
HEIR: Learning Graph-Based Motion Hierarchies
Supplemental Material

Cheng Zheng1∗ William Koch1∗ Baiang Li1 Felix Heide1,2
1Princeton University 2Torc Robotics

chengzh, william.koch, baiang.li, fheide@princeton.edu

In this supplementary document, we provide additional details and further results in support of the
findings from the main manuscript. The document is structured as follows.

Contents

1 Additional Details on 1D Hierarchical Motion Learning 1

1.1 Difficulty of hierarchical motion learning in the 1D synthetic dataset 2

1.2 Experimental Details . 2

1.3 Hierarchy Matrix Verification . 2

2 Additional Details on Rotational Hierarchy Learning 3

2.1 Encoder Architecture . 3

2.2 Experimental Details . 3

3 Additional Details of 3D Scene Deformation 4

3.1 Encoder Architecture . 4

3.2 Experimental Details . 4

3.3 Scene Deformation Details . 5

3.4 Additional Evaluations . 6

4 Ablation Experiments 6

5 Additional Comparison 8

1 Additional Details on 1D Hierarchical Motion Learning

This section provides further details and justifications for the 1D synthetic experiment described in
Section 4.1 of the main paper. The goal of this setup is to test whether our method can identify a
motion hierarchy from noisy 1D trajectories. Despite the simplicity of the domain, we show that
finding a valid solution is hard, and we provide additional details on the experiment and how we
validate hierarchies below.

∗These authors contributed equally to this work. Listing order is random.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

In a supplementary video, we illustrate the training process: over time, the model learns to decompose
the individual node velocities and construct parent-child relationships. Our method reconstructs a
valid hierarchy in 73% of runs (Table 1, main paper).

1.1 Difficulty of hierarchical motion learning in the 1D synthetic dataset

Even for only n = 11 points the search space for hierarchy matrices is enormous. Because each
of the ten non-root nodes can choose any of ten valid parents independently, there are 1010 distinct
hierarchy matrices that can be sampled. By construction of our synthetic dataset, a valid hierarchy
must respect two fixed motion groups G1, G2 ⊂ {1, . . . , 10} with |G1| = |G2| = 5. Choose one
distinguished node pi ∈ Gi to serve as the parent for its group; every other node v ∈ Gi \ {pi} must
then select pi as its parent. This gives 5 independent choices for p1 and 5 for p2. The two parents
are related by a single directed edge deciding the global ordering of the groups: either p1→p2 or
p2→ p1. Hence the number of valid hierarchies is 5 × 5 × 2 = 50 in the entire space. A random
hierarchy is therefore correct with probability 50/1010 = 5× 10−9, or 5×10−7%. Our model attains
73% accuracy on this task, over eight orders of magnitude above chance, demonstrating that it can
reliably disentangle inherited motions and recover the hierarchy, even with noisy observations.

1.2 Experimental Details

We train the toy-experiment model with a single message passing layer with learnable edge weights.
The absolute velocities are the node features, which are updated through mean-aggregated message
passing. We use the Adam optimizer and an initial learning rate of 0.1, combined with a plateau
scheduler (decay factor 0.8, patience 20 and a minimum learning rate of 0.02).

To ensure differentiability during sampling, we apply the Gumbel-Softmax trick [3], which is
parametrized by a temperature parameter τg, which is annealed linearly from 1.5 to 0.3 (with a
break-point with τ = 0.7 at epoch 200).

Additionally, we use a custom softmax στs in the message passing layer to guarantee that every edge
retains a strictly positive weight above a threshold, controlled by τs, to prevent pruning of edges due
to vanishing probabilities with overconfident logits:

στs : Rd −→ Rd, x 7−→ 1− τs
d

+ τs σ(x). (1)

A value of τs = 0 corresponds to a uniform distribution, whereas a value of τs = 1 corresponds to
the standard softmax. We anneal τs similar to τg, from 0.6 to 1.0 (break-point with temperature of
0.8 at epoch 200).

1.3 Hierarchy Matrix Verification

There are many admissible hierarchy matrices H ∈{0, 1}n×n. Because siblings can be permuted
and leaf groups reordered, exact equality H = H⋆ is too strict. We call two hierarchies equivalent,
written H ≡ H⋆, when they induce the same collection of depth-1 motion groups:

G(H) =
{
{p} ∪{c | parent(c) = p and c is a leaf}

}
p ̸=r

,

where r is the root. Thus H ≡ H⋆ if and only if G(H) = G(H⋆); ordering inside each group and
between groups is irrelevant.

Validation algorithm. Algorithm 1 verifies this equivalence. It first extracts all depth-1 groups of
the ground-truth tree; it then iteratively prunes the candidate hierarchy, checking that every set of
current leaves matches one of those reference groups. A hierarchy passes exactly when the pruning
process removes all non-root nodes.

2

Algorithm 1 Validate a candidate hierarchy H against ground truth H⋆

Require: H⋆, H (one–hot parent matrices), root index r
1: G ← depth-1 groups of H⋆ {parent + leaf children}
2: parent[i]← argmaxj Hij for all i
3: rem← {0, . . . , n−1} \ {r}
4: while rem ̸= ∅ do
5: leaves← {i ∈ rem | parent[j] ̸= i ∀j ∈ rem}
6: if leaves = ∅ then
7: return 0
8: end if{cycle or no leaf}
9: for each p that is parent of some ℓ ∈ leaves do

10: group← {ℓ ∈ leaves | parent[ℓ] = p}
11: if p ̸= r then
12: group← group ∪ {p}
13: end if
14: if group /∈ G then
15: return 0
16: end if
17: end for
18: rem← rem \ leaves
19: end while
20: return 1

2 Additional Details on Rotational Hierarchy Learning

2.1 Encoder Architecture

As described in Section 3.4 of the main paper, the encoder G(·) for rotational hierarchy learning differs
only from the one used for the 1D toy example in that it predicts the motion in polar coordinates for
each candidate parent-child pair (i, j). As before, the encoder consists of a graph attention network
with learnable edge weights. For each edge (i, j) in the fully-connected graph (or k-NN proximity
graph, if the size becomes intractable), we maintain learnable attention parameters wij ∈ R and
compute temperatured attention scores with the custom softmax, exactly as in the 1D case.

Given node positions at time t and t + 1, denoted xt
i and xt+1

i , we compute the relative position
vectors rtij = xt

i − xt
j and rt+1

ij = xt+1
i − xt+1

j between potential child i and parent j. Let N (i)
denote the set of candidate parents for node i. The aggregated predictions for each node i, i.e., relative
velocity in polar coordinates, are computed as weighted sums of the edge-level components. The
radial component ṙtij measures the rate of change in distance between nodes, computed as:

̂̇rti = ∑
j∈N (i)

αij ṙ
t
ij with ṙtij =

1

∆t
(|rt+∆t

ij | − |rtij |) (2)

The angular component θ̇tij captures rotational motion around the parent. For 2D motion, this is
computed using the change in angle:

̂̇
θ
t

i =
∑

j∈N (i)

αij θ̇
t
ij with θ̇tij =

1

∆t
atan2

(
rtij × rt+1

ij , rtij · rt+1
ij

)
(3)

.

Note that in practice, we consider ∆t = 1. We also keep the prediction of the relative velocity in
Cartesian coordinates, δ̂ti, to provide additional regularization.

2.2 Experimental Details

Dataset. For the rotational experiment, we construct a synthetic planetary system dataset with
T = 100 timesteps. The system contains eleven bodies: one central star, four planets, and six moons.
Each planet orbits the star with a fixed radius and angular velocity, while moons orbit their respective
planets following circular trajectories. Ground-truth comparisons are simple, as there only exists a

3

Table 1: Parameters of the synthetic planetary system dataset. Each planet orbits the central star,
and each moon orbits its respective planet. The dataset provides ground-truth hierarchical relations
for the rotational experiment.

Body Parent Radius ri Angular Velocity ωi Phase ϕi (rad)

Star (root) Star 0.0 0.0 0.00
Planet 1 Star 1.0 4.0 0.00
Planet 2 Star 1.8 3.0 1.57
Planet 3 Star 2.5 2.5 3.14
Planet 4 Star 3.2 2.0 4.71
Moon 1 of Planet 3 Planet 3 0.6 12.5 0.00
Moon 1 of Planet 4 Planet 4 0.5 15.0 0.00
Moon 2 of Planet 4 Planet 4 0.7 14.0 3.14
Planet 5 (outer) Star 4.5 1.25 0.00
Moon 1 of Planet 5 Planet 5 1.0 7.5 0.00
Moon 2 of Planet 5 Planet 5 1.3 6.0 2.09

single valid hierarchy matrix for this experiment. We highlight that this dataset does not aim to be
physically accurate.

We construct the dataset both with and without noise. For the version with noise, Gaussian noise with
standard deviation σ = 0.05 is added to the node positions at every timestep, to simulate measurement
uncertainty. We also provide ablation experiments on additional noise levels.

3 Additional Details of 3D Scene Deformation

3.1 Encoder Architecture

Model Structure. The encoder G (·) in our hierarchical motion model consists of two graph
attention layers designed to progressively infer motion hierarchies at different levels of abstraction.
The first graph attention layer G1 (·) takes every individual motion element as input and computes local
attention scores over candidate parent-child relationships. These attention scores remain consistent
across all time steps within each scene. From the first-layer attention scores, we sample an initial
hierarchy matrix, which is then converted into a directed graph using NetworkX’s DiGraph structure.
We identify weakly connected components in this graph, each typically containing cycles, as distinct
motion groups.

To learn group-level relationships, we select a representative node from each motion group. Specifi-
cally, the representative is chosen as the node with the largest number of descendants, corresponding
naturally to the most parent-like node within that group. Anchored by these representative nodes, we
construct a fully-connected group-level attention graph in the second graph attention layer G2 (·).

Graph Attention Layer. Each graph attention layer in our model is implemented using a single
4-head GATConv module from PyTorch Geometric, with in_channels and out_channels of 3. It
performs multi-head attention over the input graph without self-loops and dropouts, and the output
node features and the edge attention weights are averaged across all attention heads. It ensures
that each node aggregates information stably from all its neighbors to produce a single unified
representation. We apply this same GATConv architecture in both G1 (·) and G2 (·), differing only in
their input features and graph connectivity.

3.2 Experimental Details

Datasets. We extract the motion data Xt for each scene in D-NeRF dataset [6] using the training
pipeline introduced in [2], where each scene contains approximately 100k Gaussians. Constructing
a hierarchy matrix for this scale of Gaussians demands significant computational resources. To
address this, we train a low-resolution representation by limiting the total number of Gaussians
to approximately 5k per scene, following the same training procedure. We equally divide the full
motions in the dataset into T = 50 time steps to obtain the discrete positions. During training, we
learn the hierarchy matrix on the downsampled representation. At inference time, we use the learned

4

hierarchy to apply deformations to the low-resolution Gaussians and use weight-based skinning to
transfer the deformation to the high-resolution Gaussians, which are then used to render the final
high-quality deformed scene.

Training. Learning directed acyclic graph (DAG) representations is challenging when the number
of vertices N increases. The number of potential edges grows quadratically with N , raising the risk of
cycles forming during graph structure discovery. Since Gumbel-Softmax does not inherently enforce
acyclicity, costly cycle detection or regularization steps must be integrated into training, complicating
optimization and scalability as graphs become larger. Here, we implement a two-stage optimization
strategy to progressively learn the corresponding hierarchy matrix.

In Stage 1, we only optimize the parameters in G1 (·), where the edges are computed over k-nearest
neighbors with k = 100. A batch size of 1 is used, and data from different time steps is stacked
along the batch dimension to enable consistent graph processing. Their attention scores are shared
across all time steps within each scene and used to sample a hierarchy matrix via Gumbel-Softmax,
with a temperature τ = 1.6. Hierarchies are sampled with S = 1 sample per pass. Motion is then
reconstructed through propagation over the sampled hierarchy, and we supervise the predicted motion
from G1 (·) with an L1 velocity loss. The model is trained for 50 epochs using the Adam optimizer
with a learning rate of 0.002. A ReduceLROnPlateau scheduler is used to reduce the learning rate
by a factor of 0.8 if loss stagnates for 10 epochs.

In Stage 2, we freeze the parameters in G1(·) and introduce a second graph attention layer G2(·) to
learn higher-level, group-wise motion structures. To ensure the separation of hierarchical levels, we
remove all incoming edges to the representative nodes in each group, so they do not receive messages
from neighbors in the first layer and instead aggregate information solely through the second layer.
The model is trained for 100 epochs using the same settings and hyperparameters. The outputs
from both layers are combined, according to their respective learned hierarchies, to produce the final
motion prediction. In addition to the loss in Stage 1, we add a distance correlation loss with weights
of λd = 0.1, which encourages the learned group-level attention weights to be inversely correlated
with the spatial distances between groups. It is based on the Pearson correlation between the attention
weights and the pairwise Euclidean distances of group representatives:

Ld = λd · (r + 1)2, r =

∑
i,j d̄ij · w̄ij√∑

i,j d̄
2
ij ·

√∑
i,j w̄

2
ij + ϵ

(4)

where d̄ij = d̃ij − mean(d̃), w̄ij = wij − mean(w), and wij , d̄ij are the mean attention weight and
the normalized Euclidean distance from representative nodes in group j to group i. Since the Pearson
correlation coefficient r lies in the range [−1, 1], we shifted and squared it into a positive scalar loss.

We train our model and conduct all the experiments on an NVIDIA RTX 3090 GPU; the training on
each scene takes approximately 40 minutes.

3.3 Scene Deformation Details

Keypoint Selection. The deformation process begins with the user specifying a keypoint—typically
a parent node in the hierarchy—as the anchor for deformation. We then construct a deformation group
by automatically traversing the learned hierarchy to collect all descendants of the keypoint, ensuring
that the affected region reflects the underlying motion structure. Optionally, we select a sparse set of
512 Gaussians from the full set using the Farthest Point Sampling (FPS) algorithm and define the
deformation group as the intersection between this sparse subset and the keypoint’s descendants. This
strategy reduces computational overhead and enables smooth, real-time deformation rendering.

Deformation Computation. We apply the displacements of Gaussians within the deformation
group by assuming they form a rigid object. Given the deformation of the keypoint represented by
a translation vector Tk and a rotation matrix Rk, the updated position of the Gaussian i inside the
deformation group is calculated with p′i = Rk(pi − pk) + pi + Tk, where pk and pi are the initial
position of the keypoint and the Gaussian i. For the rest of the Gaussians outside the deformation
group, we perform global refinement using As-Rigid-As-Possible (ARAP) optimization over all
Gaussians. The ARAP algorithm takes the directly manipulated handles as positional constraints and
computes new positions for the remaining Gaussians that best preserve local rigidity. Note that these
operations are all done on the downsampled Gaussians.

5

Figure 1: Learned hierarchy in the Excavator scene. We overlay the abstracted learned hierarchy
on the excavator scene. The center of the excavator body is recognized as the root of motion, and the
shovel is correctly assigned as the child of the upper-left part of the excavator body.

Weights-based Skinning. To propagate deformations to the full Gaussian set, we compute skinning
weights using a distance-based soft assignment. For each Gaussian, we identify its k = 16 nearest
points and extract the squared distances. We apply a softmax over the negative distances to compute
the skinning weights. This ensures that nearby points exert greater influence, and that all weights for
a given Gaussian sum to one, enabling smooth and spatially consistent deformation transfer.

3.4 Additional Evaluations

We evaluated our method on the full D-NeRF dataset, besides the scenes shown in the main paper.
The reconstruction component of SC-GS that we use as input for our method achieves PSNR
40.72, SSIM 0.998, and LPIPS 0.021 before performing any scene deformation with our test-time
method. The average metrics of our method versus SC-GS after deformation over the full D-NeRF
dataset are PSNR(↑) 20.35/19.30, SSIM(↑) 0.9438/0.9366, CLIP-I(↑) 0.9635/0.9621 and LPIPS(↓)
0.0453/0.0659. For additional reference-free evaluation, we provide FID (Frechet Inception Distance)
scores of 68.65 (our method) v.s. 107.03 (SC-GS). Note that this number is relatively high compared
to values reported in generative models as the D-NeRF subset contains few images.

We also visualize the learned hierarchy on top of the rendered Gaussian scene to see if relative
motions are correctly observed. Note that the Gaussian scenes don’t have a ground-truth hierarchy
structure as in the toy examples; we use the figure here as a sanity check. To ensure that meaningful
hierarchies are clearly presented, we cluster the nodes into 10 macro nodes, whose locations are the
centroids of the clusters. We build the hierarchy between the macro nodes using their relative depths
(distance to the root node), where the depth of a macro node is the average depth of all nodes in the
cluster. We overlay the abstracted learned hierarchy on the scene, with arrows pointing from parent
to child. We can easily observe the center of the excavator body being recognized as the root, and the
shovel being the child of the upper left part of the excavator body.

4 Ablation Experiments

Fraction of Time Steps. We evaluated how the number of available time steps in the training data
influences the accuracy of the hierarchy reconstruction. In the 1D synthetic experiment, we use a
fraction of the time steps instead of the full time steps (T = 200) for training and measure hierarchy
reconstruction accuracy over 100 iterations. As shown in Fig. 2, accuracy climbs steadily as the
fraction of training data increases, reaching roughly 45% accuracy when half the frames are available,
and begins to plateau once approximately 70% of the time frames are included. It aligns well with the
expectation of this data-driven method, where enough observation of meaningful motions is necessary
to learn the underlying hierarchy.

6

Figure 2: Ablation study on fraction of time steps. We evaluated the effects of the number of time
steps in the training data on 1D hierarchy reconstruction. The plot shows that the accuracy almost
linearly increases with the growth of available time steps, and reaches a plateau of ∼ 70% accuracy
when 70% time steps are available.

Figure 3: Ablation study on impact of noise in observed data. The model achieves 100% hierarchy
match accuracy (blue) if the amount of noise is very limited or zero, and drops quickly for larger
noise levels. The average edge accuracy (orange), however, remains stable - indicating that the
reconstruction fails only due to a few incorrect edges.

Impact of Noise in Training Data. We evaluate the robustness of hierarchy recovery for the
rotational reconstruction under varying levels of Gaussian noise applied to node positions, with
standard deviations σ ∈ [0.0, 0.1]. Each configuration is trained for 500 epochs and averaged over
100 independent runs, using the same hyperparameters as in the main experiment (i.e., λṙ = 12.0,
λθ̇ = 0.0, λδ = 0.8 and λΛ = 6.0). As shown in Fig. 3, exact match accuracy (blue) measures
whether the entire hierarchy is recovered correctly, while average edge accuracy (orange) measures
the fraction of correctly recovered parent–child edges, independent of whether the global structure is
fully correct. The model maintains nearly perfect edge-level accuracy up to moderate noise levels,
whereas exact match accuracy drops sharply beyond σ ≈ 0.05. This behavior likely arises as noise
begins to dominate the small orbital displacements of planets and moons closer to the star, while nodes
with larger radii remain less affected. Most relations therefore continue to be correctly predicted,
despite the overall reconstruction being incorrect. We note that computing the average edge accuracy,
which we introduce here, is not possible in the 1D toy example, as the 1D toy example admits many
different valid hierarchy reconstructions.

7

Figure 4: Ablation study of GS experiments. We evaluate the effects of varying the number of
neighbors k in the proximity graph and the distance correlation loss in hierarchy learning. We apply
the same deform operations on the scene as in the main paper. The left three columns show results
under k-NN values of 20, 50, and 200. Smaller k leads to rigid, less expressive deformation, while
larger k increases flexibility but introduces instability. The rightmost column shows results without
the distance correlation loss, which leads to noticeable artifacts in the ground and shovel during
deformation.

Proximity Graph Sparsity. In the initial proximity graph, edges are determined using k-nearest
neighbors in Euclidean space. The choice of k directly affects the sparsity of the graph and thus the
searching space for the learned hierarchy. A smaller k enforces stricter locality, potentially missing
long-range dependencies, while a larger k allows for more flexible hierarchy formation but may
introduce noise and increase computational overhead. To study the impact of this parameter, we
conduct an ablation study by varying the value of k and evaluating the resulting deformation quality.
As shown in Fig.4, all settings (k = 20, 50, 200) preserve basic structural coherence. However, we
observe that k = 20 results in more rigid local behavior, making deformation harder to propagate,
whereas k = 200 offers increased flexibility at the cost of reduced stability. Moderate values such as
k = 50 ∼ 100 provide a good balance between locality and global consistency.

Distance Correlation Loss. In optimization Stage 2, we apply a distance correlation loss to
encourage group-level attention to align with spatial proximity, promoting stronger interactions
between nearby motion groups. Without this loss, group attention becomes less spatially coherent,
leading to a slight drop in deformation quality in Fig. 4. We can observe distortions of the ground
and the shovel compared to the scenario with distance correlation loss. By incorporating this loss,
spatial consistency among the motion groups is maintained, which also improves structural coherence
during deformation.

5 Additional Comparison

Most existing 3D methods do not support user-interactive scene deformation, with the exception of
SC-GS [2] (included in the main paper) and 3DGS-Drag [1], whose source code was unavailable
at the time of this study. For completeness, we additionally compare our method with PDS [4], a
3D editing approach that aligns the stochastic latent spaces of source and target by sampling in the
target latent space to match distributions. We also include SDE-Drag [5], a 2D editing method that
formulates point-based content dragging as a stochastic differential equation (SDE) process.

For SDE-Drag, we enable the train_lora option as recommended in the source code to ensure optimal
performance. Fig. 5 shows SDE-Drag either barely deforms the scene or introduces severe distortion
under the same deformation operation indicated by the arrows on the source image. For PDS, we
fine-tune the model on the D-NeRF dataset using the pretrained Stable Diffusion v1.5, following
the official implementation. Fig. 6 shows that PDS fails to generate meaningful results on the same
input scenes. We attribute the failure of both methods to a domain gap: they are fine-tuned on Stable

8

Figure 5: Scene editing results using SDE-Drag [5]. In the generated editing images using SDE-Drag,
either no clear deformation or severe distortion can be observed compared to our method on the right.
It is also worse than the SC-GS method we compared in the main text. The drag points and prompts
we used to generate the edited images are labeled on the images. Note that SDE-Drag edits on a 2D
source image, while our method and SC-GS deform a 3D scene represented by Gaussian splatting.

Diffusion v1.5 [7], which is trained on more complex, natural images and does not align well with
the D-NeRF dataset.

Another established field very relevant to our method is the rigging techniques. Although RigNet [9]
and UniRig [11] generate a skeleton that has a very similar structure to our hierarchy graph, RigNet’s
BoneNet and UniRig’s Skeleton-Tree GPT are both trained on thousands of meshes with ground-truth
joints and skinning weights. Our hierarchy graph is directly learned from the motion from the scene
via a self-supervised reconstruction loss; no pre-rigged data is required. BANMo/DreaMo [10, 8]
learn where to place deformable handles (‘neural bones’ in the paper) so the object can be rendered
consistently across video frames whereas our method learns how those parts influence each other
over time. This fundamental difference in objective makes their skeleton (only available in DreaMo)
adjacency-based, and doesn’t yield the parent-child relationships we target. In fact, our goal of
motion-centric hierarchy is complementary to many rigging techniques. For example, a supervised
rigger could seed an initial topology, while our optimization refines parent-child directions using
dynamics. It is especially useful for long-range dependencies that K-NN initialization may miss.

References
[1] Jiahua Dong and Yu-Xiong Wang. 3DGS-Drag: Dragging gaussians for intuitive point-based 3D editing.

In Proceedings of the International Conference on Learning Representations, 2025. 8

[2] Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. SC-GS: Sparse-
controlled gaussian splatting for editable dynamic scenes. In Proceedings of the IEEE/CVF Conference on

9

Figure 6: Scene editing results using PDS [4]. We perform fine-tuning on this model under the
D-Nerf dataset using the pre-trained stable diffusionv1.5 [7], as described in the paper and the source
code. PDS fails in both cases, generating blank or low-quality scenes.

Computer Vision and Pattern Recognition, pages 4220–4230, 2024. 4, 8

[3] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017. 2

[4] Juil Koo, Chanho Park, and Minhyuk Sung. Posterior distillation sampling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13352–13361, 2024. 8, 10

[5] Shen Nie, Hanzhong Allan Guo, Cheng Lu, Yuhao Zhou, Chenyu Zheng, and Chongxuan Li. The blessing
of randomness: Sde beats ode in general diffusion-based image editing. arXiv preprint arXiv:2311.01410,
2023. 8, 9

[6] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural radiance
fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10318–10327, 2021. 4

[7] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022. 9, 10

[8] Tao Tu, Ming-Feng Li, Chieh Hubert Lin, Yen-Chi Cheng, Min Sun, and Ming-Hsuan Yang. Dreamo:
Articulated 3d reconstruction from a single casual video. In 2025 IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pages 2269–2279. IEEE, 2025. 9

[9] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. Rignet: Neural rigging
for articulated characters. arXiv preprint arXiv:2005.00559, 2020. 9

[10] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ramanan, Andrea Vedaldi, and Hanbyul Joo. Banmo:
Building animatable 3d neural models from many casual videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2863–2873, 2022. 9

[11] Jia-Peng Zhang, Cheng-Feng Pu, Meng-Hao Guo, Yan-Pei Cao, and Shi-Min Hu. One model to rig them
all: Diverse skeleton rigging with unirig. ACM Transactions on Graphics (TOG), 44(4):1–18, 2025. 9

10

