at 15 Hz with 3848 × 2176 resolution. Unlike

conventional RGB sensors with an RGGB Bayer pattern,

RCCB cameras replace the green channels with clear chan-

nels, increasing light throughput and improving low-light

sensitivity. The gated stereo system is an active sensor com-

prising two cameras, with a baseline of 0.75m, and a flash

laser illuminator. It emits short laser pulses and captures

the returning light after predefined delays, producing over-

lapping range–intensity slices that implicitly encode depth,

see [31]. The system has a 31.1° × 17.8° field of view

and operates at 120Hz, enabling several slices per frame.

LiDAR pointclouds are acquired from the Velodyne VLS-

128, a 905nm rotating sensor with 128 scan lines, 40° ver-

tical FoV, 0.11° resolution, and 10 Hz rotation for dense

short- to mid-range coverage; the Luminar H3, a 1550 nm

fiber-scanning system with >250 m range, operating with

an angular resolution of 1660 × 64, and an FoV of 120°

× 30°, optimized for detecting small or low-reflectivity ob-

jects at long distances; and the Livox HAP, a solid-state Li-

DAR with a non-repetitive scan pattern, 120° × 25° FoV,

up to 150 m range, and high frame rate, enabling dense

short- to medium-range coverage with improved point den-

sity over time. Table 1 provides detailed overview of tech-

nical the specifications. The sensors captured a total of 19

target objects, with 7 recorded in summer conditions and

12 in winter. In summer, 5 distinct objects were used and

placed in different orientations and scenes for variety, while

in winter 6 distinct objects were used. For each layout, short

static sequences were recorded with the vehicle stationary:

in winter at four distances (25 m, 50 m, 75 m, 100 m) and

in summer at six distances (15 m, 30 m, 45 m, 60 m, 75

m, 90 m). Figure 2 visualizes the data capture procedure



Figure 2. Safety Critical Obstacle Detections. ’Biker’ target

object at distances of 25, 50 and 75 meters in an RGB image,

rendered Gated RCCB Stereo [12], and Luminar H3 point cloud.

for an exemplary scene. Further details on sensor config-

urations, capture modes, and exact recording distances are

provided in the Supplementary Material. Inter-sensor cali-

bration was performed to ensure measurement synchroniza-

tion. The stereo camera systems and the Velodyne VLS-128

were mounted on the same vehicle rig and externally cali-

brated. The Luminar and Livox LiDARs were mounted on a

separate vehicle rig. Synchronization between the two sys-

tems is described in the following section.

Ground Truth Creation. For comparison of sensor per-

ception properties at different distances, we created a refer-

ence dataset of 3D object models. Each object was either

scanned at close range (f 1 m) using the commercial pho-

togrammetry app Polycam on an iPhone 12 Pro Max, which

combines LiDAR depth sensing with multi-view RGB im-

agery to generate dense meshes from over 2000 sampled

LiDAR and camera scans with example results presented

in Figure 3. These meshes serve as high-fidelity ground

truth representations. Alternatively, geometry is estimated

from a held-out stationary sequence captured with a Livox

HAP LiDAR, where 30 point clouds per scene enable dense

sampling due to the sensor’s non-repeating scan pattern.

Here, we acquire a set of N accumulated 3D points for a

single object, which are denoted by P = {pi}
N
i=1, where

pi = (xi, yi, zi) ∈ R
3 are point coordinates in the LiDAR

reference frame. Outliers are removed using a standard de-

viation filter [61]. For each pi ∈ P , let Nk(i) denote its k
nearest neighbors and define the mean neighbor distance

di =
1

k

∑

j∈Nk(i)

∥pi − pj∥2 . (1)

We then compute the global mean and variance over

{di}
N
i=1:

µd =
1

N

N∑

i=1

di, σ2
d =

1

N

N∑

i=1

(di − µd)
2
. (2)

Points with unusually large di are treated as sparse outliers;

equivalently, we retain

P ′ = { pi ∈ P : di f µd + τ σd } , (3)

where k is the number of neighbors and τ > 0 is the thresh-

old multiplier.

From the filtered set P ′, we reconstruct an initial mesh

MBPA using the Ball Pivoting Algorithm (BPA) [8] with

radius r:

MBPA = BPA(P ′, r). (4)

Uniform sampling of S points from MBPA produces the

set Q:

Q = Sample(MBPA, S). (5)

The points Q are voxelized into an occupancy grid G ∈
{0, 1}X×Y×Z with voxel size v > 0:

G(x, y, z) =

{
1, if ∃ q ∈ Q s.t.

⌊
q/v

⌋
= (x, y, z),

0, otherwise.
(6)

A mesh M1 = (V 0, F ) is then generated from G using a

voxel-to-surface operator Φvox, where V 0 is the set of vertex

positions and F is the set of faces:

M1 = (V 0, F ) = Φvox(G). (7)

The vertex positions V = {vi} are refined by minimizing

Ltotal = λcLchamfer +λeLedge +λlLlaplacian +λnLnormal, (8)

where λc, λe, λl, λn > 0 are weighting coefficients.

The Chamfer distance between the current surface sam-

ples Q̂ = Sample(M1,K) and the target point set P ′ is

Lchamfer =
1

|Q̂|

∑

x∈Q̂

min
y∈P′

∥x−y∥22+
1

|P ′|

∑

y∈P′

min
x∈Q̂

∥x−y∥22.

(9)

The edge loss penalizes deviations in edge lengths from

those in the initial mesh:

Ledge =
∑

(i,j)∈E

(
∥vi − vj∥2 − ∥v0i − v0j ∥2

)2
, (10)

where E is the set of edges and v0i the initial vertex posi-

tions.

The Laplacian loss encourages smoothness by minimizing

Llaplacian =
∑

i

∥∥∥∥∥∥
vi −

1

|N (i)|

∑

j∈N (i)

vj

∥∥∥∥∥∥

2

2

, (11)

where N (i) is the one-ring neighborhood of vi.
The normal consistency loss promotes alignment of nor-

mals across adjacent faces,

Lnormal =
∑

(f,f ′)∈A

(1− ïnf , nf ′ð) , (12)



where A is the set of adjacent face pairs and nf the unit

normal of f .

The meshes in Fig. 3 were created with the Polycam ap-

proach; examples of the Livox-based generation are pro-

vided in the Supplementary Material. We use these meshes

as per-object ground truth: for each lost cargo layout, one

ground truth mesh per object is created and used as the ref-

erence across all measurement distances for that layout.

4. Too Tiny To See

This section details the computation steps of our Too Tiny

To See metric (2T2S). First an alignment of point clouds

and ground truth meshes and the subsequent processing by

higher order neural networks to extract semantic rich em-

beddings for quantitative comparison.

Initial Point Cloud Alignment. Ground truth objects

are represented as 3D meshes M consisting of vertices

{vo1, . . . , v
o
Nv

} ¢ R
3 and faces {f1, . . . , fNf

} ¢ N
3, where

each face indexes three vertices. These meshes are posi-

tioned in the nearest measurement point cloud to serve as

reference geometry for subsequent comparisons. More de-

tails on the automated object placement are provided in the

Supplementary Material.

After placing the ground truth objects to the nearest point

cloud, we use this pose information to align them to a full

point cloud measurement Pd, the ICP algorithm [9] is used

to find an alignment to the nearest point cloud image of the

measurement sequence. If ICP is computed in a reference

sensor frame, we compose the result with the known extrin-

sic calibration Te from the reference to the evaluated sensor;

otherwise we set Te = I, where I is the identity matrix. The

aligned mesh at distance d is then

Md = Te Td M0. (13)

where Te and Td are homogeneous transformations:

Td =

[
Rd td

0¦ 1

]
, Te =

[
Re te

0¦ 1

]
. (14)

Fine Pose Optimization aims to estimate a small rigid cor-

rection between the measured pointcloud Pd and the ground

truth mesh with vertices {vj}, by minimizing a weighted

point-to-mesh distance

Lp2m =

N∑

i=1

si, si =
(
di ρ̂i + w̃x

i

)
wz

i (15)

with dij = ∥pi − vj∥2 being the nearest-vertex distance to

the mesh vertices {vj}. The density factor ρ̂i up-weights

well-sampled neighborhoods ρi = dens(pi;λ) in a ball of

radius λ and is min-max normalized so that dense, reliable

regions get more weight in the pose fit:

ρ̂i =
ρi − ρmin

ρmax − ρmin
(16)

The height weight wz
i is defined

wz
i =

zi − zmin

zmax − zmin
, (17)

with zi being the point height, reduces the influence of near-

ground clutter with normalization. Finally, to down-weight

boundary artifacts, we define a lateral x-axis vertex weight

wx
j = 1−

vxj − vxmin

vxmax − vxmin

, (18)

assigned to each point through its nearest mesh vertex

j∗(i) = argmin
j

dij , dij = ∥pi − vj∥2, (19)

and sharpened with weight

w̃x
i =

(
wx

j∗(i)

)4
. (20)

Through stochastic gradient descent, we optimize rotation

Ro and translation to of

To =

[
Ro to

0¦ 1

]
. (21)

yielding the evaluation mesh

Me = To Te Td M0, (22)

achieving optimal alignment for quality evaluation. We

crop points within distance de and apply a z-range filter,

yielding the evaluation point cloud Pe.

2T2S Metric. To compare object similarity beyond purely

geometric metrics, we employ a deep feature representa-

tion learned from 3D point clouds. A neural network is

trained on a large-scale object classification dataset to cap-

ture shape-discriminative features that are invariant to mi-

nor geometric distortions and partial observations.

For each evaluated point cloud Pe, the network produces

intermediate feature matrices

Y (l)
e ∈ R

N×Fl , l = 1, . . . , L, (23)

from L latent layers, where N is the number of latent sam-

ples and Fl is the dimensionality of the l-th feature space.

The sampled ground truth mesh M0 is uniformly sampled

to a point-set P0, for input compatibility with the feature

encoder, and passed through the same network to obtain the

corresponding matrices

Y
(l)
0 ∈ R

N×Fl . (24)

Each feature matrix is first normalized to unit length

on a per-sample basis. For each feature dimension

f = 1, . . . , Fl, we then compute the the one-dimensional



Figure 3. Our 2T2S Pipeline. Starting from a measured pointcloud Pd, we reconstruct meshes for tiny, lost cargo objects and align them to

the closest (15 or 25 meters) measured point cloud. We then perform a Fine Pose Optimization to reduce residual pose error and obtained

the final, Refined Evaluation Pointcloud Pe by cropping noisy points belonging to ground. This cluster and the sampled ground-truth mesh

Po are subsequently fed into a feature encoder: the distances between the so obtained latent-layers vectors are normalized and summed to

obtain our novel 2T2S deep similarity metric for robust perception evaluation of semantically and structurally incomplete objects.

Wasserstein-p distance Wp between corresponding column

vectors:

d(l)[f ] = Wp

(
Ỹ (l)

e [:, f ], Ỹ
(l)
0 [:, f ]

)
, (25)

This produces a distance vector d(l) ∈ R
Fl for each latent

layer. The distances are averaged across feature dimensions

to obtain a scalar per layer:

d̄(l) =
1

Fl

Fl∑

f=1

d(l)[f ]. (26)

Finally, the similarity between Pe and P0 is quantified as

the sum over all latent layers:

sim(Pe,P0) =

L∑

l=1

d̄(l). (27)

This approach enables robust comparison of object sim-

ilarity even when geometry is incomplete or noisy.

5. Evaluation Setup

To validate our approach we generate 3D pointclouds by

projecting 2D depth maps estimated with different modali-

ties. For the gated-RCCB cross-spectral stereo setup we use

Gated RCCB Stereo [12], which showed high quality lost-

cargo depth estimation capabilities. For RCCB and RGB

stereo, we use the widely adopted IGEV-Stereo [86]. Fi-

nally, we employ the monocular depth foundation model

Metric3Dv2 [37] for the left monocular RGB camera. All

depth estimation methods are finetuned on a training split

for the summer and winter captures, supervising with a Li-

DAR ground truth generated projecting the Velodyne VLS-

128 pointclouds into the corresponding images. Implemen-

tation details are provided in the Supplemental Material.

Reference Metrics. Depth-based metrics such as SiLog,

RMSE, MAE, ARD, and Abs Rel are conventionally com-

puted globally over an entire sensor-view. To focus on

the regions of interest, we render the ground truth meshes

P0 and Pe into aligned depth maps and apply the metrics

locally within the object areas. In particular, each point

po
i ∈R

3 is mapped to screen space ps
i ∈R

2 following stan-

dard screen-space projection [65] as

po
i ∈ R

3 proj
−−−→ ps

i ∈ R
2,

and depth errors are computed only at pixels that are valid

(non-zero) in both maps. Chamfer Distance and Voxel IoU

are computed directly in 3D without projecting; for IoU we

discretize space using a uniform voxel size sv in all experi-

ments. We apply the listed metrics on the lost cargo object

point clouds at varying distances, and estimate the consis-

tency of the changes in metric value as distance increases.

Metrics Application to Measurements. Summer and win-

ter data was analyzed separately due to different measure-

ment distances. For both datasets, metric values were aver-

aged over all objects at each distance. This was computed

individually for each perception method and yields a gen-

eral estimation of how a metric value behaves when the dis-

tance of lost cargo objects increases.

The 2T2S metric was obtained according to Equation 26

from latent features of P0 and Pe at each measured dis-

tance. The metric value was used as the indicator of dis-

similarity between ground truth and measurement. Of the

reference metrics, Chamfer Distance and Voxel IoU were

computed directly between Pe and P0. The remaining refer-

ence metrics were computed on the rendered depth images

as shown in the previous section. The 2T2S feature met-

ric was obtained from SPVCNN [69] point cloud feature



Figure 4. Winter and Summer Reconstruction Examples. Under varying weather and ranges, both LiDAR sensors (Luminar, Velodyne

VLS-128) and learning-based depth estimators (stereo [12], monocular [37]) often struggle to recover the shape and distance of small

lost-cargo objects. With LiDAR, even when only a few returns may hit the object, classic depth metrics can look favorable, even though

geometry and semantics are poorly captured. Image-based stereo and monocular methods, in turn, often miss the same tiny objects at long

distances due to reduced depth accuracy

encoder implemented as in [21] and trained on the Model-

Net40 dataset [84]. The features are obtained from the first

convolution layer of ’stage1’, ’stage2’, ’stage3’ and ’stage4’

encoder sequences of SPVCNN.

6. Results

Consistency Evaluation. We report results in Figure 5,

which shows metric values of all methods across differ-

ent evaluation distances. We seek a metric that captures

perceptual degradation with distance and reflects the Li-

DAR–camera trade-off: LiDAR provides high depth ac-

curacy but sparse sampling, whereas cameras offer dense

geometry at lower absolute accuracy. Conventional met-

rics fail to reflect this trade-off, often producing mislead-

ing results. For instance, RMSE favors both Luminar and

VLS-128 LiDARs point accuracy, as both score the best,

while completely ignoring that their inherent sparsity pre-

vents them from capturing object shapes, as seen qualita-

tively in Figure 4, where lost cargo objects can not be distin-

guished already at small ranges. All other common depth-

based metrics indicate similar results and are presented in

the Supplementary Material. Similarly, Chamfer Distance

yields inconsistent rankings, with RCCB stereo [86] achiev-

ing on average best performances, but with high variation

of best performing method across different (Summer and

Winter) capturing conditions and ranges. Moreover, it does

not clearly separate LiDAR from camera-based methods,

limiting its discriminative power. The Voxel IoU generally

ranks camera based methods above LiDAR based methods,

with large outliers in the winter data, showcasing bias to-

ward sheer point cloud density rather than accurately re-

flecting reconstruction quality. Our proposed 2T2S met-

ric aligns with qualitative observations by favoring camera-

based methods for their superior shape and semantic cap-

ture. It consistently ranks Gated RCCB Stereo [12] as

the top performer (averaging 0.142 in summer and 0.137

in winter), while VLS-128 and Luminar sensors score the

lowest due to their sparse coverage, which limits the rep-

resentation of small-object geometry. This clear separation

and stable ranking across all evaluation distances, unlike the

fluctuating and counterintuitive results from other metrics,

demonstrates that 2T2S provides a more discriminative and

reliable measure of reconstruction quality for lost cargos.

Ablation studies. We conduct an ablation study using dif-

ferent neural network backbones to obtain the final 2T2S

metric. We choose Point transformer V3 [83], Sparse-

UNet [21], OA-CNN [59] and SPVCNN [69]. For each

architecture, the feature vector for similarity comparison

is taken from a suitable intermediate layer, as detailed in

the Supplementary Material. Following the previous eval-

uation, Figure 6 shows average scores for summer and

winter and across different ranges, with consistent behav-

ior across architectures and differences largely limited to

scale. This demonstrates that our method is not limited

to SPVCNN outputs but generalizes across different point

cloud encoders, highlighting its robustness and adaptability

to newer, stronger architectures as they become available.

We use SPVCNN in the main results as it provides the clear-

est separation between the tested methods and best matches

qualitative observations (Fig. 4).
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Figure 5. Average Distance-Binned Evaluation Results. We present averaged metric values by distance for each perception method on

the two different captures of our dataset: winter (W) and summer (S) recordings. We note that the 2T2S metric values correlate with the

qualitative results with smaller values (higher similarity to ground truth) for camera-based methods, with Gated RCCB Stereo standing out

as the best performing method.
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Figure 6. Ablation Study. Averaged metric values by distance for different feature encoder architectures in Winter (W) and Summer (S).

7. Conclusion

We introduced and release a novel dataset capturing very

small and hard-to-find objects, to support research ad-

vances in the critical challenge of detecting obstacles in au-

tonomous driving applications. To address the current limi-

tations of existing evaluation metrics, that overlook object-

level fidelity at distance, we complement it with an evalua-

tion framework for long-range depth prediction of small ob-

jects. Specifically, our proposed 2T2S metric captures the

LiDAR-camera trade-off, separates methods consistently,

and quantifies object-level similarity between predicted and

reference obstacle geometry in a learned point cloud fea-

ture space. Experiments across sensors, conditions, and

encoder backbones demonstrate that 2T2S provides robust

and modality-agnostic evaluation, offering a reliable tool

for advancing depth perception research in safety-critical

applications. Earlier reliable estimation of small obstacles

increases effective detection range, which provides larger

planning margins and can enable higher safe driving speeds

under stopping distance constraints.
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