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Fig. 1. Holographic Display with Eyelash Obstructions. Holographic near-eye displays show promising immersive visuals with rich depth cues and fine

detail at a compact form factor. However, dynamic artifacts such as eyelashes and floaters inside the eyeball can be detrimental to the perceived image
quality of holographic displays. We propose a new differentiable metric that can be used to distribute the eyebox for both iterative and neural methods

to create artifact resilient holograms. By applying our metric, we are able to retrain off-the-shelf phase retrieval neural networks to generate high-quality
artifact-resilient holograms in real time (85 fps). (Left) Holographic displays show images to a viewer by directing an engineered beam of light into the pupil of

the viewer’s eye. We simulate the effect of dynamic artifacts by placing phantoms for occluders (such as the eyelashes shown in the bottom left) in the display
path. (Middle) Dynamic artifacts can obstruct the displayed image if the light beam exhibits a smooth phase profile, which is typical of several of today’s
state-of-the-art holographic displays [Choi et al. 2022; Peng et al. 2020]. The red markers indicate where interference with human eyelashes occurs. (Right) We
find that our proposed method for real-time Artifact-Resilient Holography (ARH) is able to compute holograms that are robust to such distortions.

Holographic near-eye displays promise unparalleled depth cues, high-resolution

imagery, and realistic three-dimensional parallax at a compact form factor,
making them promising candidates for emerging augmented and virtual
reality systems. However, existing holographic display methods often as-
sume ideal viewing conditions and overlook real-world factors such as eye
floaters and eyelashes—obstructions that can severely degrade perceived
image quality.

In this work, we propose a new metric that quantifies hologram resilience
to artifacts and apply it to computer generated holography (CGH) opti-
mization. We call this Artifact Resilient Holography (ARH). We begin by
introducing a simulation method that models the effects of pre- and post-
pupil obstructions on holographic displays. Our analysis reveals that eyebox
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regions dominated by low frequencies—produced especially by the smooth-
phase holograms broadly adopted in recent holography work—are vulnerable
to visual degradation from dynamic obstructions such as floaters and eye-
lashes. In contrast, random phase holograms spread energy more uniformly
across the eyebox spectrum, enabling them to diffract around obstructions
without producing prominent artifacts.

By characterizing a random phase eyebox using the Rayleigh Distribution,
we derive a differentiable metric in the eyebox domain. We then apply this
metric to train a real-time neural network-based phase generator, enabling
it to produce artifact-resilient 3D holograms that preserve visual fidelity
across a range of practical viewing conditions—enhancing both robustness
and user interactivity.

CCS Concepts: « Hardware — Emerging optical and photonic technolo-
gies; Emerging interfaces.

Additional Key Words and Phrases: computational display, holographic
display, AR/VR

1 Introduction

Realizing the transformative potential of AR/VR headsets depends
heavily on the performance of their near-eye displays, which must
excel in field of view, image quality, and depth perception [Itoh et al.
2021]. Holographic displays offer a compelling solution, combining a
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compact form factor with a wide field of view, rich color gamut, high
spatial resolution, and realistic depth cues to meet these demanding
requirements and unlock new possibilities for augmented reality
applications. Existing extended reality (XR) devices [Cakmakci and
Rolland 2006] rely on OLED/LCD displays paired with compound
optics, which inherently limits them in their ability to reproduce fo-
cus cues and parallax effects [Matsuda et al. 2017]. These limitations
are central to the challenge of solving the vergence-accommodation
conflict (VAC), a significant issue in today’s commercial VR sys-
tems. Holographic displays are emerging as a promising solution
for creating 3D visual experiences. Employing spatial light modu-
lators (SLMs), which allow for precise modulation of light waves,
holographic displays have the potential to produce 3D volumetric
images in a compact form [An et al. 2020; Kim et al. 2022a; Maimone
and Wang 2020; Xia et al. 2020].

Although artifacts from obstructions like dust particles or eye-
lashes are not detrimental when viewing the LCD displays found
in current commercial VR headsets, these artifacts are amplified by
the coherent nature of holographic light, potentially rendering the
display useless (see Fig. 1). In the past five years, researchers have
designed camera-in-the-loop systems (CITL) to effectively learn a
model of the physical light propagation in order to optimize phase
patterns that invert the aberrations that come from dust particles or
lens imperfections and create high-quality 3D holograms with accu-
rate parallax and defocus effects [Chakravarthula et al. 2020; Peng
et al. 2020]. These camera-in-the-loop methods have been validated
both in simulations and in physical hardware [Chakravarthula et al.
2020; Peng et al. 2020].

However, camera-in-the-loop techniques cannot handle dynamic
obstructions, such as eyelashes and eye floaters (see Fig. 2), poten-
tially severely impacting the viewing experience of these state-of-
the-art holographic displays. When working in the near-field con-
figuration, previously, smooth phase patterns have been preferred
as they have maximal perceptual quality with minimal speckle and
high contrast. While these smooth phase solutions combined with
CITL can generate high quality volumetric holograms in controlled
settings, smooth phase holograms have very small eyeboxes and
do not make full use of the angular spread of light afforded by the
SLM, making them incapable of diffracting around unanticipated
temporally varying obstructions.

In this work, we define methods to generate holograms that make
full use of the angular spread of light afforded by the SLM. Conse-
quently, we generate holograms capable of being viewed through a
wide range of scatterers from imperfect optics to dynamic obstruc-
tions, such as eyelashes. These artifact resilient holograms (ARH)
not only improve the display’s artifact resilience capabilities, but
also achieve accurate defocus blur. To this end, we apply our un-
derstanding of how obstructions interact with holographic displays
to retrain neural networks to generate real-time artifact-resilient
holograms. Prototype experiments confirm that the proposed holo-
graphic display method is robust to these dynamic distortions.

Specifically, in this paper, we make the following contributions:

e We introduce a technique for simulating pre and post-pupil

obstructions, namely eyelashes and vitreous floaters, to more
accurately evaluate how a holographic display performs when
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Fig. 2. Holographic Artifacts Model. To view a near-field holographic
display (top), the pupil of an observer’s eye takes in the propagated SLM
field after the eyepiece lens. During free space propagation, the hologram
is interfered by a variety of obstructions including, and not limited to,
dust particles, scratches on lenses, eyelashes, and eye floaters. Artifacts
from these obstructions interfere with image content reaching the retina,
rendering the display useless (bottom).

perceived in practice. We verify our simulation method ex-
perimentally.

o Relying on the findings in simulation, we devise a differen-
tiable metric to quantify holographic artifact resilience by
mapping it to the underlying Rayleigh Distribution. We find
these metrics can be applied to scenarios that have biases
towards smooth phase holograms.

o Using our differentiable metric, we are able to train a real-time
neural network to create pseudo-random phase holograms
that are able to inherently diffract around a wide range of un-
known, dynamic obstructions without the need for a camera
in the loop. With our artifact resilient network, we are able
to generate holograms at 85 FPS.

We hope this work not only highlights the limitations of using
smooth phase holograms in practical holographic displays, but also
demonstrates that many existing holographic methods can be readily
adapted to produce artifact-resilient holograms in real time. The
source code for this project is available on our GitHub repository’.

2 Related Work

Computer-generated holography (CGH) employs algorithms to find
complex-valued signals that will generate a target wavefront after
the signal has traveled some distance. In its most general form,
the amplitude and phase for each pixel location on a spatial light
modulator need to be determined correctly so that the desired target
can be produced. Hardware-specific constraints can narrow the

!https://github.com/princeton-computational-imaging/ArtifactResilientHolography



domain of solutions so that only the phase component or only the
amplitude component is variable. In this work, we compare and
analyze the following two different categories of holograms, smooth
and random phase holograms, that can produce similar wavefronts
in ideal settings but have vastly different qualities when viewed by
an observer.

2.1 Smooth Phase Holograms

We refer to the first category of holograms as “smooth phase”. These
holograms have the property that the phase component varies
slowly over propagation distance, resulting in a holographic phase
pattern that strongly resembles the target amplitude component.
The smoothness of the phase component results in optical coher-
ence within local patches of the hologram. This often results in
better-quality holograms in ideal experimental settings because
the coherence provides signal redundancy. However, in this work,
we show that a drawback of the coherence is that these types of
holograms are less robust to dynamic artifacts.

Recent works that use neural networks as the CGH engine for
near field holography produce this category of holograms [Choi
et al. 2022, 2021a; Horisaki et al. 2018; Li et al. 2025; Markley et al.
2023; Peng et al. 2020; Shi et al. 2021, 2022a,b; Wang et al. 2022].
The most popular architecture for neural network-based CGH relies
on convolutional neural networks that map target amplitudes and
phases to a hologram to be displayed on an SLM. This process
bears similarity to adjacent work in the image translation and style
transfer space [Zhu et al. 2017]. As such, the predicted holograms
tend to have a smooth phase component that strongly resembles
the input amplitude, resulting in a highly concentrated eyebox.

Smooth phase holograms can also occur even if neural networks
are not used for the CGH step. Several works have proposed methods
for performing phase retrieval using optimization and learned wave
propagation models [Chakravarthula et al. 2019, 2022b, 2020; Choi
et al. 2021b; Gopakumar et al. 2024; Peng et al. 2021]. Because the
optimization is influenced only by the image fidelity defined in
intensity space and there is no constraint on the hologram phase,
these optimization procedures also tend to produce smooth phase
holograms that maximize reconstruction scores.

Non-optimization CGH methods can also produce smooth phase
holograms [Padmanaban et al. 2019]. The work of Maimone et
al. [2017] encodes a low-frequency phase map into a complex-valued
signal using double-phase amplitude coding. This technique requires
that the input phase map has an upper bound on the frequency and
thus works best with smooth phase holograms.

2.2 Random Phase Holograms

The other category of holograms are “random phase holograms”.
These holograms exhibit pseudo-random phase components and
are they are more similar to diffuse surfaces that are common in
everyday life [Goodman 2005]. This results in noisier reconstruc-
tions because of cross-talk between the wavefronts. However, the
advantage of random phase holograms is that due to randomness in
the phase component, the hologram is more uniformly distributed
across many propagation directions, reducing the impact of an oc-
clusion at any one point in the volume.
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Recent work on accommodative holography utilized random
phase holograms to generate natural defocus effects to drive the
accommodation response of the human visual system [Kavakli et al.
2023; Kim et al. 2024, 2022b; Yoo et al. 2021]. Parallel work on pupil-
aware holography has also promoted the benefits of random phase
holograms [Chakravarthula et al. 2022a; Schiffers et al. 2023].

Contrast decrease in random phase holograms has been inves-
tigated as well [Kabuli et al. 2025] and can be mitigated using a
second, low-resolution modulator.

All these works argue in favor of random phase holograms since
they produce a more uniform energy distribution within the eyebox,
allowing for improved robustness to pupil motion.

Holographic displays that generate the image content at the far
field typically utilize random phase holograms [Eybposh et al. 2020;
Kuo et al. 2020; Tseng et al. 2024]. Monin et al. [2022] analyzed
and compared random phase versus smooth phase holograms in
the context of étendue expansion, finding that although smooth
phase holograms produce higher quality reconstructions, they do
not produce a usable eyebox.

Random phase holograms are typically noisy, as speckles at the
pixel level occur inherently, reducing the visual image quality. There-
fore, noise reduction techniques are required.

Temporal-multiplexing [Choi et al. 2022] is a robust method for
reducing speckle that is well understood and will also be used in
our analysis in this paper.

Other systems exploit redundancies in different domains to com-
bat speckle, e.g., using diversity in either spatial [Kuo et al. 2023] or
wavelength [Schiffers et al. 2025] space.

2.3 Artifacts in Holography

A recent trend in the holographic research community has been
to calibrate out the hardware imperfections using feedback from
the imaging camera [Chakravarthula et al. 2020; Choi et al. 2021a;
Gopakumar et al. 2021, 2024; Peng et al. 2020] as “camera-in-the-
loop” (CITL) calibration techniques. The general theme of these
approaches is to learn to reproduce the discrepancy between what
the imaging camera sees and the result that one achieves when
using an ideal simulation.

While some sources of artifacts are shared between random and
smooth phase holography, for example, ripple effects caused by
dust and scratches on the lenses, there are several key causes of
image quality degradations that are not shared between the two
types of holograms. Most concerning is that hardware-in-the-loop
calibration methods have not been devised for dynamic artifacts
(e.g., ocular obstructions such as eyelashes and floaters). Because
these artifacts are dynamically moving during the viewing process,
it is challenging to calibrate these artifacts using an imaging camera.
As such, there is no existing CITL technique that can calibrate for
dynamic artifacts to the best of our knowledge.

3 Holography in the presence of Obstructions

In this section, we first describe image formation for conventional
near-eye holography without obstructions before detailing our model
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Fig. 3. Verifying our Pre- and Post-Pupil Artifact Simulation Method. Using our simulation method, we are able to accurately model the influence of
obstructions that we place before and after the pupil lens in hardware. On the right, we show a schematic describing how we create both eyelash and floater
phantoms. At the pre-pupil location, we place pieces of human hair to replicate the effect of an eyelash. Similarly, at the post-pupil location, we place a piece
of glass with several dots of marker applied to emulate a complex of index of refraction within the eye (floaters). With the proposed simulation method, we
are able to leverage ASM to propagate the wavefront to these same pre and post-pupil locations and apply complex obstruction masks. We show that our
method accurately models artifacts caused by pre- and post-pupil obstructions for both smooth phase (blue boxes) and random phase holograms (red boxes).

that incorporates realistic occluders (see Fig. 2). We then experi-
mentally validate our model and use it to analyze the distortions on
holograms of varying eyebox size.

3.1 Vanilla Holography without Dynamic Obstructions

The angular spectrum method (ASM) [Goodman 2005] allows us to
accurately model the light propagation for our holographic display
in simulation with sampling constraints [Matsushima and Shimob-
aba 2009]. In our case, we use ASM as a function applied to the field
modulated by the SLM that travels from the SLM towards the eye
(see Fig. 2).

We express the propagated field U(x, y, A; z) at a distance z from
input source field U(x, y, A; 0) using the ASM transfer function H
[Goodman 2005], as

Ux,y.Ai2) = F (F(U(x 4. 4:0) - H(f fy: A:2))
= ASM (U(x, y, 1;0), H (fe. fy. 1: 2)) - 1)

¥ and F ! are the Fourier transform and the inverse Fourier
transforms respectively and both operate over their respective spa-
tial or frequency domains. The transfer function H is defined here
with the Fourier frequencies f; and f; in the x and y directions
respectively and A is the wavelength of light being propagated as

H(fefpdiz) =1 F (jz%z“l_lz(ﬁ‘%fyz)) RS

0 : Otherwise

@
We define as shorthand the function ASM (U, z) to refer to prop-
agation of the wavefront U by z distance.
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3.2 Modeling Obstructions

Building upon vanilla holography, we define fpe for modeling ob-
structions before the pupil and fpost for modeling obstructions after
the pupil on any generic wavefront U. In short, we can model any
interfered wavefront U’ as

U = (fie o T o fe o F) (), )

where fplfe = frre1(My,21) © -+ - 0 fore N (M, zn) and
fPAgst = fpost.1(Mi1,21) © -+ © foostm (Mp, zpr) and M; is a complex
obstruction mask located at distance z; for a total of N pre-pupil
occluders and M post-pupil occluders.

3.2.1 Modeling Pre-Pupil Obstructions. Obstructions that occur be-
tween the eyepiece lens and the pupil lens (e.g. eyelashes) can be
detrimental to the viewing experience of holographic displays. To
model this correctly, we first take the field at the eyebox plane (the
field that the pupil takes in) then propagate it back towards the
eyepiece lens.

When passing the propagated SLM field through the eyepiece
with focal length f, we are left with a field of different dimensions
from the SLM. Explicitly, given a wavelength A and SLM pixel pitch
PsLm, the extent of the first order in the Fourier domain Ly is [Good-
man 2005]

Ly = i 4)
psim

We assume the field at the imaging plane is U(x, y; z) and define
E(x,y) to be the eyebox plane. As we propagate the eyebox field
back to the eyepiece plane, one would expect to see the image grow
back to the full SLM extent at the eyepiece plane corresponding
to the target image. To simulate this effect, prior to propagating
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(c) Image Quality (PSNR) vs. Eyebox Size

’__.__.-__.__..__..__.__-__.__..__.__-—-l

PSNR (dB)

—— PSNR Obstructed
15 —-=-- PSNR Unobstructed

0.5 1.0 155 2.0 2.5 3.0
Eyebox Size (mm)

Fig. 4. Large Eyeboxes Create Stronger Artifact Resilience. We create optimized smooth and random phase holograms that form the SIGGRAPH logo at
the object plane. We then show how both holograms interact with three rectangular opaque obstructions that are located 8 mm away from the imaging plane.
(a) Over short propagation distances, smooth phase holograms scatter light to a very narrow range of angles, resulting in the image being easily compromised
by a variety of obstructions. (b) In contrast, image content in random phase holograms form close to the imaging plane, increasing its robustness to artifacts.
(c) To further analyze how different eyebox sizes affect artifact resilience, we optimize holograms over a large range of étendue configurations to keep the
field of view constant at 78° and we sweep the effective eyebox size from 0.42 mm to 3.13 mm. Leveraging our proposed artifact simulation method, we are
then able to model the effect of dynamic obstructions on these holograms. Above we plot the associated average PSNR over 6 holograms for each étendue
configuration both with and without obstructions. Please refer to the supplemental materials for experimental validation of this trend.

the eyebox field, we pad the eyebox to the SLM area by using the
padding function P that takes in SLM sizes I, and [, in x and y
dimensions, respectively, that is

E(fo. fy) = P(FAU (% y: 20} L. L) ©)

Once padded, we propagate the padded eyebox via ASM to the

pre-pupil plane (we assume this to be a singular plane for simplicity)

and apply a mask Mpy. at this plane before propagating it back to
the eyebox plane.

fPre (E, Mpre, zPre) = ASM (MPre ASM (E, _ZPre) 5 zPre) . (6)

Parameters for modeling eyelashes accurately can be found in
the supplemental materials.

3.2.2  Modeling Post-Pupil Obstructions. Obstructions that are lo-
cated after the pupil lens and before the retina, particularly floaters
(small particles within the vitreous humor of the eye) and dust, are
significant contributors to visual degradation as noted by clinical
studies [Hammer et al. 2024; Kennelly et al. 2015; Paniagua-Diaz
et al. 2024]. To model the affect of these obstructions on a holo-
graphic display, we can generate a complex mask Mpyg that can
be applied throughout the interior of the eye to simulate collagen
floaters, or other particles, being distributed within the vitreous
humor. To apply the mask, we take the field at the retina U and use
ASM to propagate it to some intermediate distance zpogt, apply the
mask, and then propagate the masked field back to the retina via

fPost(U: Mpost, ZPost) = ASM (MPost ASM (U, _ZPost) s ZPost) . (7)

Parameters for modeling floaters accurately can be found in the
supplemental materials.

While we focus on inter eye obstructions in this section, as this
operates on the spatial domain, our post-pupil model can be gen-
eralized to all obstructions before the eyepiece and after the pupil
lens, including dust and lens scratches as seen in Fig. 2, by setting
Zpost accordingly.

3.3 Experimentally Emulating Pre and Post-Pupil Artifacts

Since we are unable to electronically read out the response of the
human eye, we choose to construct a hardware analogue shown in
Fig. 3 that models the same effects to validate our simulation model.
To this end, we use the lenses in the 4F relay system to act as the
eyepiece lens and the human viewer’s eye lens. The bare sensor acts
as the retina of the pupil.

We then construct imaging phantoms that emulate eyelashes and
floaters to act as our pre and post-pupil obstructions. The eyelash
phantom is constructed by attaching pieces of human hair to a lens
mount, chosen for its similarity to real eyelashes. For the floater
phantom, we applied viscous liquids such as marker ink, which
exhibit both phase and amplitude responses, onto a microscope slide.
Photographs of both phantoms are included in the Supplemental
Materials.

The eyelash phantom is mounted after the eyepiece lens and
before the Fourier space, emulating how eyelashes interact with
the wavefront before entering the viewer’s eye lens. Similarly, the
floaters phantoms are mounted after the system’s pupil lens to emu-
late how the floaters reside within the human eyeball. Since floaters
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can exist anywhere throughout the human eyeball the floaters phan-
tom can be placed anywhere after the second lens of the second 4F
relay system. We choose to place the floaters close to the imaging
sensor. In Fig. 3, we also show simulated and experimental captures
of both random phase and smooth phase holograms in the pres-
ence of our experimental phantoms. Our simulations closely match
what we see in our real captures. Please refer to the Supplemental
Information for more details on the hardware construction.

3.4 Examining Artifact Resilience with our Artifact Model

Using our experimentally validated artifact model, we examine in
Fig. 4 the impact of eyebox size on artifact resilience. Conceptually,
in order for a hologram to resist an obstruction, scattering is needed
for the hologram to “bypass” the obstruction. As the eyebox size
bounds the maximal angular spread of light within the system, a
certain eyebox requirement is needed regardless of the CGH method.
Our analysis indicates that larger eyeboxes promotes artifact re-
silience. We find that an eyebox of approximately 3 mm is necessary
for achieving high robustness against obstructions. Additional ex-
perimental results of a variety of pre- and post-pupil artifacts on
varying eyebox sizes can be found in the supplemental materials.

4 Quantifying Phase Randomness

While several recent methods have also advocated for random phase
holography [Kuo et al. 2023; Schiffers et al. 2023, 2025], none have
formally defined or quantified just how random the phase of a holo-
gram needs to be in order to reap the benefits of random phase.
The lack of a quantitative measure also makes it difficult to com-
pare the degree of randomness of holograms generated by different
random phase CGH methods. For example, how does SGD with
random phase initialization [Kuo et al. 2023] compare to SGD with
stochastic pupil sampling [Schiffers et al. 2023]?

4.1 Eyebox Distribution Matching

We propose a deterministic metric for quantifying the degree of
phase randomness of a hologram. Our metric is defined such that
holograms can be ordered on a scale from completely smooth (con-
stant phase) to completely random. In this section, we motivate the
metric by drawing connections to known properties of complex
stochastic processes. Akin to a tunable knob, the amount of smooth-
ness and the amount of randomness can be adjusted to prioritize
either image quality or artifact resilience, and we show how the
metric facilitates this in developing real time artifact resilient CGH
methods in the next section. We choose to define this metric for
phase-only SLMs, but the derivation of the metric can be generalized
to complex SLMs that modulate both amplitude and phase.

From our analysis in the previous section we found that large
eyeboxes that have energy distributed evenly throughout the eyebox
provide the best resilience against dynamic and static artifacts. We
can measure the difference of a given eyebox E is from a flat energy
distribution for all Fourier frequencies as a first-order approximation
for quantifying phase randomness. Parseval’s theorem states that
the Fourier transform preserves energy. Therefore, we can relate
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the energy at the SLM plane to the energy at the eyebox plane as

DUy 0P = Y IE(f fy)l® ®
xy feofy

Since we are using phase-only SLMs we know that |U(x,y;0)| =
1 Vx,y. Thus, we can define a uniform distance measure Lyp for
measuring the distance between an eyebox’s energy from a flat
energy spectrum as

Lun(B) = )" (IE(fe f)FF = 1)*. ©)
fefy

Although the metric Lyp is necessary for phase randomness,
unfortunately we found that it is not a sufficient for optimization. We
show in Fig. 5 that there exists many holograms that exhibit smooth
phase while still being able to minimize Lyp. We observed that the
error incurred by a single concentrated energy outlier within the
eyebox, which is a property shared by smooth phase holograms, can
be offset by the other Fourier frequencies that exhibit low energy.

We thus modify the first-order approximation metric by incor-
porating second-order terms. Specifically, we do not only want to
quantify the mean of the distribution of energy within the eyebox
of a random phase hologram but also the variance. In order to de-
termine the variance of this distribution we perform a statistical
analysis of complex stochastic processes.

Suppose that x[n] is a random vector of length n where each
entry has a random phase and unitary magnitude, that is,

|x[i]| =1 and zx[i] ~ Uniform(0, 27) Vi € [n].
Then we have

HRe(x) = Him(x) = 0 and o-Izke(x) = O-Izm(x)

where f1(.), 0(.) are the statistical mean and standard deviation op-
erators, and Re(-), Im(-) are the real and imaginary component op-
erators. It is known that complex stochastic processes with zero
mean and equal real and imaginary variances have certain proper-
ties [Richards 2013]. In particular, if X = ¥ (x) then the distributions
of Re(X) and Im(X) are the same and follow a Gaussian distribution
with the probability distribution function

P (Re(X)) =

_Re(X)Z), (10)

1
exp ( >
f 2 20;
Zﬂo-Re(x) Re(x)

Furthermore, if the real and imaginary components are identically
distributed Gaussian distributions then the magnitude component
|X| follows a scaled Rayleigh distribution with a probability distri-
bution function that is given by

1X] 1x|?
exp |— :0 < |X]|,
P(1X]) = { e p( 2“§e<x))

0 : otherwise.

(11)

and the mean and variance of this distribution are given by

T 2 4- ,
Hix| = URe(x)\/g and Olx| = 75 ORe(x)’

We now have a closed form solution for the mean and variance
of the intensity of the eyebox of a random hologram. With this
variance in hand, we can now assess how the means and variances
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Fig. 5. Smooth to Random Holograms Continuum. From left to right we show a constant phase hologram, a hologram optimized using constant phase
initialization and MSE loss, a hologram optimized using constant phase and MSE loss and Lyp, a hologram optimized using constant phase initialization and
MSE loss and Lrp, and an unoptimized hologram where the phase values are uniformly randomly initialized. We observe that our metric Lgp can guide
the optimization towards solutions that exhibit greater phase randomness and wider energy distributions within the eyebox, even if the initialization was a

constant phase hologram. Furthermore, we observe that total randomness is not necessary for artifact resilience and that partial randomness can also provide

strong protection against artifacts, as shown in the second column from the right.

of the eyeboxes of our generated holograms compare to the target
mean and variance.

To compute the distance of a given hologram’s eyebox E from the
target Rayleigh distribution we need to compute the variance of E.
Instead of computing the variance over the entire eyebox, we instead
choose to compute local patchwise sample variances in a manner
akin to structural similarity [Wang et al. 2004]. This computation is
performed by first defining a Gaussian blur kernel K with standard
deviation og. The local means and local variances of E can then be
calculated as

u,=E®K and o', =E*@ K — 1'%,

where ® denotes convolution. We can now define our Rayleigh
Distance, Lrp, which quantifies the distance between the eyebox E
and the target Rayleigh distribution as

L (E) = Z 2ug(fo fy)pr + c1)ez
A WG fy) + 1+ (0 fy) + 0+ c2)

(12)

where pg and og are the mean and variance of the target Rayleigh

distribution, which can be derived from Eq. (11). The constants, c;

and c;, are to prevent division by zero. We do not use a covariance

term since the reference Rayleigh distribution is fixed and the eyebox

is dependent on the hologram.

While higher order measures of distribution differences can be
incorporated such as skewness and kurtosis, we have found that the
second order suffices for our purposes. Furthermore, the connection
with the Rayleigh distribution only relies on the SLM entries being
independently randomly drawn from a complex random distribu-
tion that has equal real and imaginary variances. The connection
holds even if the mean is non-zero because a non-zero mean can

be treated as a constant offset to the distribution. Thus, our metric,
which we call the Rayleigh Distance (RD), for phase-only SLMs can
be extended to complex SLMs that modulate both phase and ampli-
tude by deriving the corresponding real and imaginary variances.
We validate the efficacy of the Rayleigh Distance in the following
sections.

4.2 Validation of Metric

We validate the efficacy of our metric by demonstrating that it can
be used to optimized for artifact-resilient holograms. Conventional
methods for obtaining holograms with random phase set the initial
phase values using random uniform initialization [Kuo et al. 2023].
Due to the presence of local minima around the initial starting
point the initialization alone is capable of facilitating random phase
holography. However, for the same reason, if the initial starting
point is a constant smooth phase then conventional optimization
will struggle to find random phase solutions.

We perform an illustrative experiment in Fig. 5, optimizing for
a continuum of holograms spanning smooth to random phases.
We launch three optimizations where all of the optimizations use
constant phase as the initial iterate, and the loss functions Lk,
Lyse + Lup, and Lysg + Lrp- We observe that the optimization
with the proposed loss metric is the only optimization that is capa-
ble of pushing smooth phase initializations towards random phase
solutions. Since the Rayleigh Distance is agnostic to eyepiece fo-
cal length, it encourages even light distribution across the viewing
zone, enabling practical use across display configurations with suf-
ficient eyebox size (see Fig. 4). Furthermore, we also find that the
randomness of the solution when using our proposed metric is not
as random as a hologram that exhibits true uniform random phase.
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These findings suggests that there is a range of degrees of phase ran-
domness that can facilitate artifact resilience. The proposed metric
is the first metric, to the best of our knowledge, that facilitates the
investigation of the threshold at which holograms become artifact
resilient.

While we could now use an iterative method such as the one from
above and optimize for phase patterns with the proposed metric, this
unfortunately does not allow for real-time throughput. Moreover, in
the case of training neural networks for real time CGH [Peng et al.
2020; Shi et al. 2021], it is not clear how to initialize the optimization
problem, specifically the weights of the neural network, such that
random phase holograms are the starting point. Indeed, all existing
real time neural network based CGH methods for near field holography,
such as HOLONET and TENSOR HOLOGRAPHY, produce smooth phase
holograms. In the next section we will demonstrate that the metric
can be used as a training loss to bias the outputs of a real time CGH
neural network towards random phase.

5 Real-Time, Artifact Resilient-Holography

Real-time, high-quality random phase CGH is still an unsolved prob-
lem, as existing real-time methods currently only produce smooth-
phase holograms, exhibiting high-quality in-focus imagery, but lack-
ing the desirable properties of random phase holograms such as
artifact resiliency or natural defocus blur. On the other hand, there
is no method that generates high-quality, random phase holograms
in real time. In this section, we apply our Rayleigh distance metric
to bridge this gap.

Previous methods for real time holography trained deep neural
networks to generate the phase pattern given a target image. As
these neural methods are only trained on the likelihood loss (i.e.
mean squared error or perceptual), they learn to generate smooth-
phase holograms since the image features are directly translated
into the phase pattern, converging into a local minimum. By incor-
porating our metric for randomness into the loss function, we are
able to successfully train an off-the-shelf neural network, HoLONET
[Peng et al. 2020], to generate artifact resilient holograms. Our arti-
fact resilient holograms maintain many of the desirable properties
of random phase holograms, such as artifact resilience and natural
defocus blur.

First, we show how to include our phase randomness metric that
was described in Section 4 to train our Artifact Resilient Holography
Network (REaL-TiME ARH) along with the associated impact on
generating holograms that are robust to artifacts. Then, we explain
how to enhance inference with time multiplexing through model
ensembling. Finally, we show our REAL-TIME ARH extension to
generate holograms with realistic 3D effects from RGB-D inputs,
without any retraining or fine-tuning, showing high image quality,
artifact resilience and natural defocus blur, while operating in real
time.

5.1 Artifact Resilient Network

In this section, we show that our metric can be used to train neural
networks for real time, artifact resilient CGH. We choose to demon-
strate this by using an off-the-shelf neural network method, but note
that the metric can be applied to any CGH optimization. HOLONET,
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(a) HoLoNET (b) REaL-TiME ARH
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Fig. 6. Learning to generate random phase holograms. We train an off-
the-shelf neural network for CGH [Peng et al. 2020] combining a perceptual
loss function with our proposed artifact resilience regularizer. (a) HoLoNET
overview. The Target-Phase Generator (TPG) produces a phase pattern at
the target plane from the input image. Then, the wavefront at image plane,
composed of the image and the generated target phase, is propagated to
the SLM. Then, the Phase Encoder (PE) converts the complex wavefront into
a phase-only hologram. Finally, the model is trained through a perceptual
loss on the propagated phase pattern. (b) Real-Time Artifact-Resilient
Holography. We incorporate our random phase metric into the training
as a regularizer. As described in Section 4, Lrp ensures that the eyebox
possesses a spread out distribution of energy that is correlated with a
uniform distribution of phase at the SLM plane.

Uniformly
distributed
phase

e
QU %

TASM

Image HoLONET R ARH

Fig. 7. HoLONET versus our REAL-TIME ARH. We compare the visual
quality of holograms produced by HoLoNET and our REAL-TIME ARH, without
time multiplexing, in the presence of artifacts with their eyeboxes (clipped
for visualization). The vanilla HoLoNET produces smooth phase holograms
with small eyebox, which are distorted by the artifacts. In contrast, our
REAL-TIME ARH generates random phase holograms with large eyeboxes,
leading to artifact resilient holograms.

shown in Fig. 6a, is trained only with the perceptual loss Lpercep,
which leads to smooth phase holograms. It generates holograms
by combining two networks: the Target-Phase Generator and the
Phase Encoder, combined through a physical propagator (ASM in
our case). The Target-Phase Generator creates a phase pattern at
the target plane, which is combined with the image and propagated
to the SLM plane. Then, the Phase Encoder converts the complex



Table 1. Quantitative Quality and Runtime Evaluation of CGH Meth-
ods in the Presence of Dynamic Obstructions. Our dynamic obstruction
simulation framework and our proposed metric are used to assess the qual-
ity of different CGH methods: Vanilla Random Phase Optimization (VRO),
DPAC, Tensor Holography, Vanilla HoLoNET, and our REAL-TiME ARH. For
each metric, the arrow indicates whether higher is better or lower is better.
We find that our REAL-TIME ARH achieves a high performance in the pres-
ence of dynamic obstructions with a fast inference time. FPS of each CGH
method was evaluated on an NVIDIA L40. All holograms are 1280 X 800 with
a pixel pitch of 10.8 um. For Tensor Holography [2021] we use their reported
FPS. For our REAL-TIME ARH we use 8 frame time multiplexing and report
the FPS of one model. We decouple latency from the number of models
involved since each model generates an independent frame, hence they can
be run in parallel. The supplemental materials provide further details on
time-multiplexing and include a selection of phase patterns generated with
these real-time CGH methods.

PSNR (dB) 1 PSNR (dB) T | Lrp | |FPS T
w/o obstructions | w/ obstructions

VRO (10 iter) [2023] 21.6 18.1 2.92 3

VRO (300 iter) [2023] 69.0 20.1 281 | 0.1
DPAC [2017] 17.0 12,5 8.15 | 370
Tensor Holography [2021] 18.1 11.2 830 | >60
Vanilla HoLoNET [2020] 18.9 14.8 8.26 85
Ours: REAL-TIME ARH 17.7 17.1 3.45 85

wavefront into a phase-only hologram that produces the image
when displayed in the SLM.

To allow the network to learn how to generate robust holograms,
we combine the likelihood, perceptual loss with our Rayleigh dis-
tance metric from Section 4 as shown in Fig. 6b, acting as a regular-
izer. Our loss function L is

L= Lpercep (X, |ASM (U, Z)l) +p Lrp (7: (ASM (U, Z))) > (13)

where X is the target image at distance z, U is the wavefront at the
SLM plane, z is the propagation distance from the SLM to the target
plane, and Lgp is our Rayleigh Distance regularizer for randomness
and eyebox dispersion as defined in Eq. 12.

First, we train the network one epoch with the perceptual VGG
loss [Johnson et al. 2016] as Lpercep (p = 0), then continue with our
Lrp regularizer (p = 1) for random phase convergence. We perform
this initialization epoch to help stabilize training. We do not rely on
MSE loss as the likelihood loss function since we want the hologram
to encode the target image but we are not constrained to having
the exact same pixel values. We tested different p values, but stick
to p =1 since for p < 1 the optimizer favors sharp, smooth-phase
outputs and for large p > 1 it promotes randomness, producing
incoherent results (see rightmost column of Fig. 5). More details
on training our real-time ARH can be found in the supplemental
materials.

Our random phase metric teaches the model to generate random
phase holograms. In Fig. 7, the vanilla HOLONET produces smooth-
phase holograms, that are completely distorted by artifacts. Our
model, trained with the randomness regularizer Lrp, generates
artifact-resilient holograms.
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5.2 Time Multiplexing

Random phase holograms produce robust results, but they suffer
from speckle noise. This problem is commonly solved by time mul-
tiplexing different holograms of the same target to preserve image
structure while reducing speckle noise.

Our current model is deterministic, therefore it only generates
one random phase pattern for a given target image. However, due
to the stochastic training (data shuffling, stochastic gradient de-
scent, ...) we can interpret that each trained model is sampling one
possible phase pattern per target. Therefore, we implement time
multiplexing through model ensembling. By combining different
trained models, we can sample random phase holograms, achieving
time-multiplexing.

5.3 Random phase 3D Holograms in Real Time

In this section, we extend our pre-trained random phase model to
generate random phase holograms with realistic 3D effects, without
any retraining or fine-tuning, by incorporating depth information
into inference. Opposed to HOLONET, we find that our REAL-TIME
ARH generalizes for different depths z due to the random phase
training.

We compute holograms with 3D effects from RGBD images as
depicted in Fig. 8. The complex wavefront at the SLM plane U
is constructed by layering the image into N depths at different
propagation distances z;, and propagate each slice independently as

N
U= Z ASM (Usp © 8(D - z;), —z;) , (14)

i=1

where D denotes the layered depth input for each pixel of the 3D
wavefront Usp, and © is the Hadamard product.

We report in Fig. 8e simulated results of our 3D extension of our
ReAL-TIME ARH. In both motorcycle and castle scene, we discretize
the depth input into three layers and place them at z = (98, 100, 102)
mm, and show the results for all three target planes. These z prop-
agation distances are relative to the SLM, not the viewer, and a
4 mm SLM distance range can span over 10 diopters. The vanilla
HoLoNET produces strong chromatic aberration effects, as it does
not generalize to 3D scenes. Our REAL-TIME ARH, however, natu-
rally generalizes to 3D, producing high-quality in focus imagery,
and natural defocus blur.

5.4 Experimental Results

We validate that our additional regularizer unlocks the artifact re-
silience capabilities of HOLONET by simulating how both holograms
generated via our real-time ARH method and HOLONET interact
with pre and post-pupil obstructions using our simulation method
and hardware phantoms. We ensemble 8 different Real-Time ARH
models for 8 time multiplexing, and find that unlike HOLONET,
our Real-Time ARH produces holograms that are robust to both
eyelashes and floaters in both simulation and experimental captures.
As shown in Fig. 9, we see our obstructions cast dark shadows on
the image content from holograms generated via vanilla HOLONET.
In contrast, holograms generated with our REAL-TIME ARH leave
little to no indication of any obstruction being present.
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(a) Target phase generation

(b) Layered wavefront propagation
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Fig. 8. 3D Holography with REAL-TiMmE ARH. We extend our pre-trained REAL-TIME ARH with 2D images for real-time 3D computed generated holography
from RGB-D inputs. We do not finetune the network for 3D scenes, but it naturally generalizes to them. (a) We input the captured 2D image into the
Target-Phase Generator (TPG) to sample a target phase. (b) We combine the amplitude (image) and phase and split it into three depth layers based on the
depth layer mask. Then, we propagate each wavefront layer a distance z; independently with the ASM and merge the wavefronts at the SLM plane. (c)
We convert the complex wavefront into a phase-only hologram with our Phase Encoder (PE). (d) The phase-only hologram is displayed on a Spatial Light
Modulator (SLM), presenting high-quality in-focus image quality, and natural defocus blur. (e) Simulated results. We test our method on two RGB-D scenes,
without using time multiplexing, and compare the results of HoLONET with our REAL-TIME ARH. In both scenes, HoLONET produces incorrect results, with
strong chromatic aberration effects due to its lack of generalization to different propagation distances z. In contrast, our REAL-TIME ARH naturally generalizes
to 3D, showing high quality in-focus imagery, while showing natural defocus blur.

We also observe that our REAL-TIME ARH produces favorable
image quality compared to HOLONET without obstructions, as the
latter requires camera-in-the-loop calibration to overcome the gap
between simulation and reality. Our REAL-TIME ARH proves to be
simultaneously more robust to imperfections in hardware and more
resilient to dynamic ocular artifacts.

We also tested the artifact resilience of our 3D ReaL-TiME ARH
within realistic viewing settings. To this end, we capture these re-
sults using a smartphone as an approximator of how the human
eye will perceive our ARH holograms. We use the camera focus
settings to accommodate to the front and back of the hologram. The
vanilla HOLONET results exhibit distortions ranging from the lack
of natural 3D effects to the visible shadows cast by the eyelashes. In
contrast, our REAL-TIME ARH performs admirably, demonstrating
high-quality in focus imagery and realistic defocus blur, while also
being artifact resilient.
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6 Discussion

We expect that this work inspires the community to pursue random
phase holograms as viable alternatives to smooth phase holograms.
These types of holograms are inherently artifact resilient and natu-
rally eliminate the need for lengthy camera-in-the-loop calibration
procedures that cannot handle dynamic obstructions. These holo-
grams also exhibit more natural defocus cues than their smooth
phase counterparts. We also hope our proposed metric for measur-
ing phase randomness and our simulation framework for modeling
dynamic artifacts can be used to assess and compare current, past,
and future holographic display systems.

The ability of the trained neural network to generate fully random
phase holograms can be ascribed to our deterministic metric for
measuring phase randomness, or equivalently, the energy distribu-
tion of the eyebox. Unlike prior works that affect the eyebox energy
distribution indirectly through pupil sampling or by random initial-
ization, we directly measure the distributional distance between the
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Simulated Experimental
HoLoNET HoLoNEeT ReaL-TiME ARH

w/o obstructions ~ w/ obstructions  w/o obstructions  w/ obstructions  w/o obstructions  w/ obstructions = w/o obstructions

w/ obstructions

Fig. 9. HOLONET vs. our REAL-TIME ARH. We compare HoLONET vs. our REAL-TIME ARH in three images, both in simulation and in experiment, with a
quantized phase light modulator (TI DLP6750Q1EVM). Without obstructions, our REAL-TIME ARH produces better visual quality, as HOLONET requires camera
in the loop calibration to overcome the hardware imperfections of the real setup. Our REAL-TIME ARH, as it relies on random phase holography, is naturally
more robust to hardware imperfections. With obstructions (eyelashes, floaters), HOLONET holograms are clearly distorted by the obstructions. On the other
hand, our REAL-TIME ARH is artifact resilient, since it relies on random phase holography and light scatters around obstructions. These experimental captures
use 8-frame time multiplexing per channel.
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Fig. 10. Artifact Resilience with 3D Effects. We compute holograms from
RGB-D inputs using 8-frame time multiplexing per channel, and capture
them on a smartphone to test for artifact resilience with eyelashes in front
of the camera sensor. HOLONET produces distorted images by the eyelashes,
since it is not artifact resilient. It also does not reproduce any defocus
blur effects, as it does not generalize to 3D. In contrast, our REAL-TIME
ARH produces holograms that scatter around the obstructions, and are not
captured in the final image, proving the artifact-resilience of our method.
Also, as our network naturally generalizes to 3D, we not only produce the
correct hologram at the target plane, but also produce natural defocus blur.

generated eyebox and the target eyebox. We derive the target mean
and variance that we want to match from known properties of the
Rayleigh distribution. This metric not only allowed us to train a real
time random phase generating neural network, it also allowed us to
find a range of pseudo-random holograms that still offered artifact
resilience even though they have noticeably less phase randomness
than total random holograms.

There are several future directions of investigation that could
build on this work. One direction is in the generation of random
phase 3D holograms from light fields or other volumetric repre-
sentations [Choi et al. 2025]. In this work we primarily focused on
multiplane RGB-D holograms, it remains an open question what
extensions need to be incorporated to generalize real-time random
phase holography to focal stacks and light fields. Another direction
is the generation of random holograms within the context of pupil
under sampling. In this work we assume that eye tracking is ap-
plied and that the pupil always fully samples the eye box. Random
phase holograms should also support pupil under sampling, but

ACM Trans. Graph., Vol. 44, No. 6, Article 219. Publication date: December 2025.

perhaps more innovations need to be applied to support both pupil
invariance and high image quality.

7 Conclusion

This work introduces the first method for real-time artifact-resilient
holography. Our method for generating holograms are naturally
artifact resilient because of their phase randomness. We depart from
existing works that exploit phase smoothness to improve image
quality. Instead, we exploit phase randomness to provide resilience
against both static and dynamic causes of artifacts, for example,
floaters, eyelashes, and dust. The proposed method operates at high
frame rates of approximately 85 fps. We assess all methods using
our method for simulating dynamic obstructions and we validate
the results with experimental captures.
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