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Abstract

Large-scale scene data is essential for training and testing in
robot learning. Neural reconstruction methods have promised
the capability of reconstructing large physically-grounded
outdoor scenes from captured sensor data. However, these
methods have baked-in static environments and only allow for
limited scene control – they are functionally constrained in
scene and trajectory diversity by the captures from which they
are reconstructed. In contrast, generating driving data with re-
cent image or video diffusion models offers control, however,
at the cost of geometry grounding and causality. In this work,
we aim to bridge this gap and present a method that directly
generates large-scale 3D driving scenes with accurate geom-
etry, allowing for causal novel view synthesis with object
permanence and explicit 3D geometry estimation. The pro-
posed method combines the generation of a proxy geometry
and environment representation with score distillation from
learned 2D image priors. We find that this approach allows
for high controllability, enabling the prompt-guided geometry
and high-fidelity texture and structure that can be conditioned
on map layouts – producing realistic and geometrically con-
sistent 3D generations of complex driving scenes. Interactive
demonstrations and results are available on our project web-
page: light.princeton.edu/LSD-3D.

1 Introduction
Large-scale public datasets have driven significant advance-
ments in robot learning over the last decade. For autonomous
driving, large volumes of data [27, 11, 87, 55, 19, 7] have
unlocked new capabilities for perception and planning. Ini-
tially limited to a few sparsely labeled scenes [27], exist-
ing datasets now offer thousands of multi-modal, fully anno-
tated scenes from cities around the world [7, 87] – unlocking
broader capabilities for robot learning. However, achieving
generalized robot autonomy demands even greater scales of
both diverse and complete data, to capture the long tail of
driving scene distributions – a challenge given the high costs
of capturing and annotating real data. Research in various
layers of the robotics stack has demonstrated that training
models on large quantities of data and in simulated environ-
ments [17, 30, 5, 76, 80, 88] can result in robust and more
generalized autonomy.

*Indicates equal contribution.

Recent work in neural scene reconstruction promises to
bridge this gap by reconstructing previously simulated driv-
ing environments directly from sensor data [66, 93, 112,
103]. Such scenes can be replayed in real time, synthesize
novel views, and allow for unseen actor variations in closed-
loop testing [93, 58, 12]. However, neural reconstruction
methods are fundamentally limited in that they cannot pro-
duce novel content beyond recorded scenes – they do not
offer data-driven simulation with great scene diversity.

Video diffusion models have been proposed to increase
data volumes and diversity. Pretrained on internet-scale
datasets and subsequently fine-tuned on autonomous driv-
ing data they generate videos which mimic driving datasets
and multi-view camera setups [98, 59, 26, 72]. While these
methods can generate a large corpus of novel driving data,
outside of their training data, and provide feature control,
they also come with inherent limitations. High computa-
tional costs, on the order of seconds per generated multi-
view frame, restrict real-time replay and scalability for
closed-loop simulation tasks. Furthermore, they lack explicit
spatial modeling, which prevents causality, object perma-
nence, and 3D consistency. The latter also prohibits them
from replaying novel trajectories within a pregenerated en-
vironment [22]. As such, video diffusion models struggle as
data-driven simulators, especially for safe robot learning.

Explicit 3D scene models guarantee causality and 3D
consistency. Directly generating explicit 3D scenes, how-
ever, poses a challenge: both geometry and texture have to
be generated consistently and with high quality. Some ap-
proaches use LiDAR point clouds to produce pure geometry
without detailed texture [50, 117, 71, 124] – which cannot
be used to train image-based autonomous driving models
– while more recent approaches adopt coarse 3D geometry
as a conditioning mechanism for video synthesis [59, 60].
As such, these methods inherit video diffusion limitations,
such as a lack of causality. Distillation methods [68] in-
stead address the 3D data gap by transferring priors from
2D image models into 3D representations via inverse render-
ing techniques [63, 46, 114]. However, existing techniques
are limited to object-centric generation [68, 106, 104] and
lack realism [51] –– and so, they are not suitable for the
complexity [120] or spatial scale [81] of large-scale driv-
ing scenes. Only recent work has explored distillation ap-
proaches for scene extrapolation from sparse real data cap-
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tures [100, 102, 57, 21], achieving improved reconstruction
quality from few images and hinting at the potential for com-
plete outdoor scene generation.

We propose a novel approach that overcomes the afore-
mentioned limitations of existing generative methods for
large-scale driving scenes. Our method generates explicit
3D models of entirely novel environments – with both ge-
ometry and high-fidelity texture – by fusing the diversity of
image and video generation with the efficiency of explicit
3D representations. We first generate a coarse geometry of
street scenes, optionally controlled by a road map layout.
This proxy is then used to guide the generation of fine struc-
tural details and high-fidelity textures via image space distil-
lation with a high-quality image generation model. Specifi-
cally, we introduce geometry-grounded distillation sampling
(GGDS), an image space sampling approach, that incorpo-
rates explicit geometry control and exact noise sampling by
DDIM inversion in a single method. We find that the com-
bination of geometry guidance and consistent noise sam-
pling through inversion can deliver successful and 3D con-
sistent scene generation via distillation. The method pro-
duces diverse, realistic, and large-scale 3D scene models for
autonomous driving. Generated scenes guarantee causality
and can produce unlimited novel trajectories in real-time
– enabling scalability – while maintaining 3D consistency
and appearance fidelity. Furthermore, precise prompt con-
trol over weather, season, time-of-day, and location, in the
form of explicit environmental lighting, enables further fine-
grained customization of these virtual scenes.

We validate our method on the Waymo Open Dataset [87],
generating novel scenes which not only inherit the data prior
distribution, but leverage the implicit prior of 2D diffusion
models to provide enhanced scene diversity. Our approach,
generating complete and coherent large-scale 3D scenes,
outperforms state-of-the-art existing generative methods in
image synthesis of unseen camera angles by 18% in FVD
and maintains prompt adherence on the level of pure video-
based approaches.

We summarize our specific contributions as follows:
• To our knowledge, our method is the first to utilize a dis-

tillation approach to directly generate and optimize ex-
plicit 3D driving scenes with high-quality geometry and
texture – guaranteeing causal generation.

• We introduce Geometry-Grounded Distillation Sampling
(GGDS), a method combining controlled proxy mesh
generation with a conditional diffusion prior to produce
novel, view-consistent Gaussian splatting scenes, with
real-time rendering and composability with 3D assets.

• We generate diverse large-scale scenes which can be ren-
dered into physically-grounded videos controlled by tra-
jectories through the scene, enabling the creation of un-
limited, completely unseen environments, controlled by
scene descriptions, traffic map layouts, or text prompts.

2 Related Work
Image and Video Synthesis. Recent advances in image
generation have enabled the synthesis of high-resolution,
photorealistic imagery. These approaches – from generative

Method Unlimited Compos- Causal 3D Real-Time View Control
Viewpoints ability Geometry Rendering Extrapolation Weather Time Map

DriveDreamer [98] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

WonderJourney [116] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Streetscapes [14] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Vista [26] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

MagicDriveDiT [23] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

WoVoGen [59] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

WonderWorld [115] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

NF-LDM [48] ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

InfiniCity [56] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓

MagicDrive3D [26] ✗ ✓ (✓) ✓ ✓ ✓ ✓ ✓

CityDreamer [105] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓

InfiniCube [60] ✗ ✓ (✓) ✓ ✓ ✓ ✓ ✓

GEN3C [74] ✗ ✗ (✓) ✗ ✓ ✓ ✓ ✗

LSD -3D (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Video and 3D Generation for Driving Scenes.
We review the recent body of video (top) and 3D generation
work (bottom). Please zoom in digital document for details.

adversarial networks (GANs) [28, 6, 42, 78], likelihood-
based methods [49, 70, 94], to more prominently, diffu-
sion models [15, 84, 16, 18, 34, 75, 95] – have been re-
cently extended to video generation [4, 121, 83, 75, 31, 33,
35, 23, 113, 36, 90]. Early methods offer control via text
prompt [83], image [121], or camera position [77, 110].
Recent methods like GEN3C [74, 89] or GeoDrive [8] for
driving scenes incorporate 3D conditioning and point pro-
jection to improve geometric consistency. Specialized mod-
els, such as Vista [26], MagicDrive [24, 23], or Drive-
Dreamer [98], have been developed on top of foundational
video models [4] for autonomous driving applications –
employing bounding box, HD-map, and dense voxel guid-
ance for feature control. These methods extend pre-trained
video diffusion models to generate videos which mimic
driving sensor setups. However, despite efficiency improve-
ments [85, 61], video generation models remain computa-
tionally intensive [113, 90, 96] and preclude the scalability
necessary for real-time simulation. Furthermore, they strug-
gle with coherent novel-view rendering over long driving
trajectories and suffer from a lack of causality. In the top
section of Tab. 1, we provide a comparison of relevant video
synthesis methods for large-scale driving scenes.

3D Generation. To guarantee consistency and causality,
recent approaches separate from 2D image and video gen-
eration and focus on the explicit generation of individ-
ual, object-centric 3D structures. These methods [104, 53,
101, 25, 41, 77, 91, 106] generate consistent 3D structure
by leveraging well-defined features and latent spaces, and
multi-view observations – enabling them to directly perform
explicit diffusion of 3D objects. However, to train these 3D
generative models, they rely on high-quality synthetic 3D
data [13, 10], and most works are thus constrained to the
generation of individual objects – generation of large-scale
3D outdoor scenes remains an open challenge.

Scene Reconstruction and Generation. For large-scale
scene generation [48, 111, 50, 1, 97, 2, 56], various
3D representations have been proposed: triplanes [82, 50,
1], semantic occupancy grids, bounding boxes, and 3D
maps [111, 107]. However, reliance on generation of explicit
priors requires expensive annotation data, and these early
methods’ generations lack significantly in photorealism and
scale. In contrast, satellite imagery has been used for the
city-scale 3D generation of urban environments [56, 105].
More recently, hierarchical voxel diffusion methods [71,
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Figure 1: Geometry-Grounded Large-Scale 3D Scene Generation. We generate a large-scale scene as a combination of a
coarse geometric layout, an environment map, and a set of Gaussians for texture details, discussed in Sec. 3.1. The geometric
layout is either generated, conditioned on a map, or predicted from point-cloud data and guides the overall scene structure. We
can further control the setting with a scene prompt, describing time-of-day, season, and weather. Through Geometry-Grounded
Distillation Sampling (GGDS), we then further optimize the Gaussian-based scene representation by leveraging 2D priors from
the conditional latent diffusion model through consistent diffusion sampling and image-space optimization – together with a
set of geometry-grounding regularizers – and generate a causal large-scale scene representation as described in Sec. 3.3.

73], have used accumulated LiDAR point clouds to super-
vise the generation of 3D driving scene meshes or directly
generate realistic LiDAR point clouds [124]. However, these
methods exclusively generate geometry, without the texture
or appearance needed for training perception models in sim-
ulation – see the bottom section of Tab. 1.

Neural scene reconstruction [63] on the other side has
shown promising results for the production of high-quality,
photorealistic visual data. 3D Gaussians [46] have emerged
as prime scene representations, able to explicitly model ge-
ometry while also allowing for real-time rendering, enabling
scalability. Methods such as OmniRe [9], SplatAD [32],
SCube [73] or STORM [109] are capable of reconstruct-
ing 3D texture and geometry as 3D Gaussians from real-
world driving videos, allowing for the exploration of novel
trajectories. Nevertheless, pure reconstruction methods are
still fundamentally limited by the availability of real data
to reconstruct from. A natural extension of these works
has been undertaken by works like WoVoGen [59] and In-
finiCube [60], which replace the real data required for scene
reconstruction with generated videos conditioned on scene
geometry – the latter then fits these videos onto a set of de-
formable Gaussian Splats, a first approach in 3D ground-
ing. However, this approach is still inherently limited to the
generated video trajectory. Furthermore, despite the explicit
3D representation, the lack of causality in a single origi-
nal video results in visual artifacts and inconsistencies be-
ing baked into the scene representation. In contrast, dis-
tillation is a paradigm which has recently emerged in 3D
object generation [68, 1, 54, 62] and sparse reconstruc-
tion [100, 102, 57, 21, 25] that is centered around the learn-

ing of a neural 3D representation guided by pretrained text-
to-image models. This approach makes it possible to synthe-
size novel 2D views from arbitrary camera positions, while
ensuring 3D consistency and visual fidelity throughout the
optimization, thereby bypassing the problem of limited 3D
data availability. However, generation by distillation works
for object-centric views but does not naturally scale to com-
plex textures and large-scale scenes, as is necessary for driv-
ing scene generation. Our work investigates how distillation
can be extended for large-scale driving scene generation, al-
lowing for the distillation of image priors as part of the 3D
generation – as opposed to explicit supervision.

3 Geometry-Grounded 3D Generation
Our method generates large-scale driving scenes with 3D-
consistent geometry and texture. We provide an overview of
the generative process in Fig. 1. In the following, we first
describe our large-scale scene representation before intro-
ducing the proposed conditional generation process.

3.1 Scene Representation
Geometric Layout and Background Environment. The
coarse geometric layout of the scene encodes road, rough
vegetation, static vehicles, and building facades. The lay-
out is represented by a mesh M = {F1, ...,FN} where
each triangular face is defined by three vertices F =
[Va,Vb,Vc],V ∈ R3.

We model the background texture at infinity with an envi-
ronment map [29]. For a given time of day, weather, and sea-
sonal setting, we introduce into our scenes a corresponding
background environment in the form of an equirectangular



“A city neighborhood in the spring, with flowers in bloom.”

“A residential neighborhood in the winter, with heavy snow.”

“A city street, at night.”

“A city street.”

“A residential neighborhood.”

“An urban highway.”

“A city street.” “A residential neighborhood in the desert.”

Map Layout Condition
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Figure 2: Geometry-Grounded LSD -3D Generations. We visualize 3D scenes generated via our method, alongside the
corresponding map of surface normals and selection of novel viewpoints at street level for each of them. In the first two
columns, we provide samples of scenes with diversity in time-of-day, season, location, and scene type. In the third column, we
provide examples of generated scenes with a point cloud condition and map layout condition. We confirm the method generates
diverse, explicit, and causal 3D scenes.

map E of sizeHenv×Wenv×3, that offers explicit environ-
ment lighting control. Queried as a spherical environment
map fenv (d, E), it returns a color c for any given viewing
directions d = (φ, η) ∈ R, (0, 2π].

Gaussian Structure and Texture. On a finer level, we
represent detailed foreground geometry and texture as a
set of 2D oriented planar Splats introduced by Huang et
al. [2024]. Each splat θk is parametrized by its central point
pk ∈ R3, two principal tangential vectors t = (tu, tv)
that define their orientation, and a variance controlling its
scale per axis s = (su, sv). Our complete scene represen-
tation Θ is defined as the set of all K individual Gaussian

Θ = [θ0, ..., θK ]. Complex textures are further modeled by
the Gaussian appearance c (stored as a set of spherical har-
monics) and opacity o. The rendered foreground is alpha-
composited with the environment map rendered at infinity
for each pixel’s viewing direction.

3.2 Geometric Layout Generation
To generate the foreground mesh geometry, we first gener-
ate a voxel occupancy V from a hierarchical latent voxel
diffusion model [75], which makes use of a dense, low-
resolution and a sparse, high-resolution 3D UNet [123, 71]
as its respective backbones (see the Supplementary Mate-



Figure 3: Ablation Experiments. We qualitatively validate the core components of our optimization method. With vanilla SDS,
scenes completely fail to converge, necessitating our Gaussian Optimization approach. The proposed texture regularization
and initialization approach ensures that scenes converge to a reasonable color distribution, while scenes without them fail.
The bottom table reports FID scores without the same components, quantitatively confirming that optimization, geometry-
grounding, and texture regularization prove critical for producing high-quality 3D driving scenes.

rial for details). To enable explicit control of the layout of
V , we condition the diffusion model on a map layout M
to model the conditional probability p (V |M). As single-
scene generations are limited to 100m × 100m, we expand
the generation size by introducing chunk-wise outpainting.
The initial chunk is exclusively conditioned on the locally
aligned map Me, but each subsequent chunk e is also con-
ditioned on an overlapping zone with the previous chunk
e− 1 with p (Ve|Me, Ve−1). This diffusion model is trained
from scratch on the aggregated point-cloud data and maps
of the target street scene dataset [87]. From the generated
voxel grid, we then predict the enclosing coarse surface
mesh geometry M with neural kernel surface reconstruc-
tion [38, 99].

3.3 Geometry-Grounded Scene Generation
Given the generated coarse mesh M and a monochromati-
cally initialized environment map E , we next generate a tex-
tured scene with causal consistency.

Mesh to Gaussian Representation. We place Gaussians
Θ at pk, to represent mesh faces F and set orientation, scale,
and tangential axes according to the triangle normal nF , and
area aF , with orientation nF = tu × tv and scale |s| = aF .

Geometry-Grounded Distillation Sampling (GGDS).
We next distill a latent diffusion model (LDM) pϕ,data (z)
on the set of Gaussians Θ through a novel iterative opti-
mization method, which we term Geometry-Grounded Dis-
tillation Sampling (GGDS). This optimization method is de-
signed to avoid the artifacts that are typically present in ex-
isting latent space distillation-based models [68, 54, 39] and
in ego-centric scenes (see Fig. 3).

In each distillation step, we first obtain an image xi =
g (Θ, ψi) for viewpoint ψi with the rasterization function g.
We encode the latent z0,i = E (xi) from this image and add
noise ϵ of noise level t to obtain the noisy latent zt. The noise
level t is sampled uniformly between tmax and tmin. The
noisy latent zt is the denoised forN steps and decoded, gen-
erating a ground-truth image x̂i = D (ẑ0,i) for the respec-
tive viewpoint, inducing a loss in image-space. We formulate
the objective as the image reconstruction loss between the

generated image x̂i and the rendered image xi = g (Θ, ψi):

Lgen (Θ) = Eψi,t[ω (t) (∥g (Θ, ψi)− x̂∥+
LLPIPS(g (Θ, ψi) , x̂)],

(1)

where ω (t) is the noise-level dependent weight and LLPIPS
is the perceptual similarity [119]. We choose N = 5 in-
dependently of t, which we show allows for higher gener-
ation quality for lower noise level t in the later stages of
the scene optimization. To enforce progressive optimization
from coarse to fine, the respective generation strength from
the image prior is linearly annealed by dropping the lower
sampling bound tmin. Directly optimizing in image space
has significant advantages over score distillation, as our ab-
lation experiments validate, where latent optimization is un-
able to converge on non-overlapping viewpoints.

To further mitigate randomness that leads to diverging op-
timization objectives, we enforce consistency between op-
timization steps at the same viewpoint through DDIM in-
version instead of random noise sampling from noise level
t. This ensures a higher level of consistency between the
rendered xi and generated images x̂i even in later steps of
the optimization, which is in contrast to random sampling,
where high noise levels t can lead to extreme disagreement.
We propose a fixed N -step DDIM inversion [84] at any
noise-level t and directly predict

zt,i =DDIM−1 (zt−1,i, αt, αt−1)

=

√
αt√

αt − 1

(
zt−1 −

√
1− αt−1ϵΦ(zt−1)

)
+
√
1− αtϵΦ(zt−1).

(2)

where zt and zt−1 represent the noisy latent, ϵΦ the pre-
dicted noise, and {αt}Tt=0 indicate noise level indexing a
monotonically increasing time schedule. This allows the
model to only introduce changes exactly where needed in
each optimization step to satisfy the 2D diffusion prior, also
confirmed in Fig. 3. Given this loss objective, we then op-
timize the Gaussian scene representation through Stochastic
Gradient Langevin Dynamics (SGLD) updates [47] with

Θk+1 = Θk + ξ (∇ΘLgen (Θk)) + λnoiseϵ, (3)
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Figure 4: Qualitative Comparisons to Video and Scene Generation Methods. Our approach generates an accurate and 3D-
consistent scene representation, enabling high-quality novel view synthesis and the generation of unlimited off-trajectory view-
points. In contrast, existing baselines WonderWorld [115], Vista [26] combined with Gaussian Splatting [37, 46], GEN3C [74]
and MagicDrive3D [22], which generate driving videos and thus lack implicit spatial modeling, fail to generate a consistent and
3D-plausible scene, precluding the production of novel driving trajectories (please zoom into PDF version for details).

Method Training / Finetuning Seen Novel CLIP

FID ↓ FDDINOv2 ↓ FVD ↓ FID ↓ FDDINOv2 ↓ FVD ↓ [2021] ↑
WonderWorld [2024] + 2DGS [2024] WOD [2020] 130.17 1333.88 1315.53 220.61 1489.51 1424.56 28.88

Vista [2024] + 2DGS OpenDV [2024]/WOD 111.93 1510.25 1023.4 242.03 1805.96 1190.76 26.51

MagicDrive3D [2024] 1 NuScenes [2020]/WOD2 139.11/178.712 1950.67/1965.312 2285.5/1585.482 163.73/186.362 2004.21 1665.30 21.03

GEN3C [2025] with Cosmos [2025] Proprietary/WOD 97.71 1331.16 962.02 273.27 2237.03 1617.62 26.57

LSD -3D Layout + 2DGS Dist. (Ours) WOD 119.38 1247.19 989.94 119.18 1227.62 974.36 26.03

Table 2: Quantitative Evaluation of Generation Quality for 3D Scene Generation with our proposed method and existing
approaches. Best results in each visual quality category are in bold and the second best underlined. We report CLIP scores
on the right, confirming that our generations adhere to prompts on par with existing methods. We apply the same pre-trained
T2I model [67] for all models, and the same 2DGS [37] pipeline for optimization, to provide fair comparisons. Significantly
lower FVD and FID score on novel views confirm temporal and geometric consistency is achieved by our method through
geometrically grounded generations.

where λnoiseϵ is the perturbation of each Gaussian in Θ.
As text conditioning c alone is not a suitable prior

to achieve the style of street scenes, we first finetune
a LDM pϕ,fine−tune (x) on the desired image distribu-
tion. Additionally, to avoid scene geometry drifting from
the initial mesh, we incorporate disparity conditioning
[118] on disparity maps computed from the rendered
mesh depth D = gd(M, ψi) to the denoising process
pϕ,fine−tune (x|ctext, gd(M, ψi)). This step is crucial for
consistency across views and the gradient signal from the
2D diffusion prior on the generated proxy geometry.

3D Geometry Loss. Alongside geometry conditioning in
the 2D diffusion process, we also regularize all θk to re-
tain high-quality, smooth 3D geometry. This is achieved by
penalizing splat orientation of normal maps NΘ,ψi

and dis-
parity DΘ,ψi from viewpoint ψi with respect to NM,ψi and
DM,ψi rendered from the normals of the proxy geometry as
Lnorm = ∥NΘ,ψi

−NM,ψi
∥ and Ldisp = ∥DΘ,ψi

−DM,ψi
∥.

(4)
Moreover, we apply Gaussian regularization from Huang et.
al [2024]. Finally, we employ a total-variation (TV) loss on
the rendered images to encourage noise reduction in our
scenes. We refer to the Supplemental Material for detailed
parameter settings and loss composition.

Deferred Rendering. We propose a deferred rendering
process for novel trajectory videos, inspired by Thies et
al. [2019]. After scene generation, we use the Gaussian ras-
terizer to produce an initial frame x0 and encode it into a

slightly noisy latent xt, which is deferred into final output
x
(1)
0 using a fine-tuned T2I model.
This rendering procedure allows us to generate photore-

alistic images with both low- and high-frequency textures in
image space, for instance the road, or a tree, respectively.

4 Assessment
In this section, we validate our approach both quantitatively
and qualitatively. We conduct an ablation study to validate
our design choices and investigate the realism of rendered
scenes alongside competing baseline methods.

4.1 Ablation Study
We validate the effects of key components of our scene
optimization method and visualize the results in Fig 3.
Specifically, we analyze the effect of incorporating our im-
proved geometry-grounded distillation sampling (GGDS)
approach with SDS, image-space sampling without DDIM
inversion, the effectiveness of multi-step denoising and
geometry-conditioned diffusion guidance. Without the pro-
posed GGDS, especially in the case of SDS and random
noise sampling results, the method experiences catastrophic
failure. This highlights the need for two major design
choices, which both result in more consistent optimization
and distillation of the underlying 3D scene representation.
Further multi-step diffusion results in reduced scene gener-
ation quality of dark scenes. Without geometry-grounding
diffusion guidance, objects in the scene (such as houses or



cars) do not follow the conditioning proxy geometry, result-
ing in inaccurate and flat 3D geometry and poor novel tra-
jectory results. We confirm the visual trend quantitatively in
Fig. 3 bottom, which validates that our method (with all pro-
posed components) produces the best visual quality.

4.2 Experiments
We validate our method by comparing it against four distinct
approaches for 3D scene and video generation.

Baselines. We ran two image-to-video generation meth-
ods: (a) Vista [26], a full driving video model trained on
internet-scale driving videos, and (b) WonderWorld [115],
in combination with our fine-tuned image model [67] on the
target dataset [87] for fair comparison. For both methods,
we fit 2D Gaussian Splats [37] to assess geometric causality
and novel view synthesis quality.

We also test two conceptually different 3D generation
baselines: (c) MagicDrive3D [22], which proposes a driv-
ing scene-specific multi-view video diffusion and Gaussian
reconstruction pipeline, and (d) GEN3C [74], which fuses
geometry prediction from a single image with the Cosmos-
Predict [64] video diffusion model. Due to the unavailabil-
ity of public code and models of any candidate [22, 60]
at the time of submission, we rely on our own implemen-
tation (Layout + Geometry Controlled Video Generation)
with MagicDrive3D built on top of the latest diffusion trans-
former version of MagicDriveDiT [23]. See the Supplemen-
tary Material for details.

Computational Requirements. Each scene is generated
with 6000 steps, corresponding to an average time of 2
hours on a single NVIDIA H100 GPU. Comparable meth-
ods [54] that generate single objects, i.e., dramatically
smaller scenes, require similar runtime at 5000 steps. Our
method outputs frames at 960p resolution at rates higher
than 60 fps, providing real-time rendering capabilities.
Scenes are initialized with 1.8 to 2.2 million Gaussians, and
the maximum is set to 4 million Gaussians.

Evaluation Metrics. For all methods, we quantitatively
assess the diversity and quality of our results by computing
the Fréchet Inception Distance (FID) and the recently estab-
lished DINOv2 [65] based Fréchet Distance FDDINOv2 [86].
For temporal quality, we use the Fréchet Video Distance
(FVD), with a subset of the respective training dataset [87, 7]
as reference distribution. Following [22], we evaluate FID
and FDDINOv2 score on generated results from views seen
during the Gaussian Splatting optimization (FID seen) as
well as from novel views sampled at randomly selected
distances from the training ones (FID novel). Additionally,
we evaluate prompt adherence using the CLIP score [69]
with the implementation from [122] on 10 common weather,
time-of-day, and localization prompts with 3 samples each.

Quantitative Results. We evaluate all methods on a set of
40 generated scenes and across ten different scene attributes
(time of day, season, weather). Exact prompts are provided
in the Supplementary material. As reported in Tab. 2, the
quality of rendered images from our model is on par with
state-of-the-art 2D generative methods and is capable of

Figure 5: Composability with Dynamic Actors. We sim-
ulate driving trajectories in a residential street scenes for a
Waymo-representative [87] sensor stack. From bottome to
top, we show a third-person view of the ego capture vehicle
followed by a set of rendered front cameras. Both columns
correspond to a different timestamp of the same traffic con-
figurations + fully generated scene & asset models. The sec-
ond vehicle is hidden behind the corner in the first frame.

generating scenes closely matching in style and content with
the source distribution However, competing methods can-
not generate a 3D-consistent scene, resulting in novel views
with inferior quality – as seen in the resulting high FID and
FVD score for novel views all other methods. We also con-
firm prompt adherence at par with video models, validating
that 3D grounding enables fine-grained text control compa-
rable to generalist models [116].

Qualitative Results. We also find significant qualitative
differences between baselines and our method and baselines
in Fig. 4. Baseline image-to-video models produce scene
renderings of variable quality. In fact, as views deviate fur-
ther from the input image, the rendering quality and 3D
consistency deteriorate, yielding a Gaussian representation
which is inconsistent beyond the original trajectory. This dif-
ference is more pronounced when departing from the gener-
ated video trajectory - even 2.5D methods fail to produce
consistent novel views for unlimited viewpoints. In contrast,
our method generates plausible rendering throughout the en-
tire scene, from any realistic viewpoint - without any loss of
appearance or geometric quality.

4.3 Composability with Dynamic Actors
The composability of generated scenes with dynamic actor
assets and autonomous agents is crucial for downstream ap-
plications, including real-time closed-loop simulation. Our
representation directly allows for plug-and-play usage with
other components of the simulation stack. We illustrate the
integration with actor assets, traffic generation, and sensor
stack rendering in Fig. 5. Using either generated 3D objects,
reconstructed objects, or even synthetic objects, the environ-
ment map can be used to relight added assets. In addition,
map conditioning directly supports the use of standard traffic

1No code publicly available (or from authors). Reimplemented
with MagicDriveDiT [2024] and 2DGS [37].

2We compare scores on the Waymo [87] distributions and re-
leased video generations. NuScenes [7] results are reported first
for completeness of the evaluation.



generation [43, 17, 52, 20] and planning modules, providing
realistic asset placement and integration in driving scenes, as
seen with cars from image-to-3D pipelines [104] placed in
our generated scenes. At each timestamp, we sample object
poses from the generated trajectories to place agents within
the scene. These agents are then relit according to the en-
vironment map, and the scene is rendered through the ego
vehicle’s sensor stack.

5 Conclusion
We introduce, to our knowledge, the first distillation ap-
proach to directly generate large-scale explicit 3D driv-
ing scenes. To accomplish this, we propose Geometry-
Grounded Distillation Sampling (GGDS), which combines
controlled proxy mesh generation with a conditional diffu-
sion prior, producing novel and view-consistent Gaussian
splatting scenes. Our approach generates completely un-
seen driving environments controlled by scene descriptions
or traffic map layouts. By the design of our method, every
scene is generated causally and 3D-consistent, and allows
for real-time rendering of physically-grounded videos along
novel trajectories. The approach compares favorably against
the most successful existing methods – primarily video dif-
fusion approaches – that struggle with view-consistent ren-
dering and causality, and are fundamentally limited to indi-
vidual trajectories. As a geometry-grounded approach, we
hope to integrate the method with driving simulators and ex-
tend the domain beyond autonomous driving – ultimately
building towards the goal of fully data-driven simulators.
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This supplementary document provides additional information and experiments in support of the findings of our main
manuscript. In Section 1, we provide additional implementation details for GGDS, including a thorough derivation of the
distillation, expansion on all regularizations and the proxy geometry generation procedure.

In Section 2, we provide additional elaboration on our experimental procedure for evaluating our method and existing baseline
methods. In Section 3, we include additional details on the composability of our generated scenes with dynamic actor assets.
Finally, in Sections 4, we provide a significant amount of additional results generated using our method, and in Section 5, we
provide additional visual comparisons to existing methods.
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1 Implementation Details
In this section, we describe additional implementation details of the loss and regularization term that we use in order to achieve
stable and consistent geometry grounding. In the main paper, we provide a derivation of all of the primary losses and their
implementation, in GGDS as the basis for our geometry-grounded distillation sampling (GGDS) objective, which incorporates
such as multi-step diffusion, multi-step DDIM-Inversion, and LDM fine-tuning. Here, we provide further elaboration on our
optimization objective.

1.1 Objectives
We detail all loss components and the optimization objective of GGDS and its integration with large-scale 3D scene gener-
ation with 2D Gaussian Splatting [37]. The final combined optimization objective consists of a distillation component Lgen,
geometrical regularization terms Lgeo and common regularization terms Lgauss on the surfel primitives, that is

L = λgenLgen + Lgeo + Lgauss. (5)

Multi-Step Image Space Diffusion. As described in paragraph GGDS of Sec. 3.3 and ablated in Sec. 4.1 of the main paper,
stable optimization of non-overlapping camera views in large-scale driving scenes is achieved via DDIM inversion [84] in our
work. The DDIM denoising process from t = T to t = 0 follows

zt−1,i =
√
αt−1ẑ

t
0,i +∆zt,i

with ẑt0 = (
zt −

√
1− αtϵΦ(zt)√
αt

and ∆zt =
√
1− αt − σ2

t · ϵΦ(xt) + σtϵt,
(6)

where z0 is the encoded latent variable, ϵΦ is the noise predicted by the latent diffusion model parametrized with Φ, and σt
defines the randomness of the process. For σt = 0 and as chosen in this work, the noise sampling process is deterministic, and
the respective inversion process can then be formulated as

zt,i = DDIM−1 (zt−1,i, αt, αt−1)

=

√
αt√

αt − 1

(
zt−1 −

√
1− αt−1ϵΦ(zt−1)

)
+

√
1− αtϵΦ(zt−1).

(7)

The consistency of the deterministic inversion still depends on the step-size and starting point z0, which we mitigate with
multiple inversion steps. This results in lower dependence of the initial direction computed from ϵΦ(z0). Various additions
proposed recently and consolidated by Bao et al. [3] might show further improvements, and we would like to explore their
usage in future work.

Given the noisy latent zt,i, we then use the forward process in Eq. 6 to predict ẑ0 conditioned on the respective text prompt
and mesh depth D. The denoised latent is then decoded into the image x̂ = D (ẑ0) and used to guide the scene generation
through a reconstruction loss

Lgen (Θ) = Eψi,t[ω (t) (∥g (Θ, ψi)− x̂∥+ LLPIPS(g (Θ, ψi) , x̂))], (8)

that consists of a reconstruction and perceptual similarity [119] component.

Geometry Regularization. We prevent the Gaussians to diverge from the proxy geometry by enforcing the geometrical
consistency priors through

Lgeo = λnormLnorm + λdispLdisp. (9)

Specifically, we penalize large deviations of the rasterized normals DΘ,ψi
and disparity maps NΘ,ψi

(generated from a view-
point ψi) from the proxy geometry

Lnorm = ∥NΘ,ψi −NM,ψi∥, Ldisp = ∥DΘ,ψi −DM,ψi∥. (10)

The weight of each loss, λ, for all terms in the above expression, and the terms in each loss sub-expression as defined in our
main paper, are set as reported in Tab. 1.

Gaussian Regularization. Following 2D Gaussian Splatting [37] and Markov Chain Monte Carlo (MCMC) [47] optimiza-
tion, we add common regularization terms. The appearance and position of the Gaussian disks is kept optimal through

Lgauss = λdistLdist + λncLnc + λoLopa + λkLscale + λtvLtv. (11)

Here, Lnc is the normal consistency loss and Ldist is the depth distortion loss [37]. Lopa and Lscale are regularization on
Gaussian opacity and scale [47], to prohibit large and Gaussians in non-visible areas across the scene. Ltv is the total-variation
loss on the rasterized image, with the objective of reducing high-frequency artifacts in rendered images.



We specifically promote the local alignment between the estimated-surface normal and the splat normal via

Lnc =
∑
a

(1− naNΘ,ψi
) , (12)

where ni is the normal orientated towards the camera of each 2D Gaussian disk intersected by the ray that corresponds to each
pixel s = (u, v) and

NΘ,ψi
(u, v) =

∇ups ×∇vps
|∇ups ×∇vps|

. (13)

Moreover, we encourage the Gaussians to lie close to the estimated surface through

Ldist =
∑
i,j

ωiωj |zi − zj | , (14)

where z is the intersection depth and ω the blending weight. This constraint helps to avoid erroneous weights spread along the
rays.

Finally, to enforce spatial coherence and reduce the visual noise in the rendered images, we introduce a Total Variation (TV)
loss on the splatted images as

Ltv(x) =
∑
i,j

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2, (15)

where i, j here denote the pixel indexes of the image. By encouraging smooth color transitions while preserving sharp edges, this
loss helps suppress noise during optimization and leads to more visually consistent renderings from the Gaussian representation.
We provide the selected λ values for each optimization objective in Table 1.

Weight Regularized Attribute/Information Weight Value
λgen Multi-Step RGB Recon. & Percept. 0.001
λdisp Gaussian & Mesh Disparity 1.0
λnorm Gaussian & Mesh Normals 1.0
λdist Gaussian Centers 0.05
λnc Gaussian Normals & rendered depth 0.05
λopa Gaussian Opacity 0.01
λscale Gaussian Scale 1.0
λtv Rendered Image 10.0

Table 1: Loss weighting terms and components affected by each regularization term.

1.2 Deferred Rendering.
Deferred Image Rendering. For deferred rendering, we follow the deterministic noise sampling process in Eq. 7 and denoise
the noisy latent with the same latent diffusion model ϵΦ. We choose a very low, fixed timestep of t = 0.22.

1.3 Geometry Layout Generation
We train the coarse and fine VAE for 3 days and both diffusion models for 12 days on 4 H100 GPUs each. As a basis for our
hierarchical latent voxel diffusion model, we employ XCube [71] with a single coarse and fine layer. All models are supervised
by point-cloud data2 that is obtained from the Waymo Open Dataset [87]. We additionally extract road and object voxel occu-
pancies from the map and 3D bounding box data for all actors and train the coarse 3D diffusion model by concatenating the
latent with respective occupancy. The fine layer is solely conditioned on the generated coarse voxel grid, serving as a refinement
step. At inference, we control the generation through the same conditioning, but keep bounding boxes of actors on the road
optional, allowing us to generate scenes which are composable with dynamic actors.

For unconditional generation, we generate meshes M for which we utilize the checkpoints provided by the authors in
[87], which were trained on semantically annotated and aggregated point clouds from the Waymo Open Dataset. Point cloud
conditioning is achieved through direct voxelization of the aggregated point clouds of the dataset. In all three cases, the final
mesh M is predicted through Neural Kernel Surface Reconstruction [38] with varying metric voxel sizes of 0.1 for point clouds
and 0.18 for conditional and unconditional generation. This coarse mesh provides the initial proxy geometry of our scene
generation. To this end, we initialize a set of 2D Gaussian disks [37] on top, as follows.

2We thank the authors of [73] for the aggregated data.



Gaussian Initialization Given the coarse proxy mesh M = {F1, ...,FN}, we initialize a Gaussian disk θk at the center of
each triangle face F at the location

pk = (Vi + Vj + Vl) /3, (16)

where each face is denoted by its three vertices F = [Vi,Vj ,Vk]. Further, the normal nF , and the area aF of each triangle
mesh is used to initialize the orientation, scale, and tangential axis tu × t such that

nF = tu × tu, l = lF and ∥s∥ = aF . (17)

1.4 Camera Pose Sampling
Large-scale street scenes are characterized by a higher degree of complexity, topological variation, and size. As such, we
cannot assume a standard spherical viewpoint distribution around a centered object (as seen in prior score distillation and object
generation works, as discussed in the Related Work). Furthermore, naı̈vely sampling cameras through the scene may conflict
with the prior image distribution and geometry conditioning (as described in the main paper). Instead, we develop a method
that aims to replicate the prior image distribution, while fully covering all relevant visible portions of the scene.

Trajectory Sampling. To produce such a viewpoint distribution, we aim to replicate natural driving trajectories through
our generated scenes. For map-layout and point-cloud conditioned geometry, we leverage map data to produce natural driving
trajectories with 8 cameras with 50°FoV sampled at multiple points along the trajectory. In the case of unconditional generation,
this is accomplished by using the initial occupancy and semantics in the proxy mesh generation stage. We identify road points
using the semantic labels, and produce a dense point grid from these. This point grid is then projected into the XY plane, creating
a discretized representation of the drivable area with high resolution. From this occupancy, we apply a standard Euclidean
distance transform to identify ridge points corresponding to the centerline or medial axis of driving areas - in essence, the center
of the road. The Euclidean distance transform computes for each grid cell the Euclidean distance to the nearest background
pixel, that is

D(i, j) = min
(i′,j′)/∈O

∥(i, j)− (i′, j′)∥2, (18)

where O represents the set of occupied road cells.
To order these ridge points into a continuous trajectory, we select the point closest to the grid boundary and iteratively connect

to the closest neighboring point, which ensures path connectivity with a high degree of confidence. Finally, we fit a B-spline
curve through these ordered ridge points and resample N = 150 points along this spline to represent the positions for our
camera rig. At each of those points, we spawn eight cameras with 50°FoV and align them with a 45°horizontal pitch to achieve
360°coverage. Lifting the camera rig from the ground at each point we elevate the cameras by their typical mounting height
hw = 2.1m, which corresponds to the height of the camera in the prior dataset.

2 Experimental Details
Baseline Method Evaluation. For a quantitative and qualitative evaluation of our approach, we compare LSD-3D with four
competing generative approaches, namely WonderJourney [116], Vista [26], MagicDrive3D [22], and SVD [4] conditioned on
depth (inspired by [59]). We detail the experiments below.

• For WonderWorld [115], we use the official code base, and start from a frame generated using our finetuned Stable Diffusion
XL model. Following their paper, we use the Stable Diffusion 2 Inpaint model [75] for outpainting, Marigold[44, 45] for
geometry estimation, and OneFormer [40] for sky and foreground segmentation. As the rendering trajectory, we adopt a
straight-line path to simulate a forward-driving car motion, with camera positions sampled at uniform spatial intervals along
this path to ensure consistent and realistic viewpoint transitions throughout the sequence.

• For Vista [26], we use the publicly available weights and, similar to WonderWorld use as a starting frame the generated image
from our finetuned Stable Diffusion XL. As in the original implementation, the video is then generated autoregressively by
performing six temporal sampling steps, where each step produces a new chunk of frames conditioned on the previously
generated ones.

• For MagicDrive3D [22], as the code is not publicly available, we use the open-sourced MagicDriveDit [23] model. In
particular, we use the layout and prompt conditioning, removing dynamic actors for a fairer comparison.

• For GEN3C [74], we use the publicly available code and the COSMOS [64] checkpoints. For our rendering trajectory, we
use a straight line trajectory starting from an initial frame condition, or, alternatively, load trajectories generated from our
LSD-3D pipeline and scale them to the GEN3C bounding scale. As a starting frame, we once again use the generated image
from our finetuned Stable Diffusion XL.

For each of the methods, we use ten different prompts, that we include in Table 2. All these approaches are used to generate
photorealistic scene videos, which we then use as part of the 3D scene reconstruction via 2D Gaussian splatting [37], enabling
a fair comparison with our approach. We use the official 2D Gaussian Splatting implementation and optimize the scene for
30’000 steps.



Prompts
A photography of a neighborhood street scene
A photography of a neighborhood street scene at sunset
A photography of a neighborhood street scene at night
A photography of a neighborhood street scene on a cloudy day
A photography of a neighborhood street scene on a rainy day
A photography of a neighborhood street scene in the fall, with leaves on the ground
A photography of a neighborhood street scene in the winter, with snow on the ground
A photography of a neighborhood street scene in the spring, with flowers in bloom
A photography of a desert neighborhood street, with cacti and sand
A photography of a San Francisco neighborhood street, with hills and fog

Table 2: List of prompts used for neighborhood street scene variations

3 Novel Scene Composability Implementation
Leveraging the map layout and real-world trajectories from the Waymo open dataset [87], we employ TrafficGen [20] to gener-
ate realistic traffic scenarios. To ensure scene diversity, we begin by sampling multiple initial vehicle placements, which serve as
inputs for autoregressive trajectory generation. Ego trajectories are then determined either by selecting from the generated set,
or utilizing a policy-driven autonomous agent. For this, we integrate with the MetaDrive simulator [52] and apply a pre-trained
PPO policy [79], which takes ego states, navigation information, surrounding agent data and a 2D-LiDAR-like point cloud as
input. In future work, we aim to scale the proposed approach and incorporate end-to-end agents that directly process realisti-
cally rendered sensor data, rather than relying on a combination of approximated sensor inputs and ground truth environment
information.

4 Additional Results
We report additional results in support of the findings from our main manuscript:
• In Figures 1 and 2, we provide additional examples of generated scenes from our method, along with the corresponding

novel views at from a driving perspective.
• In Figure 3, we provide additional generated scenes using point clouds as conditioning.
• In Figures 4 and 5, we provide a total of four example scenes with six prompt variations each, demonstrating the capability

of our method to produce stylistically diverse scenes independent of geometry (supporting our prompt adherence claims).
• Finally, in Figure 6, we provide examples of more significant off-trajectory shifts in our generated scenes. These are excluded

from the comparison figures, since such shifts cause a total collapse for competing methods – however, our scenes retain not
only geometry and texture but view-consistency even at such off-trajectory shifts. We validate the capability of LSD-3D to
produce high-quality, explicit 3D generated scenes with accurate texture and geometry grounding.

5 Additional Comparisons to Baselines
In this section, we provide additional comparisons to existing generative methods. Specifically, in Figures 7 and 8, we provide
examples of generated scenes with WonderWorld, Vista, GEN3C, and LSD-3D (our method), demonstrating that our method
is the only approach capable of producing high quality, causal geometry and texture that retains view consistency off the initial
seen trajectory.
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Figure 1: Additional Results Generated by LSD-3D. We present a collection of additional scenes which are generated by our
method, alongside novel rendered viewpoints.
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Figure 2: Additional Results Generated by LSD-3D. We present another collection of scenes which are generated by our
method, alongside novel rendered viewpoints.



Figure 3: Point-Cloud Conditioned Generated Scenes with LSD-3D. We provide additional samples of generated scenes
with point cloud conditioning for the proxy geometry generation. The condition is shown on the bottom right of each scene,
next to the surface normal geometry.



“A city street scene in the rain.” “A city street scene in the winter.”

“A city street in a desert.”

“A city street scene in the spring.”
G

en
er

at
ed

 S
ce

ne
G

en
er

at
ed

 S
ce

ne
“A San Francisco city street scene.”

“A city street scene at night.” 

“A residential neighborhood on a rainy day.” “A residential neighborhood in the winter. It is snowing.”

“A residential neighborhood in a desert.”

“A residential neighborhood in the spring, with flowers in bloom.”

G
en

er
at

ed
 S

ce
ne

G
en

er
at

ed
 S

ce
ne

“A residential neighborhood in the fall.”

“A residential neighborhood at night.” 

G
en

er
at

ed
 S

ce
ne

G
en

er
at

ed
 S

ce
ne

Figure 4: Prompt Style Variation. We demonstrate that our method is capable of producing stylistically diverse scenes based
on varying text prompts. We display two different scenes, each with six prompt variations, in order to demonstrate the effec-
tiveness of our text conditioning and environment map on producing stylistically diverse results. Our method produces diverse,
geometrically-grounded scenes, and retains high-fidelity texture across stylistic variation.
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Figure 5: Additional Prompt Style Variation. We provide additional results, with six variations of prompt style variations for
two different scenes – demonstrating the stylistic diversity capabilities of our method.
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Figure 6: Large Shift Off-Trajectory Visualizations of LSD-3D Generated Scenes. We show examples of large off-trajectory
shifts for our generated scenes, demonstrating the effectiveness of explicit and consistent 3D modeling. In the left column, we
display an image from a seen viewpoint, and in the column next to it we display the 0.75 meter shift as used for baselines. We
additionally show a 2 meter shift in the same direction, as well as a 3-6 meter shift (depending on the scene), demonstrating the
capability of our method to generate view-consistent and causal results even at such major shifts off of seen trajectories.
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Figure 7: Qualitative Comparisons to Video and Scene Generation Methods. Our approach generates an accurate and
3D-consistent scene representation, enabling high-quality novel view synthesis and the generation of virtually unlimited off-
trajectory viewpoints. In contrast, existing baselines WonderJourney [116], Vista [26], and GEN3C [74], fail to generate a
consistent and 3D-plausible scene even for slighlty offset trajectories, precluding the production of novel driving scenes (please
zoom into PDF version for details).
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Figure 8: Additional Qualitative Comparisons to Video and Scene Generation Methods. We provide additional qualitative
comparison for a snowy scene between our method and existing generative baseline methods.
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