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Fig. 1. Holographic Display with Eyelash Obstructions. Holographic near-eye displays show promising immersive visuals with rich depth cues and fine

detail at a compact form factor. However, dynamic artifacts such as eyelashes and floaters inside the eyeball can be detrimental to the perceived image

quality of holographic displays. We propose a new differentiable metric that can be used to distribute the eyebox for both iterative and neural methods

to create artifact resilient holograms. By applying our metric, we are able to retrain off-the-shelf phase retrieval neural networks to generate high-quality

artifact-resilient holograms in real time (85 fps). (Left) Holographic displays show images to a viewer by directing an engineered beam of light into the pupil of

the viewer’s eye. We simulate the effect of dynamic artifacts by placing phantoms for occluders (such as the eyelashes shown in the bottom left) in the display

path. (Middle) Dynamic artifacts can obstruct the displayed image if the light beam exhibits a smooth phase profile, which is typical of several of today’s

state-of-the-art holographic displays [Choi et al. 2022; Peng et al. 2020]. The red markers indicate where interference with human eyelashes occurs. (Right) We

find that our proposed method for real-time Artifact-Resilient Holography (ARH) is able to compute holograms that are robust to such distortions.

Holographic near-eye displays promise unparalleled depth cues, high-resolution

imagery, and realistic three-dimensional parallax at a compact form factor,

making them promising candidates for emerging augmented and virtual

reality systems. However, existing holographic display methods often as-

sume ideal viewing conditions and overlook real-world factors such as eye

floaters and eyelashes—obstructions that can severely degrade perceived

image quality.

In this work, we propose a new metric that quantifies hologram resilience

to artifacts and apply it to computer generated holography (CGH) opti-

mization. We call this Artifact Resilient Holography (ARH). We begin by

introducing a simulation method that models the effects of pre- and post-

pupil obstructions on holographic displays. Our analysis reveals that eyebox
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regions dominated by low frequencies—produced especially by the smooth-

phase holograms broadly adopted in recent holographywork—are vulnerable

to visual degradation from dynamic obstructions such as floaters and eye-

lashes. In contrast, random phase holograms spread energy more uniformly

across the eyebox spectrum, enabling them to diffract around obstructions

without producing prominent artifacts.

By characterizing a random phase eyebox using the Rayleigh Distribution,

we derive a differentiable metric in the eyebox domain. We then apply this

metric to train a real-time neural network–based phase generator, enabling

it to produce artifact-resilient 3D holograms that preserve visual fidelity

across a range of practical viewing conditions—enhancing both robustness

and user interactivity.

CCS Concepts: •Hardware→ Emerging optical and photonic technolo-
gies; Emerging interfaces.

Additional Key Words and Phrases: computational display, holographic

display, AR/VR

1 Introduction

Realizing the transformative potential of AR/VR headsets depends

heavily on the performance of their near-eye displays, which must

excel in field of view, image quality, and depth perception [Itoh et al.

2021]. Holographic displays offer a compelling solution, combining a
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compact form factor with a wide field of view, rich color gamut, high

spatial resolution, and realistic depth cues to meet these demanding

requirements and unlock new possibilities for augmented reality

applications. Existing extended reality (XR) devices [Cakmakci and

Rolland 2006] rely on OLED/LCD displays paired with compound

optics, which inherently limits them in their ability to reproduce fo-

cus cues and parallax effects [Matsuda et al. 2017]. These limitations

are central to the challenge of solving the vergence-accommodation

conflict (VAC), a significant issue in today’s commercial VR sys-

tems. Holographic displays are emerging as a promising solution

for creating 3D visual experiences. Employing spatial light modu-

lators (SLMs), which allow for precise modulation of light waves,

holographic displays have the potential to produce 3D volumetric

images in a compact form [An et al. 2020; Kim et al. 2022a; Maimone

and Wang 2020; Xia et al. 2020].

Although artifacts from obstructions like dust particles or eye-

lashes are not detrimental when viewing the LCD displays found

in current commercial VR headsets, these artifacts are amplified by

the coherent nature of holographic light, potentially rendering the

display useless (see Fig. 1). In the past five years, researchers have

designed camera-in-the-loop systems (CITL) to effectively learn a

model of the physical light propagation in order to optimize phase

patterns that invert the aberrations that come from dust particles or

lens imperfections and create high-quality 3D holograms with accu-

rate parallax and defocus effects [Chakravarthula et al. 2020; Peng

et al. 2020]. These camera-in-the-loop methods have been validated

both in simulations and in physical hardware [Chakravarthula et al.

2020; Peng et al. 2020].

However, camera-in-the-loop techniques cannot handle dynamic

obstructions, such as eyelashes and eye floaters (see Fig. 2), poten-

tially severely impacting the viewing experience of these state-of-

the-art holographic displays. When working in the near-field con-

figuration, previously, smooth phase patterns have been preferred

as they have maximal perceptual quality with minimal speckle and

high contrast. While these smooth phase solutions combined with

CITL can generate high quality volumetric holograms in controlled

settings, smooth phase holograms have very small eyeboxes and

do not make full use of the angular spread of light afforded by the

SLM, making them incapable of diffracting around unanticipated

temporally varying obstructions.

In this work, we define methods to generate holograms that make

full use of the angular spread of light afforded by the SLM. Conse-

quently, we generate holograms capable of being viewed through a

wide range of scatterers from imperfect optics to dynamic obstruc-

tions, such as eyelashes. These artifact resilient holograms (ARH)

not only improve the display’s artifact resilience capabilities, but

also achieve accurate defocus blur. To this end, we apply our un-

derstanding of how obstructions interact with holographic displays

to retrain neural networks to generate real-time artifact-resilient

holograms. Prototype experiments confirm that the proposed holo-

graphic display method is robust to these dynamic distortions.

Specifically, in this paper, we make the following contributions:

• We introduce a technique for simulating pre and post-pupil

obstructions, namely eyelashes and vitreous floaters, to more

accurately evaluate how a holographic display performswhen

Dust Scratches Eyelashes Floaters

Spatial Light Modulator Eyepiece Lens

Perceived HologramUnobstructed Hologram

Fig. 2. Holographic Artifacts Model. To view a near-field holographic

display (top), the pupil of an observer’s eye takes in the propagated SLM

field after the eyepiece lens. During free space propagation, the hologram

is interfered by a variety of obstructions including, and not limited to,

dust particles, scratches on lenses, eyelashes, and eye floaters. Artifacts

from these obstructions interfere with image content reaching the retina,

rendering the display useless (bottom).

perceived in practice. We verify our simulation method ex-

perimentally.

• Relying on the findings in simulation, we devise a differen-

tiable metric to quantify holographic artifact resilience by

mapping it to the underlying Rayleigh Distribution. We find

these metrics can be applied to scenarios that have biases

towards smooth phase holograms.

• Using our differentiable metric, we are able to train a real-time

neural network to create pseudo-random phase holograms

that are able to inherently diffract around a wide range of un-

known, dynamic obstructions without the need for a camera

in the loop. With our artifact resilient network, we are able

to generate holograms at 85 FPS.

We hope this work not only highlights the limitations of using

smooth phase holograms in practical holographic displays, but also

demonstrates thatmany existing holographicmethods can be readily

adapted to produce artifact-resilient holograms in real time. The

source code for this project is available on our GitHub repository
1
.

2 Related Work

Computer-generated holography (CGH) employs algorithms to find

complex-valued signals that will generate a target wavefront after

the signal has traveled some distance. In its most general form,

the amplitude and phase for each pixel location on a spatial light

modulator need to be determined correctly so that the desired target

can be produced. Hardware-specific constraints can narrow the

1
https://github.com/princeton-computational-imaging/ArtifactResilientHolography
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domain of solutions so that only the phase component or only the

amplitude component is variable. In this work, we compare and

analyze the following two different categories of holograms, smooth

and random phase holograms, that can produce similar wavefronts

in ideal settings but have vastly different qualities when viewed by

an observer.

2.1 Smooth Phase Holograms

We refer to the first category of holograms as “smooth phase”. These

holograms have the property that the phase component varies

slowly over propagation distance, resulting in a holographic phase

pattern that strongly resembles the target amplitude component.

The smoothness of the phase component results in optical coher-

ence within local patches of the hologram. This often results in

better-quality holograms in ideal experimental settings because

the coherence provides signal redundancy. However, in this work,

we show that a drawback of the coherence is that these types of

holograms are less robust to dynamic artifacts.

Recent works that use neural networks as the CGH engine for

near field holography produce this category of holograms [Choi

et al. 2022, 2021a; Horisaki et al. 2018; Li et al. 2025; Markley et al.

2023; Peng et al. 2020; Shi et al. 2021, 2022a,b; Wang et al. 2022].

The most popular architecture for neural network-based CGH relies

on convolutional neural networks that map target amplitudes and

phases to a hologram to be displayed on an SLM. This process

bears similarity to adjacent work in the image translation and style

transfer space [Zhu et al. 2017]. As such, the predicted holograms

tend to have a smooth phase component that strongly resembles

the input amplitude, resulting in a highly concentrated eyebox.

Smooth phase holograms can also occur even if neural networks

are not used for the CGH step. Several works have proposedmethods

for performing phase retrieval using optimization and learned wave

propagation models [Chakravarthula et al. 2019, 2022b, 2020; Choi

et al. 2021b; Gopakumar et al. 2024; Peng et al. 2021]. Because the

optimization is influenced only by the image fidelity defined in

intensity space and there is no constraint on the hologram phase,

these optimization procedures also tend to produce smooth phase

holograms that maximize reconstruction scores.

Non-optimization CGH methods can also produce smooth phase

holograms [Padmanaban et al. 2019]. The work of Maimone et

al. [2017] encodes a low-frequency phase map into a complex-valued

signal using double-phase amplitude coding. This technique requires

that the input phase map has an upper bound on the frequency and

thus works best with smooth phase holograms.

2.2 Random Phase Holograms

The other category of holograms are “random phase holograms”.

These holograms exhibit pseudo-random phase components and

are they are more similar to diffuse surfaces that are common in

everyday life [Goodman 2005]. This results in noisier reconstruc-

tions because of cross-talk between the wavefronts. However, the

advantage of random phase holograms is that due to randomness in

the phase component, the hologram is more uniformly distributed

across many propagation directions, reducing the impact of an oc-

clusion at any one point in the volume.

Recent work on accommodative holography utilized random

phase holograms to generate natural defocus effects to drive the

accommodation response of the human visual system [Kavakli et al.

2023; Kim et al. 2024, 2022b; Yoo et al. 2021]. Parallel work on pupil-

aware holography has also promoted the benefits of random phase

holograms [Chakravarthula et al. 2022a; Schiffers et al. 2023].

Contrast decrease in random phase holograms has been inves-

tigated as well [Kabuli et al. 2025] and can be mitigated using a

second, low-resolution modulator.

All these works argue in favor of random phase holograms since

they produce a more uniform energy distribution within the eyebox,

allowing for improved robustness to pupil motion.

Holographic displays that generate the image content at the far

field typically utilize random phase holograms [Eybposh et al. 2020;

Kuo et al. 2020; Tseng et al. 2024]. Monin et al. [2022] analyzed

and compared random phase versus smooth phase holograms in

the context of étendue expansion, finding that although smooth

phase holograms produce higher quality reconstructions, they do

not produce a usable eyebox.

Random phase holograms are typically noisy, as speckles at the

pixel level occur inherently, reducing the visual image quality. There-

fore, noise reduction techniques are required.

Temporal-multiplexing [Choi et al. 2022] is a robust method for

reducing speckle that is well understood and will also be used in

our analysis in this paper.

Other systems exploit redundancies in different domains to com-

bat speckle, e.g., using diversity in either spatial [Kuo et al. 2023] or

wavelength [Schiffers et al. 2025] space.

2.3 Artifacts in Holography

A recent trend in the holographic research community has been

to calibrate out the hardware imperfections using feedback from

the imaging camera [Chakravarthula et al. 2020; Choi et al. 2021a;

Gopakumar et al. 2021, 2024; Peng et al. 2020] as “camera-in-the-

loop” (CITL) calibration techniques. The general theme of these

approaches is to learn to reproduce the discrepancy between what

the imaging camera sees and the result that one achieves when

using an ideal simulation.

While some sources of artifacts are shared between random and

smooth phase holography, for example, ripple effects caused by

dust and scratches on the lenses, there are several key causes of

image quality degradations that are not shared between the two

types of holograms. Most concerning is that hardware-in-the-loop

calibration methods have not been devised for dynamic artifacts

(e.g., ocular obstructions such as eyelashes and floaters). Because

these artifacts are dynamically moving during the viewing process,

it is challenging to calibrate these artifacts using an imaging camera.

As such, there is no existing CITL technique that can calibrate for

dynamic artifacts to the best of our knowledge.

3 Holography in the presence of Obstructions

In this section, we first describe image formation for conventional

near-eye holographywithout obstructions before detailing ourmodel

ACM Trans. Graph., Vol. 44, No. 6, Article 219. Publication date: December 2025.
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Fig. 3. Verifying our Pre- and Post-Pupil Artifact Simulation Method. Using our simulation method, we are able to accurately model the influence of

obstructions that we place before and after the pupil lens in hardware. On the right, we show a schematic describing how we create both eyelash and floater

phantoms. At the pre-pupil location, we place pieces of human hair to replicate the effect of an eyelash. Similarly, at the post-pupil location, we place a piece

of glass with several dots of marker applied to emulate a complex of index of refraction within the eye (floaters). With the proposed simulation method, we

are able to leverage ASM to propagate the wavefront to these same pre and post-pupil locations and apply complex obstruction masks. We show that our

method accurately models artifacts caused by pre- and post-pupil obstructions for both smooth phase (blue boxes) and random phase holograms (red boxes).

that incorporates realistic occluders (see Fig. 2). We then experi-

mentally validate our model and use it to analyze the distortions on

holograms of varying eyebox size.

3.1 Vanilla Holography without Dynamic Obstructions

The angular spectrum method (ASM) [Goodman 2005] allows us to

accurately model the light propagation for our holographic display

in simulation with sampling constraints [Matsushima and Shimob-

aba 2009]. In our case, we use ASM as a function applied to the field

modulated by the SLM that travels from the SLM towards the eye

(see Fig. 2).

We express the propagated field 𝑈 (𝑥,𝑦, 𝜆; 𝑧) at a distance 𝑧 from
input source field𝑈 (𝑥,𝑦, 𝜆; 0) using the ASM transfer functionH
[Goodman 2005], as

𝑈 (𝑥,𝑦, 𝜆; 𝑧) = F −1 (F (𝑈 (𝑥,𝑦, 𝜆; 0)) · H (𝑓𝑥 , 𝑓𝑦, 𝜆; 𝑧))
= ASM

(
𝑈 (𝑥,𝑦, 𝜆; 0),H(𝑓𝑥 , 𝑓𝑦, 𝜆; 𝑧)

)
. (1)

F and F −1
are the Fourier transform and the inverse Fourier

transforms respectively and both operate over their respective spa-

tial or frequency domains. The transfer function H is defined here

with the Fourier frequencies 𝑓𝑥 and 𝑓𝑦 in the 𝑥 and 𝑦 directions

respectively and 𝜆 is the wavelength of light being propagated as

H(𝑓𝑥 , 𝑓𝑦, 𝜆; 𝑧) =

exp

(
𝑗 2𝜋
𝜆
𝑧

√︃
1 − 𝜆2 (𝑓𝑥 2 + 𝑓𝑦2)

)
: 𝑓𝑥

2 + 𝑓𝑦2 < 1

𝜆2

0 : Otherwise

.

(2)

We define as shorthand the function ASM (𝑈 , 𝑧) to refer to prop-

agation of the wavefront𝑈 by 𝑧 distance.

3.2 Modeling Obstructions

Building upon vanilla holography, we define 𝑓Pre for modeling ob-

structions before the pupil and 𝑓Post for modeling obstructions after

the pupil on any generic wavefront𝑈 . In short, we can model any

interfered wavefront𝑈 ′
as

𝑈 ′ =
(
𝑓 𝑀
Post

◦ F −1 ◦ 𝑓 𝑁
Pre

◦ F
)
(𝑈 ), (3)

where 𝑓 𝑁
Pre

= 𝑓Pre,1 (𝑀1, 𝑧1) ◦ · · · ◦ 𝑓Pre,𝑁 (𝑀𝑁 , 𝑧𝑁 ) and
𝑓 𝑀
Post

= 𝑓Post,1 (𝑀1, 𝑧1) ◦ · · · ◦ 𝑓Post,𝑀 (𝑀𝑀 , 𝑧𝑀 ) and 𝑀𝑖 is a complex

obstruction mask located at distance 𝑧𝑖 for a total of 𝑁 pre-pupil

occluders and𝑀 post-pupil occluders.

3.2.1 Modeling Pre-Pupil Obstructions. Obstructions that occur be-
tween the eyepiece lens and the pupil lens (e.g. eyelashes) can be

detrimental to the viewing experience of holographic displays. To

model this correctly, we first take the field at the eyebox plane (the

field that the pupil takes in) then propagate it back towards the

eyepiece lens.

When passing the propagated SLM field through the eyepiece

with focal length 𝑓 , we are left with a field of different dimensions

from the SLM. Explicitly, given a wavelength 𝜆 and SLM pixel pitch

𝑝SLM, the extent of the first order in the Fourier domain 𝐿𝑓 is [Good-

man 2005]

𝐿𝑓 =
𝜆𝑓

𝑝SLM
. (4)

We assume the field at the imaging plane is 𝑈 (𝑥,𝑦; 𝑧) and define

𝐸 (𝑥,𝑦) to be the eyebox plane. As we propagate the eyebox field

back to the eyepiece plane, one would expect to see the image grow

back to the full SLM extent at the eyepiece plane corresponding

to the target image. To simulate this effect, prior to propagating
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(c)  Image Quality (PSNR) vs. Eyebox Size

(b) Random Phase

Object Plane

(a) Smooth Phase

Obstruction Plane

0 mm 2 mm 8 mm 10 mm 12 mm

Wavefront

Obstruction Plane

4 mm 6 mm

Object Plane

Wavefront
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Fig. 4. Large Eyeboxes Create Stronger Artifact Resilience. We create optimized smooth and random phase holograms that form the SIGGRAPH logo at

the object plane. We then show how both holograms interact with three rectangular opaque obstructions that are located 8mm away from the imaging plane.

(a) Over short propagation distances, smooth phase holograms scatter light to a very narrow range of angles, resulting in the image being easily compromised

by a variety of obstructions. (b) In contrast, image content in random phase holograms form close to the imaging plane, increasing its robustness to artifacts.

(c) To further analyze how different eyebox sizes affect artifact resilience, we optimize holograms over a large range of étendue configurations to keep the

field of view constant at 78
◦
and we sweep the effective eyebox size from 0.42mm to 3.13mm. Leveraging our proposed artifact simulation method, we are

then able to model the effect of dynamic obstructions on these holograms. Above we plot the associated average PSNR over 6 holograms for each étendue

configuration both with and without obstructions. Please refer to the supplemental materials for experimental validation of this trend.

the eyebox field, we pad the eyebox to the SLM area by using the

padding function 𝑃 that takes in SLM sizes 𝑙𝑥 and 𝑙𝑦 in 𝑥 and 𝑦

dimensions, respectively, that is

𝐸 (𝑓𝑥 , 𝑓𝑦) = 𝑃 (F {𝑈 (𝑥,𝑦; 𝑧)}, 𝑙𝑥 , 𝑙𝑦). (5)

Once padded, we propagate the padded eyebox via ASM to the

pre-pupil plane (we assume this to be a singular plane for simplicity)

and apply a mask 𝑀Pre at this plane before propagating it back to

the eyebox plane.

𝑓Pre (𝐸,𝑀Pre, 𝑧Pre) = ASM (𝑀Pre ASM (𝐸,−𝑧Pre) , 𝑧Pre) . (6)

Parameters for modeling eyelashes accurately can be found in

the supplemental materials.

3.2.2 Modeling Post-Pupil Obstructions. Obstructions that are lo-
cated after the pupil lens and before the retina, particularly floaters

(small particles within the vitreous humor of the eye) and dust, are

significant contributors to visual degradation as noted by clinical

studies [Hammer et al. 2024; Kennelly et al. 2015; Paniagua-Diaz

et al. 2024]. To model the affect of these obstructions on a holo-

graphic display, we can generate a complex mask 𝑀Post that can

be applied throughout the interior of the eye to simulate collagen

floaters, or other particles, being distributed within the vitreous

humor. To apply the mask, we take the field at the retina 𝑈 and use

ASM to propagate it to some intermediate distance 𝑧Post, apply the

mask, and then propagate the masked field back to the retina via

𝑓Post (𝑈 ,𝑀Post, 𝑧Post) = ASM (𝑀Post ASM (𝑈 ,−𝑧Post) , 𝑧Post) . (7)

Parameters for modeling floaters accurately can be found in the

supplemental materials.

While we focus on inter eye obstructions in this section, as this

operates on the spatial domain, our post-pupil model can be gen-

eralized to all obstructions before the eyepiece and after the pupil

lens, including dust and lens scratches as seen in Fig. 2, by setting

𝑧Post accordingly.

3.3 Experimentally Emulating Pre and Post-Pupil Artifacts

Since we are unable to electronically read out the response of the

human eye, we choose to construct a hardware analogue shown in

Fig. 3 that models the same effects to validate our simulation model.

To this end, we use the lenses in the 4F relay system to act as the

eyepiece lens and the human viewer’s eye lens. The bare sensor acts

as the retina of the pupil.

We then construct imaging phantoms that emulate eyelashes and

floaters to act as our pre and post-pupil obstructions. The eyelash

phantom is constructed by attaching pieces of human hair to a lens

mount, chosen for its similarity to real eyelashes. For the floater

phantom, we applied viscous liquids such as marker ink, which

exhibit both phase and amplitude responses, onto a microscope slide.

Photographs of both phantoms are included in the Supplemental

Materials.

The eyelash phantom is mounted after the eyepiece lens and

before the Fourier space, emulating how eyelashes interact with

the wavefront before entering the viewer’s eye lens. Similarly, the

floaters phantoms are mounted after the system’s pupil lens to emu-

late how the floaters reside within the human eyeball. Since floaters

ACM Trans. Graph., Vol. 44, No. 6, Article 219. Publication date: December 2025.
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can exist anywhere throughout the human eyeball the floaters phan-

tom can be placed anywhere after the second lens of the second 4F

relay system. We choose to place the floaters close to the imaging

sensor. In Fig. 3, we also show simulated and experimental captures

of both random phase and smooth phase holograms in the pres-

ence of our experimental phantoms. Our simulations closely match

what we see in our real captures. Please refer to the Supplemental

Information for more details on the hardware construction.

3.4 Examining Artifact Resilience with our Artifact Model

Using our experimentally validated artifact model, we examine in

Fig. 4 the impact of eyebox size on artifact resilience. Conceptually,

in order for a hologram to resist an obstruction, scattering is needed

for the hologram to “bypass” the obstruction. As the eyebox size

bounds the maximal angular spread of light within the system, a

certain eyebox requirement is needed regardless of the CGHmethod.

Our analysis indicates that larger eyeboxes promotes artifact re-

silience. We find that an eyebox of approximately 3mm is necessary

for achieving high robustness against obstructions. Additional ex-

perimental results of a variety of pre- and post-pupil artifacts on

varying eyebox sizes can be found in the supplemental materials.

4 Quantifying Phase Randomness

While several recent methods have also advocated for random phase

holography [Kuo et al. 2023; Schiffers et al. 2023, 2025], none have

formally defined or quantified just how random the phase of a holo-

gram needs to be in order to reap the benefits of random phase.

The lack of a quantitative measure also makes it difficult to com-

pare the degree of randomness of holograms generated by different

random phase CGH methods. For example, how does SGD with

random phase initialization [Kuo et al. 2023] compare to SGD with

stochastic pupil sampling [Schiffers et al. 2023]?

4.1 Eyebox Distribution Matching

We propose a deterministic metric for quantifying the degree of

phase randomness of a hologram. Our metric is defined such that

holograms can be ordered on a scale from completely smooth (con-

stant phase) to completely random. In this section, we motivate the

metric by drawing connections to known properties of complex

stochastic processes. Akin to a tunable knob, the amount of smooth-

ness and the amount of randomness can be adjusted to prioritize

either image quality or artifact resilience, and we show how the

metric facilitates this in developing real time artifact resilient CGH

methods in the next section. We choose to define this metric for

phase-only SLMs, but the derivation of the metric can be generalized

to complex SLMs that modulate both amplitude and phase.

From our analysis in the previous section we found that large

eyeboxes that have energy distributed evenly throughout the eyebox

provide the best resilience against dynamic and static artifacts. We

can measure the difference of a given eyebox 𝐸 is from a flat energy

distribution for all Fourier frequencies as a first-order approximation

for quantifying phase randomness. Parseval’s theorem states that

the Fourier transform preserves energy. Therefore, we can relate

the energy at the SLM plane to the energy at the eyebox plane as∑︁
𝑥,𝑦

|𝑈 (𝑥,𝑦; 0) |2 =
∑︁
𝑓𝑥 ,𝑓𝑦

|𝐸 (𝑓𝑥 , 𝑓𝑦) |2 . (8)

Since we are using phase-only SLMs we know that |𝑈 (𝑥,𝑦; 0) | =
1 ∀𝑥,𝑦. Thus, we can define a uniform distance measure LUD for

measuring the distance between an eyebox’s energy from a flat

energy spectrum as

LUD (𝐸) =
∑︁
𝑓𝑥 ,𝑓𝑦

(
|𝐸 (𝑓𝑥 , 𝑓𝑦) |2 − 1

)
2

. (9)

Although the metric LUD is necessary for phase randomness,

unfortunately we found that it is not a sufficient for optimization.We

show in Fig. 5 that there exists many holograms that exhibit smooth

phase while still being able to minimize LUD. We observed that the

error incurred by a single concentrated energy outlier within the

eyebox, which is a property shared by smooth phase holograms, can

be offset by the other Fourier frequencies that exhibit low energy.

We thus modify the first-order approximation metric by incor-

porating second-order terms. Specifically, we do not only want to

quantify the mean of the distribution of energy within the eyebox

of a random phase hologram but also the variance. In order to de-

termine the variance of this distribution we perform a statistical

analysis of complex stochastic processes.

Suppose that 𝑥 [𝑛] is a random vector of length 𝑛 where each

entry has a random phase and unitary magnitude, that is,

|𝑥 [𝑖] | = 1 and ∠𝑥 [𝑖] ∼ Uniform(0, 2𝜋) ∀𝑖 ∈ [𝑛] .
Then we have

𝜇Re(𝑥 ) = 𝜇Im(𝑥 ) = 0 and 𝜎2
Re(𝑥 ) = 𝜎

2

Im(𝑥 )

where 𝜇 ( ·) , 𝜎 ( ·) are the statistical mean and standard deviation op-

erators, and Re(·), Im(·) are the real and imaginary component op-

erators. It is known that complex stochastic processes with zero

mean and equal real and imaginary variances have certain proper-

ties [Richards 2013]. In particular, if𝑋 = F (𝑥) then the distributions
of Re(𝑋 ) and Im(𝑋 ) are the same and follow a Gaussian distribution

with the probability distribution function

P(Re(𝑋 )) = 1√︃
2𝜋𝜎2

Re(𝑥 )

exp

(
−Re(𝑋 )2

2𝜎2
Re(𝑥 )

)
. (10)

Furthermore, if the real and imaginary components are identically

distributed Gaussian distributions then the magnitude component

|𝑋 | follows a scaled Rayleigh distribution with a probability distri-

bution function that is given by

P(|𝑋 |) =


|𝑋 |
𝜎2
Re(𝑥 )

exp

(
− |𝑋 |2

2𝜎2
Re(𝑥 )

)
: 0 ≤ |𝑋 |,

0 : otherwise.

(11)

and the mean and variance of this distribution are given by

𝜇 |𝑋 | = 𝜎Re(𝑥 )

√︂
𝜋

2

and 𝜎2|𝑋 | =
4 − 𝜋
2

𝜎2
Re(𝑥 ) .

We now have a closed form solution for the mean and variance

of the intensity of the eyebox of a random hologram. With this

variance in hand, we can now assess how the means and variances
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Fig. 5. Smooth to Random Holograms Continuum. From left to right we show a constant phase hologram, a hologram optimized using constant phase

initialization and MSE loss, a hologram optimized using constant phase and MSE loss and LUD, a hologram optimized using constant phase initialization and

MSE loss and LRD, and an unoptimized hologram where the phase values are uniformly randomly initialized. We observe that our metric LRD can guide

the optimization towards solutions that exhibit greater phase randomness and wider energy distributions within the eyebox, even if the initialization was a

constant phase hologram. Furthermore, we observe that total randomness is not necessary for artifact resilience and that partial randomness can also provide

strong protection against artifacts, as shown in the second column from the right.

of the eyeboxes of our generated holograms compare to the target

mean and variance.

To compute the distance of a given hologram’s eyebox 𝐸 from the

target Rayleigh distribution we need to compute the variance of 𝐸.

Instead of computing the variance over the entire eyebox, we instead

choose to compute local patchwise sample variances in a manner

akin to structural similarity [Wang et al. 2004]. This computation is

performed by first defining a Gaussian blur kernel 𝐾 with standard

deviation 𝜎𝐾 . The local means and local variances of 𝐸 can then be

calculated as

𝜇′𝐸 = 𝐸 ⊛ 𝐾 and 𝜎 ′2𝐸 = 𝐸2 ⊛ 𝐾 − 𝜇′2𝐸 ,

where ⊛ denotes convolution. We can now define our Rayleigh

Distance, LRD, which quantifies the distance between the eyebox 𝐸

and the target Rayleigh distribution as

LRD (𝐸) =
∑︁
𝑓𝑥 ,𝑓𝑦

(2𝜇′
𝐸
(𝑓𝑥 , 𝑓𝑦)𝜇R + 𝑐1)𝑐2

(𝜇′2
𝐸
(𝑓𝑥 , 𝑓𝑦) + 𝜇2

R
+ 𝑐1) (𝜎 ′2𝐸 (𝑓𝑥 , 𝑓𝑦) + 𝜎

2

R
+ 𝑐2)

,

(12)

where 𝜇R and 𝜎R are the mean and variance of the target Rayleigh

distribution, which can be derived from Eq. (11). The constants, 𝑐1
and 𝑐2, are to prevent division by zero. We do not use a covariance

term since the reference Rayleigh distribution is fixed and the eyebox

is dependent on the hologram.

While higher order measures of distribution differences can be

incorporated such as skewness and kurtosis, we have found that the

second order suffices for our purposes. Furthermore, the connection

with the Rayleigh distribution only relies on the SLM entries being

independently randomly drawn from a complex random distribu-

tion that has equal real and imaginary variances. The connection

holds even if the mean is non-zero because a non-zero mean can

be treated as a constant offset to the distribution. Thus, our metric,

which we call the Rayleigh Distance (RD), for phase-only SLMs can

be extended to complex SLMs that modulate both phase and ampli-

tude by deriving the corresponding real and imaginary variances.

We validate the efficacy of the Rayleigh Distance in the following

sections.

4.2 Validation of Metric

We validate the efficacy of our metric by demonstrating that it can

be used to optimized for artifact-resilient holograms. Conventional

methods for obtaining holograms with random phase set the initial

phase values using random uniform initialization [Kuo et al. 2023].

Due to the presence of local minima around the initial starting

point the initialization alone is capable of facilitating random phase

holography. However, for the same reason, if the initial starting

point is a constant smooth phase then conventional optimization

will struggle to find random phase solutions.

We perform an illustrative experiment in Fig. 5, optimizing for

a continuum of holograms spanning smooth to random phases.

We launch three optimizations where all of the optimizations use

constant phase as the initial iterate, and the loss functions LMSE,

LMSE + LUD, and LMSE + LRD. We observe that the optimization

with the proposed loss metric is the only optimization that is capa-

ble of pushing smooth phase initializations towards random phase

solutions. Since the Rayleigh Distance is agnostic to eyepiece fo-

cal length, it encourages even light distribution across the viewing

zone, enabling practical use across display configurations with suf-

ficient eyebox size (see Fig. 4). Furthermore, we also find that the

randomness of the solution when using our proposed metric is not

as random as a hologram that exhibits true uniform random phase.
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These findings suggests that there is a range of degrees of phase ran-

domness that can facilitate artifact resilience. The proposed metric

is the first metric, to the best of our knowledge, that facilitates the

investigation of the threshold at which holograms become artifact

resilient.

While we could now use an iterative method such as the one from

above and optimize for phase patterns with the proposed metric, this

unfortunately does not allow for real-time throughput. Moreover, in

the case of training neural networks for real time CGH [Peng et al.

2020; Shi et al. 2021], it is not clear how to initialize the optimization

problem, specifically the weights of the neural network, such that

random phase holograms are the starting point. Indeed, all existing

real time neural network based CGHmethods for near field holography,

such as HoloNet and Tensor Holography, produce smooth phase

holograms. In the next section we will demonstrate that the metric

can be used as a training loss to bias the outputs of a real time CGH

neural network towards random phase.

5 Real-Time, Artifact Resilient-Holography

Real-time, high-quality random phase CGH is still an unsolved prob-

lem, as existing real-time methods currently only produce smooth-

phase holograms, exhibiting high-quality in-focus imagery, but lack-

ing the desirable properties of random phase holograms such as

artifact resiliency or natural defocus blur. On the other hand, there

is no method that generates high-quality, random phase holograms

in real time. In this section, we apply our Rayleigh distance metric

to bridge this gap.

Previous methods for real time holography trained deep neural

networks to generate the phase pattern given a target image. As

these neural methods are only trained on the likelihood loss (i.e.

mean squared error or perceptual), they learn to generate smooth-

phase holograms since the image features are directly translated

into the phase pattern, converging into a local minimum. By incor-

porating our metric for randomness into the loss function, we are

able to successfully train an off-the-shelf neural network, HoloNet

[Peng et al. 2020], to generate artifact resilient holograms. Our arti-

fact resilient holograms maintain many of the desirable properties

of random phase holograms, such as artifact resilience and natural

defocus blur.

First, we show how to include our phase randomness metric that

was described in Section 4 to train our Artifact Resilient Holography

Network (Real-Time ARH) along with the associated impact on

generating holograms that are robust to artifacts. Then, we explain

how to enhance inference with time multiplexing through model

ensembling. Finally, we show our Real-Time ARH extension to

generate holograms with realistic 3D effects from RGB-D inputs,

without any retraining or fine-tuning, showing high image quality,

artifact resilience and natural defocus blur, while operating in real

time.

5.1 Artifact Resilient Network

In this section, we show that our metric can be used to train neural

networks for real time, artifact resilient CGH. We choose to demon-

strate this by using an off-the-shelf neural network method, but note

that the metric can be applied to any CGH optimization. HoloNet,

PE

Input image

ASM ASM

(b) Real-Time ARH(a) HoloNet
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O
u

tp
u
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SLM Field SLM Phase
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Fig. 6. Learning to generate random phase holograms.We train an off-

the-shelf neural network for CGH [Peng et al. 2020] combining a perceptual

loss function with our proposed artifact resilience regularizer. (a) HoloNet

overview. The Target-Phase Generator (TPG) produces a phase pattern at

the target plane from the input image. Then, the wavefront at image plane,

composed of the image and the generated target phase, is propagated to

the SLM. Then, the Phase Encoder (PE) converts the complex wavefront into

a phase-only hologram. Finally, the model is trained through a perceptual

loss on the propagated phase pattern. (b) Real-Time Artifact-Resilient

Holography. We incorporate our random phase metric into the training

as a regularizer. As described in Section 4, LRD ensures that the eyebox

possesses a spread out distribution of energy that is correlated with a

uniform distribution of phase at the SLM plane.

Image HoloNet Real-Time ARH

Eyebox

Phase

Fig. 7. HoloNet versus our Real-Time ARH. We compare the visual

quality of holograms produced byHoloNet and our Real-Time ARH,without

time multiplexing, in the presence of artifacts with their eyeboxes (clipped

for visualization). The vanilla HoloNet produces smooth phase holograms

with small eyebox, which are distorted by the artifacts. In contrast, our

Real-Time ARH generates random phase holograms with large eyeboxes,

leading to artifact resilient holograms.

shown in Fig. 6a, is trained only with the perceptual loss Lpercep,

which leads to smooth phase holograms. It generates holograms

by combining two networks: the Target-Phase Generator and the

Phase Encoder, combined through a physical propagator (ASM in

our case). The Target-Phase Generator creates a phase pattern at

the target plane, which is combined with the image and propagated

to the SLM plane. Then, the Phase Encoder converts the complex
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Table 1. Quantitative Quality and Runtime Evaluation of CGH Meth-

ods in the Presence of Dynamic Obstructions.Our dynamic obstruction

simulation framework and our proposed metric are used to assess the qual-

ity of different CGH methods: Vanilla Random Phase Optimization (VRO),

DPAC, Tensor Holography, Vanilla HoloNet, and our Real-Time ARH. For

each metric, the arrow indicates whether higher is better or lower is better.

We find that our Real-Time ARH achieves a high performance in the pres-

ence of dynamic obstructions with a fast inference time. FPS of each CGH

method was evaluated on an NVIDIA L40. All holograms are 1280× 800with

a pixel pitch of 10.8 um. For Tensor Holography [2021] we use their reported

FPS. For our Real-Time ARH we use 8 frame time multiplexing and report

the FPS of one model. We decouple latency from the number of models

involved since each model generates an independent frame, hence they can

be run in parallel. The supplemental materials provide further details on

time-multiplexing and include a selection of phase patterns generated with

these real-time CGH methods.

PSNR (dB) ↑ PSNR (dB) ↑ LRD ↓ FPS ↑
w/o obstructions w/ obstructions

VRO (10 iter) [2023] 21.6 18.1 2.92 3

VRO (300 iter) [2023] 69.0 20.1 2.81 0.1

DPAC [2017] 17.0 12.5 8.15 370

Tensor Holography [2021] 18.1 11.2 8.30 >60

Vanilla HoloNet [2020] 18.9 14.8 8.26 85

Ours: Real-Time ARH 17.7 17.1 3.45 85

wavefront into a phase-only hologram that produces the image

when displayed in the SLM.

To allow the network to learn how to generate robust holograms,

we combine the likelihood, perceptual loss with our Rayleigh dis-

tance metric from Section 4 as shown in Fig. 6b, acting as a regular-

izer. Our loss function L is

L = Lpercep (𝑋, |ASM (𝑈 , 𝑧) |) + 𝜌 LRD (F (ASM (𝑈 , 𝑧))) , (13)

where 𝑋 is the target image at distance 𝑧,𝑈 is the wavefront at the

SLM plane, 𝑧 is the propagation distance from the SLM to the target

plane, and LRD is our Rayleigh Distance regularizer for randomness

and eyebox dispersion as defined in Eq. 12.

First, we train the network one epoch with the perceptual VGG

loss [Johnson et al. 2016] as Lpercep (𝜌 = 0), then continue with our

LRD regularizer (𝜌 = 1) for random phase convergence. We perform

this initialization epoch to help stabilize training. We do not rely on

MSE loss as the likelihood loss function since we want the hologram

to encode the target image but we are not constrained to having

the exact same pixel values. We tested different 𝜌 values, but stick

to 𝜌 = 1 since for 𝜌 ≪ 1 the optimizer favors sharp, smooth-phase

outputs and for large 𝜌 ≫ 1 it promotes randomness, producing

incoherent results (see rightmost column of Fig. 5). More details

on training our real-time ARH can be found in the supplemental

materials.

Our random phase metric teaches the model to generate random

phase holograms. In Fig. 7, the vanilla HoloNet produces smooth-

phase holograms, that are completely distorted by artifacts. Our

model, trained with the randomness regularizer LRD, generates

artifact-resilient holograms.

5.2 Time Multiplexing

Random phase holograms produce robust results, but they suffer

from speckle noise. This problem is commonly solved by time mul-

tiplexing different holograms of the same target to preserve image

structure while reducing speckle noise.

Our current model is deterministic, therefore it only generates

one random phase pattern for a given target image. However, due

to the stochastic training (data shuffling, stochastic gradient de-

scent, ...) we can interpret that each trained model is sampling one

possible phase pattern per target. Therefore, we implement time

multiplexing through model ensembling. By combining different

trained models, we can sample random phase holograms, achieving

time-multiplexing.

5.3 Random phase 3D Holograms in Real Time

In this section, we extend our pre-trained random phase model to

generate random phase holograms with realistic 3D effects, without

any retraining or fine-tuning, by incorporating depth information

into inference. Opposed to HoloNet, we find that our Real-Time

ARH generalizes for different depths 𝑧 due to the random phase

training.

We compute holograms with 3D effects from RGBD images as

depicted in Fig. 8. The complex wavefront at the SLM plane 𝑈

is constructed by layering the image into 𝑁 depths at different

propagation distances 𝑧𝑖 , and propagate each slice independently as

𝑈 =

𝑁∑︁
𝑖=1

ASM (𝑈3D ⊙ 𝛿 (𝐷 − 𝑧𝑖 ),−𝑧𝑖 ) , (14)

where 𝐷 denotes the layered depth input for each pixel of the 3D

wavefront𝑈3D, and ⊙ is the Hadamard product.

We report in Fig. 8e simulated results of our 3D extension of our

Real-Time ARH. In both motorcycle and castle scene, we discretize

the depth input into three layers and place them at 𝑧 = (98, 100, 102)
mm, and show the results for all three target planes. These 𝑧 prop-

agation distances are relative to the SLM, not the viewer, and a

4 mm SLM distance range can span over 10 diopters. The vanilla

HoloNet produces strong chromatic aberration effects, as it does

not generalize to 3D scenes. Our Real-Time ARH, however, natu-

rally generalizes to 3D, producing high-quality in focus imagery,

and natural defocus blur.

5.4 Experimental Results

We validate that our additional regularizer unlocks the artifact re-

silience capabilities of HoloNet by simulating how both holograms

generated via our real-time ARH method and HoloNet interact

with pre and post-pupil obstructions using our simulation method

and hardware phantoms. We ensemble 8 different Real-Time ARH

models for 8× time multiplexing, and find that unlike HoloNet,

our Real-Time ARH produces holograms that are robust to both

eyelashes and floaters in both simulation and experimental captures.

As shown in Fig. 9, we see our obstructions cast dark shadows on

the image content from holograms generated via vanilla HoloNet.

In contrast, holograms generated with our Real-Time ARH leave

little to no indication of any obstruction being present.
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(b) Layered wavefront propagation
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Fig. 8. 3D Holography with Real-Time ARH. We extend our pre-trained Real-Time ARH with 2D images for real-time 3D computed generated holography

from RGB-D inputs. We do not finetune the network for 3D scenes, but it naturally generalizes to them. (a) We input the captured 2D image into the

Target-Phase Generator (TPG) to sample a target phase. (b) We combine the amplitude (image) and phase and split it into three depth layers based on the

depth layer mask. Then, we propagate each wavefront layer a distance 𝑧𝑖 independently with the ASM and merge the wavefronts at the SLM plane. (c)

We convert the complex wavefront into a phase-only hologram with our Phase Encoder (PE). (d) The phase-only hologram is displayed on a Spatial Light

Modulator (SLM), presenting high-quality in-focus image quality, and natural defocus blur. (e) Simulated results. We test our method on two RGB-D scenes,

without using time multiplexing, and compare the results of HoloNet with our Real-Time ARH. In both scenes, HoloNet produces incorrect results, with

strong chromatic aberration effects due to its lack of generalization to different propagation distances 𝑧. In contrast, our Real-Time ARH naturally generalizes

to 3D, showing high quality in-focus imagery, while showing natural defocus blur.

We also observe that our Real-Time ARH produces favorable

image quality compared to HoloNet without obstructions, as the

latter requires camera-in-the-loop calibration to overcome the gap

between simulation and reality. Our Real-Time ARH proves to be

simultaneously more robust to imperfections in hardware and more

resilient to dynamic ocular artifacts.

We also tested the artifact resilience of our 3D Real-Time ARH

within realistic viewing settings. To this end, we capture these re-

sults using a smartphone as an approximator of how the human

eye will perceive our ARH holograms. We use the camera focus

settings to accommodate to the front and back of the hologram. The

vanilla HoloNet results exhibit distortions ranging from the lack

of natural 3D effects to the visible shadows cast by the eyelashes. In

contrast, our Real-Time ARH performs admirably, demonstrating

high-quality in focus imagery and realistic defocus blur, while also

being artifact resilient.

6 Discussion

We expect that this work inspires the community to pursue random

phase holograms as viable alternatives to smooth phase holograms.

These types of holograms are inherently artifact resilient and natu-

rally eliminate the need for lengthy camera-in-the-loop calibration

procedures that cannot handle dynamic obstructions. These holo-

grams also exhibit more natural defocus cues than their smooth

phase counterparts. We also hope our proposed metric for measur-

ing phase randomness and our simulation framework for modeling

dynamic artifacts can be used to assess and compare current, past,

and future holographic display systems.

The ability of the trained neural network to generate fully random

phase holograms can be ascribed to our deterministic metric for

measuring phase randomness, or equivalently, the energy distribu-

tion of the eyebox. Unlike prior works that affect the eyebox energy

distribution indirectly through pupil sampling or by random initial-

ization, we directly measure the distributional distance between the

ACM Trans. Graph., Vol. 44, No. 6, Article 219. Publication date: December 2025.
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HoloNet HoloNetReal-Time ARH Real-Time ARH

Fig. 9. HoloNet vs. our Real-Time ARH. We compare HoloNet vs. our Real-Time ARH in three images, both in simulation and in experiment, with a

quantized phase light modulator (TI DLP6750Q1EVM). Without obstructions, our Real-Time ARH produces better visual quality, as HoloNet requires camera

in the loop calibration to overcome the hardware imperfections of the real setup. Our Real-Time ARH, as it relies on random phase holography, is naturally

more robust to hardware imperfections. With obstructions (eyelashes, floaters), HoloNet holograms are clearly distorted by the obstructions. On the other

hand, our Real-Time ARH is artifact resilient, since it relies on random phase holography and light scatters around obstructions. These experimental captures

use 8-frame time multiplexing per channel.
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HoloNet Real-Time ARH

Capture setup

Far focusFront focus

Eyelashes

Fig. 10. Artifact Resilience with 3D Effects. We compute holograms from

RGB-D inputs using 8-frame time multiplexing per channel, and capture

them on a smartphone to test for artifact resilience with eyelashes in front

of the camera sensor. HoloNet produces distorted images by the eyelashes,

since it is not artifact resilient. It also does not reproduce any defocus

blur effects, as it does not generalize to 3D. In contrast, our Real-Time

ARH produces holograms that scatter around the obstructions, and are not

captured in the final image, proving the artifact-resilience of our method.

Also, as our network naturally generalizes to 3D, we not only produce the

correct hologram at the target plane, but also produce natural defocus blur.

generated eyebox and the target eyebox. We derive the target mean

and variance that we want to match from known properties of the

Rayleigh distribution. This metric not only allowed us to train a real

time random phase generating neural network, it also allowed us to

find a range of pseudo-random holograms that still offered artifact

resilience even though they have noticeably less phase randomness

than total random holograms.

There are several future directions of investigation that could

build on this work. One direction is in the generation of random

phase 3D holograms from light fields or other volumetric repre-

sentations [Choi et al. 2025]. In this work we primarily focused on

multiplane RGB-D holograms, it remains an open question what

extensions need to be incorporated to generalize real-time random

phase holography to focal stacks and light fields. Another direction

is the generation of random holograms within the context of pupil

under sampling. In this work we assume that eye tracking is ap-

plied and that the pupil always fully samples the eye box. Random

phase holograms should also support pupil under sampling, but

perhaps more innovations need to be applied to support both pupil

invariance and high image quality.

7 Conclusion

This work introduces the first method for real-time artifact-resilient

holography. Our method for generating holograms are naturally

artifact resilient because of their phase randomness. We depart from

existing works that exploit phase smoothness to improve image

quality. Instead, we exploit phase randomness to provide resilience

against both static and dynamic causes of artifacts, for example,

floaters, eyelashes, and dust. The proposed method operates at high

frame rates of approximately 85 fps. We assess all methods using

our method for simulating dynamic obstructions and we validate

the results with experimental captures.
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