
nature machine intelligence

https://doi.org/10.1038/s42256-025-01083-xArticle

Towards generalizable and interpretable
three-dimensional tracking with inverse
neural rendering

In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s42256-025-01083-x

Contents
Supplementary Code 1: Code Availability . 2
Supplementary Video 1: Experimental Assessment for Dynamic Scenes 2
Supplementary Note 1: Additional Experimental Results 3
Supplementary Note 2: Additional Ablation Results . 6
Supplementary Note 3: Interpretability of Failure Cases 9
Supplementary Note 4: Computational Cost . 12
Supplementary Note 5: Differentiable Rendering Pipeline 14
Supplementary Note 6: Detailed Optimization Objectives 15
Supplementary Note 7: Detailed Optimization Schedule 18
Supplementary Note 8: Additional Tracking Details . 20
Supplementary Note 9: Generative Object Model . 24
Supplementary Note 10: Fair Comparison to End-to-end Approaches 26
Supplementary Note 11: Multi-Class and Human Generator Extension 27
Supplementary Note 12: Practical Impact of Interpretable INR-based Tracking 29
Supplementary Note 13: Validation of Retrieved Object Properties and Downstream

Applications . 30

In this supplementary document, we provide additional information, discussion, experiments, and
results supporting the findings in the primary manuscript. To this end, we list training and ar-
chitecture details, further ablation experiments, and additional comparisons and analysis. Code 1
provides access to the repository with the Supplementary Code. Video 1 showcases the tracking
performance of our proposed approach on diverse scenes. In Note 1, we present further qualitative
results for the 3D Multi-Object Tracking task on the nuScenes 1 and Waymo 2, including visualiz-
ations of rendered objects as well as additional details of the datasets we evaluate on. In Note 2,
we present further ablations to validate our choices of training and optimization parameters used
in our method. This is followed by a detailed study of the failure cases of our method via the
visualizations provided by the rendered objects by our method in Note 3. In Note 4, we provide a
breakdown of the computational cost of our inverse rendered optimization. Note 5 provides further
details on the differentiable rendering pipeline at the heart of our method. Note 6 provides detailed
descriptions of the optimization objective, followed by the optimization schedule used in inverse
rendering steps in Note 7. In Note 8, we provide further details on the prediction, latent matching,
kinematic state, and embedding update steps of our method, as well as tracking heuristics used.
Although our method is not specific to any particular generative object prior, we describe the gen-
erative object model used in our evaluations in Note 9. In Note 10, we compare our method’s
generalization ability by providing a fair comparison to trained approaches via qualitative visual-
izations on an unseen dataset 2. Note 11 evaluates the generalization of our approach to additional
object classes aside from vehicles, the primary evaluation class. In Note 12, we provide further
discussion on the practical impact of our method. Finally, in Note 13, we analyze the quality of
retrieved object properties and discuss additional downstream applications.

1

Supplementary Code 1: Code Availability

We provide supplemental code to implement and run the multi-object tracking presented method.
Following the steps in the README produces qualitative result videos for all validation scenes
in nuScenes Mini. The Supplementary Code can be accessed under the following link https:
//github.com/princeton-computational-imaging/INRTracker.

Supplementary Video 1: Experimental Assessment for Dynamic Scenes

The Supplementary Video demonstrates the performance of our proposed INR-based tracking
method on a sample of diverse scenes from the nuScenes 1 dataset and the Waymo Open Data-
set 2. We overlay the observed image with the rendered objects through alpha blending with a
weight of 0.4. Object renderings are defined by the averaged latent embeddings zk,EMA and the
tracked object state yk.

2

https://github.com/princeton-computational-imaging/INRTracker
https://github.com/princeton-computational-imaging/INRTracker

Supplementary Note 1: Additional Experimental Results

Next, we provide additional tracking results on the real-world datasets on which we test our
method. While this section provides additional qualitative analysis of our proposed method’s
performance, see the evaluation section in the main paper for a detailed quantitative evaluation.
Supplementary Figure 1 reports additional visualizations of the rendered RGB objects obtained
by our proposed method on the nuScenes 1 dataset. Supplementary Figure 2 reports the same
visualizations on the Waymo 2 dataset.

Additional Results on nuScenes Although the nuScenes 1 dataset consists of sensor data from
6 cameras, 5 radars, and 1 lidar, we tackle monocular camera-based 3D object tracking in this
work. As such, we only use the data collected from the 6 cameras. The dataset comprises 1000
scenes, with each scene being 20s long. The test set contains 150 scenes. Each of these scenes
is selected to be interesting, which include scenes with high traffic density (e.g., intersections,
construction sites), rare classes (e.g. ambulances, animals), potentially dangerous traffic situations
(e.g., jaywalkers, incorrect behavior), maneuvers (e.g., lane change, turning, stopping) and situ-
ations that may be difficult for an Autonomous Vehicle. Additional results of our method on the
nuScenes dataset are listed in Fig. 1. We note that the colors of the cars are matched quite ac-
curately. Moreover, the shapes of the cars get reconstructed as well. In turn, we can see that the
tracking quality is high as visualized by bounding boxes. Note that the color of bounding boxes
marks the same instance in consecutive frames.

Additional Results on Waymo Open Dataset The Waymo Open Dataset 2 consists of 1150
scenes that each span 20s. Again, since we tackle monocular tracking, we only use the data from
the 5 camera sensors. The dataset was collected by driving in Phoenix AZ, Mountain View CA,
and San Francisco CA across daytime, nighttime, and dawn lighting conditions. Additional results
of our method on the Waymo Open dataset are given in Figure 2. We find that our method gen-
eralizes to this dataset. The colors of the cars are matched quite accurately, as shown in Figure 2.
Moreover, the shapes of the cars get reconstructed as well. As such, again, tracking quality is high
as visualized by bounding boxes. Note that the color of bounding boxes marks the same instance
in consecutive frames.

3

Input t0 Tracked t0 Tracked t1 Tracked t2 Tracked t3

C
ro

ss
in

g
1

Tr
af

fic
U

rb
an

1
U

rb
an

2
U

rb
an

3
C

ro
ss

in
g

C
ro

ss
in

g
2

L
ef

tV
ie

w
Pa

rk
in

g
R

iv
er

Supplementary Figure 1: Additional visualizations on nuScenes 1. From left to right, we
show (i) observed images from diverse scenes at timestep k = 0; (ii) an overlay of the
optimized generated object and its 3D bounding boxes at timestep k = 0, 1, 2 and 3. The
color of the bounding boxes for each object corresponds to the predicted tracklet ID. We
see that our method can accurately reconstruct objects in diverse scenarios.

4

Input t0 Tracked t0 Tracked t1 Tracked t2 Tracked t3

R
es

id
en

tia
l1

R
es

id
en

tia
l2

R
es

id
en

tia
l3

D
en

se
U

rb
an

Su
bu

rb
an

1
Su

bu
rb

an
2

Su
bu

rb
an

3
Su

bu
rb

an
4

H
ig

hw
ay

Supplementary Figure 2: Additional visualizations on Waymo 2. From left to right, we
show (i) observed images from diverse scenes at timestep k = 0; (ii) an overlay of the
optimized generated object and its 3D bounding boxes at timestep k = 0, 1, 2 and 3. The
color of the bounding boxes for each object corresponds to the predicted tracklet ID. We see
that our method can accurately match and track tracklets in diverse scenarios in the Waymo
dataset as well, confirming that the method is dataset-agnostic.

5

Supplementary Note 2: Additional Ablation Results

We provide additional ablation results that further validate our choice of training and optimiza-
tion parameters in our proposed method. Supplementary Table 1 shows the results of our hyper-
parameter search for each matching weight and the detection confidence threshold as denoted in
Supplementary Note 6. Supplementary Table 2 shows the quantitative results from our ablation
study of the optimization scheduler. Supplementary Figure 3 qualitatively compares the effect of
our optimization schedule against using no schedule by showing the renderings of the optimized
generations for both cases.

Matching Ablations. Adopting the same setting as AB3DMOT 3, we performed a hyper-
parameter search for each matching weight and the detection confidence threshold, as denoted in
Sec. 4. Our full method outperforms AB3DMOT, see Table 1, conducted on the validation split.
Our best setting outperforms AB3DMOT, the only other method not trained on the dataset, by
3.9% AMOTA on the nuScenes test split.

Optimization Schedule and Loss Ablations. As ablation experiments, we analyze the optimiza-
tion schedule, the INR loss function components, and the weights of the tracker, applying them to
a subset of scenes from the nuScenes validation set. We deliberately select this smaller validation
set due to its increased difficulty. Tab. 2 lists the quantitative results from our ablation study of the
optimization scheduler. Our findings reveal a crucial insight: the strength of our method lies not
in isolated loss components but in their synergistic integration. Specifically, the amalgamation of
pixel-wise, perceptual, and embedding terms significantly enhances AMOTA, MOTA, and Recall
metrics.

Moreover, the absence of an optimization schedule led to less robust matching as quantitative
and qualitative results in Tab. 3 reveal. However, the core efficacy of our tracking method remained
intact as indicated in the last row of Tab. 2. This nuanced understanding underscores the importance
of component interplay in our approach.

6

Supplementary Table 1: Tracking Matching and Detection Confidence. Parameters
were optimized on the nuScenes 1 validation set. On the test split our best setting for wiou,
wcenter, wembbed, τdet surpasses the performance of AB3DMOT 3, the only baseline not
trained on the dataset.

Method (split) AMOTA ↑ Recall ↑ MOTA ↑
AB3DMOT (CP, test) 0.387 0.506 0.284
Best Hyper-param. (CP, test) 0.413 0.536 0.321
wiou = 1.4 (val) 0.403 0.540 0.322
wcenter = 0.9 (val) 0.417 0.514 0.332
wembedd = 0.4 (val) 0.418 0.558 0.332
τdet = 0.4 (val) 0.397 0.567 0.326

Supplementary Table 2: Optimization Schedule and Loss Components. Ablations were
run on a small subset of the nuScenes 1 validation set. LRGB fails due to the optimizer
fitting objects to the background instead, increasing the size of each object resulting in out
of memory.

Ablation Study of Loss Components.
Method AMOTA ↑ Recall ↑ MOTA↑
LIR & Lembed 0.112 0.264 0.113
LIR 0.103 0.236 0.112
Lperceptual 0.100 0.251 0.101
LRGB N/A N/A N/A
No Schedule 0.102 0.224 0.110

7

(a) Input Frame (b) Full (ours) (c) No Schedule

Input frame is faded for visibility.

Supplementary Figure 3: Effect of Optimization Schedule. (a) observed image, (b)
optimized generations using the proposed schedule in Tab. 3 in Supplementary Note 7, (c)
optimized generations using no schedule. This supports the quantitative results given in
Tab. 2.

8

Supplementary Note 3: Interpretability of Failure Cases

Interpretability of Failure Cases. In this section, we provide additional analysis of the failure
cases of our method. Our analysis via the RGB renderings produced by the object whose lat-
ent space we optimize over showcases the interpretable nature of our approach, providing a key
advantage over prior works. Fig. 4 shows instances of failure cases of our method where the re-
constructed object differs significantly from the observed object, showing that our approach allows
us to identify possible improvements and understand why our model fails.

Visualizing the reconstructed objects allows us to reason about failure cases. For example, in
scene (e) in Fig. 4, we see that the initial object significantly overlaps with the background asphalt
in the shadow region, resulting in the optimization to converge towards a darker gray object
appearance erroneously. Thus, our method allows us to reason about failure cases and identify
ways our representation model can be modified to rectify such failures. For example, a generative
object model with an additional component that can model different lighting conditions to account
for shadows might allow us to identify and reconstruct cars in varied lighting conditions, including
shadows. This can guide future work for perception tasks through inverse rendering.

Next, we analyze common failure cases using the pre-trained generator as an object prior to
the presented tracking method. The visualizations allow us to assess cases where this pipeline fails
to track objects. Common failure cases we observed are listed below, with visualizations of such
failure cases shown in Figure 4. We describe the cases corresponding to the rows (a-d, see figure
labels) as follows:

(a) The apparent darker color of the car due to shadows often causes the predicted object color
to be darker than the color a human would perceive the car as. In the presented case on
the right, the white car is completely occupied by the shadow of the neighboring truck.
While the human visual system perceives the car’s color as white, the numerical RGB value
in the image is closer to gray/black. This causes the predicted embedding corresponding
to the object’s texture to represent the darker color. This might cause the tracking to fail
due to incorrect matching of corresponding objects in consecutive frames with and without
shadows.

(b) Extreme reflections on the car due to the lighting conditions cause the model to try to model
the RGB color of the reflection by erroneously modifying the texture of the generated object.
Here, clouds in the sky are reflected as white spots on the hood and windshield of the red car,
causing reflection and influencing the generated texture as white spots. Future work that in-
cludes explicit models of BRDF would be beneficial in mitigating this class of failure modes.

9

(c) In addition to visualization and interpretation of the object prior more traditional aspects
of the perception pipeline, such as ID-switches through occlusion in multi-object tracking
scenarios can be observed. Here, the first object in the background (green box, t0) is
misidentified as the second object (green box, t1). Such visualization allows further
reasoning about the full pipeline.

(d) Camera obstructions and extreme local lighting, such as in raindrops, lens flares, and
bright lights, cause our method to erroneously predict the shape and texture of many cars to
match the perceived shape of the car, causing matching to fail.

(e) Inaccuracies in the predicted pose cause the predicted car in front to not perfectly align with
the observed car patch, causing an overlap between the predicted car and the immediate sur-
roundings in the observed image, here the asphalt. Since only information on the detection
is available, the color of the optimized object tends to be predicted gray (since the road is
gray, and so the optimized texture embedding is closer to gray).

Our generative prior does not model specular textures. Instead, it is restricted to diffuse
reflectance. As such, it tends to reconstruct darker or lighter textures compensating for shadows
from the environment and reflections of the sky. Modeling environmental lighting, complex ma-
terial properties, and shadows may lead to a complex and less robust light simulation. Moreover,
it will be restricted by the data available to train a generative prior model. Nevertheless, this is an
exciting direction for future work.

10

Input t0 Tracked t0 Tracked t1

(a
)S

ha
do

w
(b

)R
efl

ec
tio

n
(c

)O
cc

lu
si

on
(d

)O
bs

tr
uc

tio
n

(e
)D

et
.A

cc
ur

ac
y

Supplementary Figure 4: Examples of failure cases, such as lighting (shadows and re-
flections) or occluded objects, where the reconstructed object differs significantly from the
observed object. These visualizations allow us to understand exactly why our model fails in
reconstructing and tracking objects. This also allows us to identify ways the representation
model and perception pipeline can be improved to incorporate effects that cause the method
to fail.

11

Supplementary Note 4: Computational Cost

Each inverse-rendered optimization step in our implementation takes∼ 0.3 seconds per frame. The
overall computational cost of the method is determined by both the forward generation process and
the gradient computation. However, we note that the rendering pipeline, contributing the majority
of the computational cost of the generator, has not been performance-optimized and can be naïvely
parallelized as follows:

• First, the loss and gradient computation can be parallelized in screen space within each
camera view, enabling concurrent processing of multiple objects in all cameras rather than
iterating over each camera individually. This results in a fraction 1/Nobjects of the inference
time in each tracking step for Nobjects objects that are tracked.

• Moreover, for multi-camera setups, the generation and gradient computation can be paral-
lelized across all cameras. This further reduces the inference time to 1/Ncameras in each
tracking step. Fig. 5 shows a typical multi-view setup from the Waymo Open Dataset.

12

FRONTFRONT LEFTSIDE LEFT FRONT RIGHT SIDE RIGHT

Tr
ac

ke
d

t
Tr

ac
ke

d
t+

7
Tr

ac
ke

d
t

Tr
ac

ke
d

t+
7

FRONTFRONT LEFTSIDE LEFT FRONT RIGHT SIDE RIGHT

MV-Highway 1

MV-Highway 2

Supplementary Figure 5: Multicamera Tracking on the Waymo Dataset 2. The pro-
posed directly supports joint tracking of objects across multiple cameras in typical autonom-
ous vehicle setups 1, 2. All tracked objects and tracked bounding boxes are shown overlayed
on the images. For all objects that are visible in more than one view, we only overlay the
rendered representation on one image. For clarity and sparse observation in most camera
views we naturally omit showing all cameras in the paper. Due to the 10Hz sampling rate
of the Waymo Dataset, we show frames with a large timestep difference.

13

Supplementary Note 5: Differentiable Rendering Pipeline

A differentiable rendering method R (op, c), such as rasterization for meshes or volumetric ren-
dering for neural fields, renders an image Ic,p, a 2D observation of the 3D object op, given an
object-centric camera projection Pc. The projection is computed as Pc = KcT, where Kc is the
camera intrinsic matrix and T = [R|t] a transformation to the camera c that is composed of rota-
tion R and translation t. While our method is general, implementation details of the generator and
rendering method are provided in Supplementary Note 9.

Object poses are described by the homogeneous transformation matrix Tp ∈ R4x4 with the
translation tp and orientation Rp in the reference coordinate system. The camera poses Tc ∈ R4x4

is described in the same reference coordinate system. The relative transformation of the camera c
and each object instance p can be computed through edge traversal in the scene graph as given in
Eq. (2) of the main paper.

14

Supplementary Note 6: Detailed Optimization Objectives

This section provides detailed descriptions of the different components of our inverse rendering
optimization objectives. Our objective consists of three components. Each of these is described in
depth below.

The test-time optimized inverse rendering of all objects in every scene and across datasets
minimizes the loss term

LIR+embed = LRGB + λLperceptual + Lembed

= ∥
(
Ic − Îc

)
◦ M̂Ic∥2

+ λ1LPIPSpatch

(
Ic, Îc,p

)
+ λ2 (αSzS + (1− αS)z

avg
S)

+ λ3 (αTzT + (1− αT)z
avg
T)

(1)

This combines RGB-MSE and a learned perceptual loss term with a regularization term, for
which we describe implementation details as follows.

RGB Loss. We optimize only on rendered RGB pixels and minimize

LRGB = ∥
(
Ic − Îc

)
◦ M̂Ic∥2, with M̂Ic = min

(∑
Mc,p,1

)
. (2)

The RGB loss is computed as the pixel-wise ℓ2-norm. Only pixels inside a mask are considered for
which each pixel in the composed image at least one of the objects in the respective frame c also
projects too. Only pixel values inside this mask M̂Ic are considered in the loss function. Please
note that in scenes with occluded objects only the object closest to the camera contributes to the
rendered pixel in this non-volumetric rendering pipeline. We also assume this for the input images,
given that considered objects are solid and mostly non-transparent.

Learned Perceptual Loss. The mask of all foreground/object pixels M̂Ic is computed as the sum
over all object masks Mc,p in the frame rendered by camera c. We employ a learned perceptual
similarity metric 4 (LPIPS) on object-centered image patches, that is

Lperceptual = LPIPSpatch

(
Ic, Îc,p

)
. (3)

15

Input w/o Lembed w/ Lembed

Supplementary Figure 6: Truncation Trick. From left to right, (i) The input observed
image, (ii) results without truncation regularize applied and (iii) results with a truncation
regularize applied. For images (ii) and (iii), we also show bounding boxes for each object
color-coded by the respective predicted object IDs. As shown here, applying the truncation
regularizer helps us achieve more accurate textures and better shapes and colors for the
predicted car surface by forcing the optimized embedding to be “well behaved”, i.e., close to
the distribution of latent embeddings seen during the training by our representation model.

The goal of the perceptual loss is to guide the inverse rendering to match the abstracted
appearance of the feature level of individual objects. We use the pre-trained LPIPS 4 loss
with VGG16 5 backbone for this, which operates on rectangular images with a minimum side
length of 16 pixels. To consider objects individually we crop and resize patches from Îc for
each object p respectively Mask Mc,p(i, j) describes all pixels rendered from each object with
their respective index i, j. Mc,p(i, j) = 1 if object p is projected into the respective pixel
i, j from camera c. We then can describe an image patch by its top and bottom corner. The
patch top corner is defined as (utop, vtop) =

(
imin,Mc,p , jmin,Mc,p

)
, the upper and left corner of a

tight axis-aligned rectangle around all rendered pixels. The patch bottom corner is defined as
(ubot, vbot) =

(
imax,Mc,p , jmax,Mc,p

)
, the lower and right corner of the same axis-aligned rectangle.

Latent Embedding Regularization. The sum of Eq. 2 and 3 form the combined loss for the
proposed differentiable rendering pipeline, which we optimize by refining the latent codes of shape
and appearance, position, rotation, and scale.

ẑS,p, ẑT,p, ŝpt̂p, R̂p = arg min (LIR) . (4)

Modern generative-adversarial (GAN) 6–10 methods, such as the used 3D object generator 8

first map an embedding sample from a multivariate Gaussian, called z-space or distribution, into a
learned embedding space, called w-space, following a different distribution. The intuition behind
this is that there are more optimal embedding distributions, which can be more easily mapped to
the data distribution that the GAN is generating. High-quality samples are only generated from
embeddings inside the high-dimensional embedding distribution. Therefore, we regularize the
optimized embedding code through inverse rendering, with

Lembed = ∥αTzT + (1− αS)z
avg
T ∥+ ∥αTzS + (1− αS)z

avg
S ∥, (5)

16

that is Eq. (7) in the main paper. Here, zS ∈ RdS and zT ∈ RdT denote the latent vectors for
shape and texture embeddings, respectively. The terms zavgS and zavgT are the mean embeddings of
the prior model for shape and texture, while αS and αT control the weight of the regularization
term for each embedding type. This loss function computes a weighted distance between each lat-
ent dimension of the individual embedding vectors and their respective mean embeddings. Mean
embeddings zavgS and zavgT are obtained from sampled embeddings inside the distribution of the re-
spective generative model. By summing across all dimensions and normalizing by the embedding
size dS and dT , the resulting loss Lembed becomes scalar. Note that αT and αS are set to 0.7.

We employ the truncation trick widely used in GAN-based generators and first presented in
StyleGAN 6, where zavg represents an exponential-moving average of embedding codes generated
from the Gaussian training during the training of the generator. This stabilizes the optimization
through inverse rendering as Fig. 6 shows.

Instead of using vanilla stochastic gradient descent methods, we propose an alternating op-
timization schedule of distinct properties that includes aligning zS before zT , to reduce the number
of total optimization steps. We first optimize a coarse color. Then, we jointly optimize the shape
and positional state of each object. As the backbone of the learned perceptual loss, we use a pre-
trained VGG16 5 and utilize individual output feature map similarities at different optimization
steps. We find that color and other low-dimensional features are represented in the initial feature
maps and those are better guidance for texture than high-dimensional features as outputs of the
later blocks. These features have a more informative signal for shape and object pose. We use
the average of the first and second blocks when optimizing for zT , while the combined perceptual
similarity loss guides the optimization of zT and the pose.

Weighting With empirical analysis of the validation set of both datasets, we find the weighting
of loss terms λ1 = 0.4, λ2 = 3, and λ3 = 10 for stable and truthfully generated objects via inverse
rendering.

17

Supplementary Note 7: Detailed Optimization Schedule

We provide additional details on the optimization schedule used in our inverse rendering step.
Supplementary Tab. 3 details the learning rates for each of the parameters in the loss function
presented in Eq. 4 in Supplementary Note 6 in each of the 6 inverse rendering optimization steps
of our method.

For the loss function presented in Eq. 1 in Supplementary Note 6, we found that the schedule
in Tab. 3 solves this optimization problem effectively while being stable across various scenes and
datasets.

We first fit the texture embedding in only three steps during the test-time optimization of
all object parameters. In step 3, we jointly solve for pose, scale, and shape, followed by three
more steps on only shape. Details on the learning rate for the respective parameters are reported in
Tab. 3.

An exhaustive search is impossible due to the number of hyper-parameters when different
loss functions and terms are included. We therefore performed empirical investigation on small,
diverse subsets of scenes to find the parameter set used. The same setting works well on all datasets
and have not been changed for the Waymo Open Dataset 2 and the nuScenes dataset 1.

18

Step
Parameter (learning

rate) zS zT t Φ s

1 - 3× 10−1 - - -
2 - 3× 10−1 - - -
3 6× 10−2 3× 10−1 3× 10−2 3× 10−2 1× 10−6

4 6× 10−2 - - - -
5 6× 10−2 - - - -
6 6× 10−2 - - - -

Supplementary Table 3: Optimization Schedule. Test time optimization of all object
parameters, the shape and texture embeddings zS , zT , their location t, rotation Φ in so(3)
and scale s follows this schedule. First, the texture is fitted in for two steps, followed by a
pose adjustment in one step and inverse rendering of the shape, defined by the respective
embedding code. Green denotes the optimization of the parameter in the respective step.
The learning rates for all optimized parameters are noted in each field.

19

Supplementary Note 8: Additional Tracking Details

In this section, we provide additional details about our inverse rendering method for 3D object
tracking, including the prediction, interpretable latent matching, tracking State and embedding
update steps, and tracking heuristics used. Algorithm 1 lists our entire end-to-end tracking method
in pseudo-code format. For the predict, match and update step of the integrated Kalman Filter 11,
we provide a detailed description and mathematical derivation below the algorithm in this section,
see Eq. 6-12. In the algorithm, we introduce the variable nlost,p for each object p, that represents
the count for the number of frames an object is lost, in addition to object states and appearance
codes zS and zT . If the counter reaches Nlife + 1, then tracklets are not further tracked.

20

Algorithm 1 End-to-End Algorithm for Tracking via Inverse Rendering
Input: Initial 3D detections {xdet,k}, frames {Ik}
Output: Active object states X across all frames {Ik}

1: Initialize X ← ∅ ▷ List of tracked object states
2: Initialize Kalman filter 11 parameters Pk−1, and Q
3: for all k ∈ [0, |{Ik}|] do
4: if |X | > 0 then ▷ Step 1: Predict
5: x̂k|k−1,Pk ← KALMANFILTERPREDICT

(
x̂k−1|k−1,Pk−1,Q

)
▷ See Eq. 6

6: end if
7:
8: Initialize zS, zT ,Tc,p ∀ xdet,k ▷ Step 2: Match
9: for all n ∈ [0, Noptim] do

10: Îc ← DIFFERENTIABLERENDERER(z
(n)
S , z

(n)
T ,T

(n)
c,p) ▷ See Eq. 6 in the main paper

11: LIR ← Ic − Îc ▷ Loss Computation, See Eq. 1
12: z

(n+1)
S,p = z

(n)
S,p − ωz,S∇zS,pLIR;

13: z
(n+1)
T,p = z

(n)
T,p − ωz,T∇zT,p

LIR;

14: T
(n+1)
c,p = T

(n)
c,p − ωT∇Tc,pLIR ▷ Gradient Update, See Eq. 4

15: end for
16:
17: ŷk = zS,p, zT,p,Tc,p

18: A← COMPUTEAFFINITY
(
ŷk, x̂k|k−1

)
▷ See Eq. 7

19: M,Utracked,Udet ← HUNGARIANMATCH(A) ▷ Matched and unmatched tracks and
detects

20:
21: for all m ∈M do ▷ Step 3: Update
22: x̂k|k,Pk,Q← KALMANUPDATE

(
ŷk,Pk|k−1,Q

)
▷ See Eq. 9, 10, 11

23: zk,EMA ← βzk + (1− β)zk−1,EMA ▷ See Eq. 8
24: nlost, m ← 0
25: end for
26:
27: for all u ∈ Utracked do
28: nlost, u ← nlost, u + 1 ▷ Count unmatched time for tracklets
29: if nlost, u > NLife then ▷ Remove dead tracklets
30: Utracked ← Utracked \ {u}
31: end if
32: end for
33:
34: X ←M∪ Utracked ∪ Udet ▷ Add unmatched detections as new objects
35: end for

21

Prediction.

While not confined to a specific dynamics model, we use a linear State-transition model A,
For the objects kinematic state xk = [x, y, z, s, ψ, w, h, l, x′, y′, z′]k, and a forward prediction using
a Kalman Filter 11, a vanilla approach in 3D object tracking 3. An instantiated object in k − 1 can
be predicted in frame k as

x̂k|k−1 = Ax̂k−1|k−1

and Pk|k−1 = APk−1|k−1A
T +Q,

(6)

with the predicted a priori covariance matrix modeling the uncertainty in the predicted State.

Interpretable Latent Matching.

In the matching stage, all optimal object representations op in frame k are matched with
tracked and lost objects from k− 1. Objects are matched based on appearance and kinematic State
with a weighted affinity score

A = wIoUAIoU,3D + wzAz + wcDcentroid, (7)

where AIoU,3D is the IoU of the 3D boxes computed over the predictions of tracked object pre-
dictions xk|k−1 and refined observations. Here, the object affinity Az is computed as the cosine
distance of tracked object latent embeddings z. In addition to that the Euclidean distance between
the center Dcentroid adds additional guidance. We add no score For unreasonable distant tracked
objects and detections.

We compute the best combination of tracked and detected objects using the Hungarian al-
gorithm 12, again a conventional choice in existing tracking algorithms. Matched tracklet and
object pairs are kept in the set of tracked objects and the corresponding detections representation
is discarded. Unmatched detections are added as new objects. Unmatched tracklets are set to lost
with a lost frame counter of one. Objects not detected in previous frames are set to tracked and
their counter is reset to 0. Objects with a lost frame count higher than lifespan Nlife, or outside of
the visible field, are removed.

Tracking State and Embedding Update.

In the update step, we refine each object embedding z and expected observation yk given the
result of the matching step. Embeddings are updated through an exponential moving average

22

zk,EMA = βzk + (1− β)zk−1,EMA with β =
2

T − 1
(8)

over all the past observations of the object. Here, T is the number of observed time steps of the
respective instance. The observation yk is used to update the Kalman filter. The optimal Kalman
gain

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1 (9)

is updated to minimize the residual error of the predicted model and the observation. The observa-
tion yk is used to estimate the object State as

x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1) (10)

and with

Pk = Pk|k−1 −KkHPk|k−1 (11)

the a posteriori of the covariance matrix is updated.

Tracking Heuristics Above, we described the integration of test-time optimized object represent-
ations through inverse rendering into the tracking pipeline via an affinity score as defined in Eq. 7
as follows.

A = wIoUAIoU + wzAz + wcDcentroid,

that describes the similarity of tracked and detected objects in the matching step. We follow 1, 3

and assign 0 to all object pairs whose center is more than 10m apart. In all other cases, we ap-
ply the weights wIoU = 0.7, wz = 0.4, and wc = 0.5 between different affinity parameters.
Here, AIoU is the true 3D IoU of the bounding boxes, which is computed with the efficient PyT-
orch3D 13 implementation. The affinity Az is computed as the pair-wise cosine distance between
all tracklet-detection pairs. Centroid distances between pairs are computed in addition to the IoU to
compensate for larger errors in line with the camera axis common in vision-based object detectors.
In such cases, the IoU might be low, but object distances are still in a reasonable range which we
empirically found at 5m For the object detector used. Finally, we define the distance-based affinity
score as

Dcentroid = maximum
(
−∥ttracklet − tdetection∥2

dmax

, 0

)
, with dmax = 5m. (12)

Matches below the threshold of 0.48 For their affinity score are not considered matched and the
respective tracklet is set to “lost” and the detection is added as a new tracklet in the next step.
Tracklets are considered “dead” and removed after a maximum of 4 consecutive lost steps.

23

Supplementary Note 9: Generative Object Model

We provide further details of the generative object model used in our proposed method, including
a description of the architecture, rendering process, and training details.

We employ the GET3D 8 architecture as object model G. Following StyleGAN 6, 7 embed-
dings zT and zS are mapped to intermediate style embeddings wS and wT in a learned W-space,
which we optimize over instead of Z-space. Style embeddings condition a generator function that
produces tri-planes representing object shapes as Signed Distance Fields (SDFs) and textures as
texture fields. We deliberately train our generator on synthetic data only, see experiments below.
Differentiable marching tetrahedra previously introduced in DMTet 14 extract a mesh representa-
tion and Images are rendered with a differentiable rasterizer 15.

The object generator, used as the prior for car representation, follows the architecture from
GET3D 8. The generator maps two sample codes ztex and zgeo, drawn from a Gaussian distribution
for the texture and shape respectively, to samples of a 3D SDF and a texture field. Details of this
object model’s architecture, training, and usage are below.

Generator Architecture. In this work, we employ a variant described in the appendix of 8.
Following 6, 7, two Gaussian variables are mapped independently to intermediate style embedding
wS and wT in a learned W -space. Style embeddings are then used as an input to the CNN-based
StyleGAN2 7 generator. Both style embeddings for shape and texture jointly condition the gener-
ator in each block, allowing texture and shape to influence the other modality. Each intermediate
feature map of the generator backbone is mapped to its respective modality through a mapping
layer only conditioned on the respective style embedding. All feature maps are accumulated and
reshaped into three feature planes in the last generator layer. These planes represent textures as tex-
ture fields, object shapes as Signed Distance Fields (SDFs), and vertex offsets of a corresponding
mesh. This forms a feature volume representation of the textured 3D object on two tri-planes.

Rendering. We employ the differentiable marching tetrahedra 14 method and extract a mesh
representation from the SDF and vertex offsets, allowing more efficient rendering when compared
to sampling-based volumetric SDF rendering. Differentiable rasterization for meshes efficiently
renders a 2D image of the respective mesh. The respective vertex color can be efficiently retrieved
to render the RGB image output by querying the texture field only at visible surface points.

Training. The model is trained using adversarial losses defined on the 2D renderings of 3D
objects from the ShapeNet version 1 dataset 16. Specifically, we use a differentiable rasterizer

24

to render RGB images together with the silhouette masks of the objects as in 8 with a training
configuration that largely follows StyleGAN2 7 including using a mini-batch standard deviation in
the discriminator, exponential moving average for the generator, non-saturating logistic loss, and
R1 regularization.

25

Supplementary Note 10: Fair Comparison to End-to-end Approaches

In this section, we provide a fair comparison of our method’s performance to tracking methods
that are trained end-to-end. Supplementary Figure 7 compares 3D bounding box outputs from
QD-3DT 17 trained on Waymo 2 and our inverse neural rendering based tracker (INR) overlaid on
the respective input videos from nuScenes 1.

The naive quantitative evaluation of multi-object tracking methods can easily be “unfair”
in the sense that the tracker during training may be given access to future frames or rely on an
improved detector backbone (making it challenging to evaluate the tracker in isolation). Evaluating
generalization requires a nuanced setup to provide a fair evaluation. Therefore, we decide to focus
the evaluation on methods that either build on the same detector backbone 18 and are not trained
on the respective training set 3, achieving generalization by design, or end-to-end trained tracking
methods for which we use a model trained on a different dataset. In particular, we evaluate a model
of QD-3DT 17 that has been trained on the Waymo Open Dataset 2 on nuScenes 1. The authors of
QD-3DT 17 were so kind to provide the respective checkpoints to us.

INR (ours) QD-3DT 17 (Waymo 2)

t
t
+
1

(a) (b) (a) (b)

Supplementary Figure 7: Qualitative Comparison on Generalization. We compare 3D
bounding box outputs from QD-3DT 17 end-to-end trained on Waymo Open Dataset 2 and
our inverse neural rendering-based tracker (INR) overlaid on the respective input videos
from nuScenes 1. The same color in consecutive frames denotes the same tracklet. As we
see in scene (a) on the left side QD-3DT has ID switches especially in the far range and on
the sides of a frame implying dataset-specific performance caps, e.g. the training dataset
has been tracking annotated in a rather short range. Another finding is exemplified in scene
(b) on the right side where the tracker does not generalize well and is losing a tracklet.

Fig. 7 shows tracking results from our method along with results from QD-3DT. A visual,
qualitative inspection illustrates that the end-to-end trained tracking method QD-3DT 2 still per-
forms well on objects in the center of the scene but does not generalize well on occluded or partially
visible objects. This is reflected in the scores reported in Fig. 2 a of the main manuscript.

26

Supplementary Note 11: Multi-Class and Human Generator Extension

We provide additional experiments that confirm the generalization of our method to object classes
other than vehicles and use several different generator models. To this end, we extend our method
and analyze results on the motorcycle class using a GET3D model variant 8 trained on synthetic
motorcycles and the pedestrian class by integrating the human avatar model EVA3D 19 as a
generative prior for modeling pedestrians with realistic shapes and poses.

Car and Motorcycle Multi-Class Extension and Evaluation. To accommodate for different
classes, we apply the same differentiable rendering function and same tracking method as de-
scribed in the main manuscript. Only two adaptions are made to accommodate for tracking Nclass

classes. First, the different prior distribution model is selected according to the detected or tracked
class label. Additionally, we only perform matching and calculate affinity between observations
yk and tracked objects xk of the same class label, resulting in Nclass separate affinity score calcu-
lations. No further changes to the method were made, verifying extendability beyond single-class
tracking with the proposed differentiable rendering pipeline. Qualitative and quantitative results
on the motorcycle class are presented in the table of main paper Figure 1 and in Supplement-
ary Figure 8 that confirm tracking at a quality similar to the vehicle class with respect to baseline
approaches, indicating robustness across rigid object classes.

Deformable Object Classes. The pedestrian class introduces unique challenges, including
higher pose variability, non-rigid deformations, and frequent occlusions in crowded scenes, and,
as such, requires a non-trivial extension to the proposed method. Nevertheless, we find that the
method is capable of supporting rigid approximations of pedestrians, by integrating the re-
spective generative prior model Eva3D 19. Integration of this class follows the process described
above. In addition to that, we only optimize the respective texture representation zT on top of the
gender-neutral SMPL body model 20 and omit the optimization of shape representation zS , that is
explicitly modeled as deformation parameters of the body model.

We confirm in our experiments in Supplementary Figure 8 interpretable tracking with good
performance with the rigid approximation, validating the adaptability and versatility of our method
to diverse tracking scenarios. Nevertheless, deformability of body and cloth, estimating gender,
and unique clothing choices remain challenges. While outside the scope of our work, the optim-
ization of deformable object parameters, such as skeleton tracking 20, through inverse rendering
presents an interesting avenue for future work.

27

Input t0 Tracked t0 Tracked t1 Tracked t2

D
ow

nt
ow

n
O

ffi
ce

 B
ui

ld
in

gs
Sl

ow
 U

ph
ill

Supplementary Figure 8: Multi-Class Tracking with Pedestrians and Motorcycles. We
show three distinct scenes from the NuScenes 1 dataset on multi-class tracking, combining
the Get3D 8 vehicle, motorcycle and Eva3D 19 pedestrian model in a single differentiable
rendering pipeline. The input image of the first frame of the sequence is shown on the
left, while the remaining frames provide images from sequential timesteps overlayed with
the retrieved rendered objects. Even in more crowded scenes (top) with multiple object
classes and inter-object occlusion, all objects can be consistently tracked across timestep.
Further observations of occluded and less crowded scenes show consistent appearances and
tracking of pedestrians and a motorcycle.

28

Supplementary Note 12: Practical Impact of Interpretable INR-based Tracking

This section expands on the practical applications of our approach, highlighting its utility and
broader impact beyond multi-object tracking improvements. Allowing for interpretability, cost-
effective dataset annotation, and extensibility to multi-camera and multi-sensor settings, the pro-
posed method may enable several applications in autonomous driving and robotics beyond 3D
object tracking and scene understanding. We describe these application areas in detail in the fol-
lowing.

Generalizable Offline Auto-Annotation. Being data-agnostic, the method has high potential
offline auto-annotation, addressing a significant challenge in creating large-scale annotated data-
sets for 3D object tracking for autonomous driving [9, 10], while maintaining human interpretable
reconstructions for QA processes and providing generalizability. As such, the accurate and inter-
pretable 3D reconstructions produced by our method may reduce the cost of generating annotated
datasets for 3D object tracking, a critical bottleneck in autonomous driving research.

Interpretability for Debugging Perception Pipelines. Our approach facilitates retrospective re-
construction and analysis of perception failure cases in real-world scenarios, providing feedback
for debugging. For instance, in scenarios where the association between tracked object instances
in adjacent frames fails, a visual model of all reconstructed objects allows for debugging by in-
spection. We show specific examples in Supplementary Note 3.

Potential for Multi-Camera or Multi-Modal Extensions. Our method is inherently suitable
for extension to multi-camera see Fig. 5, or multi-modal setups. In contrast to feature-based mod-
els, our approach can naively integrate data (explaining multiple observations with additional loss
components) from multiple overlapping viewpoints and modalities without incorporating complex
and sensor-specific sensor fusion approaches by optimizing 3D object representations across mul-
tiple sensors. Although multi-modal setup is beyond the scope of this work, this extension holds
promise for improving performance in scenarios with complex occlusions or sparse observations.

29

Supplementary Note 13: Validation of Retrieved Object Properties and Downstream Applic-
ations

Our inverse rendering-based tracking method estimates not only object trajectories but also re-
trieves additional object properties such as pose, shape, texture, and appearance. These properties
offer richer scene understanding beyond traditional bounding-box-based tracking. In this section,
we quantitatively evaluate the accuracy of these retrieved attributes and illustrate their use for
downstream tasks such as free-space detection, motion planning, and failure case analysis.

Occupancy Estimation for Motion Planning Since our method reconstructs 3D object shapes,
we can infer vehicle occupancy in a scene. The rendered geometry can be used as coarse occupancy
predictions, aiding occupancy-based motion planning algorithms 21–23.

Instance-Level Segmentation The retrieved object (shape and pose) allows us to generate
instance-level segmentation masks, as shown in Supplementary Figure 9. These masks can be
directly leveraged for instance segmentation in image space 24. We note that the method provides
object segmentation here without requiring explicit segmentation labels to train a separate
segmentation model.

Input Frame Fitted Objects Rendered Object Masks

Supplementary Figure 9: Rendered Instance Segmentation. Coarse instance segment-
ation can be directly obtained from the rendering pipeline for free. For each fitted object,
we additionally render a depth-ordered alpha mask. This can be used to assign a per-pixel
instance segmentation masks as shown on the right.

Image Reconstruction Quality To assess the accuracy of our retrieved object properties, we
evaluate their quality using image-based metrics. Specifically, we measure how well the optimized

30

object parameters reconstruct the observed image regions using LPIPS 4 and PSNR. We report our
in Table 4, and we find that our inverse-rendered reconstructions closely resemble the original
observations, demonstrating the accuracy of our retrieved object attributes.

31

Supplementary Table 4: Image Reconstruction Accuracy Metrics. Values are averaged
over objects from 20 scenes. We measure the respective reconstruction accuracy metric
between the input RGB observation and the reconstructed rendered objects (after optimiza-
tion), and the quality of the initial rendered object from initial latents (before optimization).

Reconstruction Metric Before Optimization After Optimization

PSNR ↑ 12.9 15.1
1 - LPIPS ↓ 0.87 0.86

32

References

1. Caesar, H. et al. nuscenes: A multimodal dataset for autonomous driving. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 11621–
11631 (2020).

2. Sun, P. et al. Scalability in perception for autonomous driving: Waymo open dataset. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2446–2454 (2020).

3. Weng, X., Wang, J., Held, D. & Kitani, K. 3d multi-object tracking: A baseline and new
evaluation metrics. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 10359–10366 (IEEE, 2020).

4. Zhang, R., Isola, P., Efros, A. A., Shechtman, E. & Wang, O. The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), 586–595 (2018).

5. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image re-
cognition (2015).

6. Karras, T., Laine, S. & Aila, T. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Re-
cognition (CVPR), 4401–4410 (2019).

7. Karras, T. et al. Analyzing and improving the image quality of stylegan. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8110–8119
(2020).

8. Gao, J. et al. Get3d: A generative model of high quality 3d textured shapes learned from
images. In Advances In Neural Information Processing Systems, vol. 35, 31841–31854 (2022).

9. Sauer, A., Schwarz, K. & Geiger, A. Stylegan-xl: Scaling stylegan to large diverse datasets.
In ACM SIGGRAPH 2022 conference proceedings, 1–10 (2022).

10. Kang, M. et al. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 10124–10134 (2023).

11. Kalman, R. E. A new approach to linear filtering and prediction problems (1960).

12. Kuhn, H. W. The hungarian method for the assignment problem. Naval research logistics
quarterly 2, 83–97 (1955).

13. Ravi, N. et al. Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501 (2020).

33

14. Shen, T., Gao, J., Yin, K., Liu, M.-Y. & Fidler, S. Deep marching tetrahedra: a hybrid repres-
entation for high-resolution 3d shape synthesis. Advances in Neural Information Processing
Systems 34, 6087–6101 (2021).

15. Laine, S. et al. Modular primitives for high-performance differentiable rendering. ACM Trans-
actions on Graphics (TOG) 39, 1–14 (2020).

16. Chang, A. X. et al. ShapeNet: An Information-Rich 3D Model Repository. Tech. Rep.
arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toyota Techno-
logical Institute at Chicago (2015).

17. Hu, H.-N. et al. Monocular quasi-dense 3d object tracking. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2022).

18. Zhou, X., Koltun, V. & Krähenbühl, P. Tracking objects as points. In European Conference
on Computer Vision (ECCV), 474–490 (Springer, 2020).

19. Hong, F., Chen, Z., LAN, Y., Pan, L. & Liu, Z. EVA3d: Compositional 3d human generation
from 2d image collections. In International Conference on Learning Representations (2023).
URL https://openreview.net/forum?id=g7U9jD_2CUr.

20. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G. & Black, M. J. Smpl: A skinned multi-
person linear model. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2, 851–
866 (2023).

21. Tong, W. et al. Scene as occupancy. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 8406–8415 (2023).

22. Tsardoulias, E. G., Iliakopoulou, A., Kargakos, A. & Petrou, L. A review of global path plan-
ning methods for occupancy grid maps regardless of obstacle density. Journal of intelligent &
robotic systems 84, 829–858 (2016).

23. Guo, K., Liu, W. & Pan, J. End-to-end trajectory distribution prediction based on occupancy
grid maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2242–2251 (2022).

24. Zhang, H. et al. A simple framework for open-vocabulary segmentation and detection. arXiv
preprint arXiv:2303.08131 (2023).

34

https://openreview.net/forum?id=g7U9jD_2CUr

	SpringerNature_NatMachIntell_1083_ESM.pdf
	Supplementary Code 1: Code Availability
	Supplementary Video 1: Experimental Assessment for Dynamic Scenes
	Supplementary Note 1: Additional Experimental Results
	Supplementary Note 2: Additional Ablation Results
	Supplementary Note 3: Interpretability of Failure Cases
	Supplementary Note 4: Computational Cost
	Supplementary Note 5: Differentiable Rendering Pipeline
	Supplementary Note 6: Detailed Optimization Objectives
	Supplementary Note 7: Detailed Optimization Schedule
	Supplementary Note 8: Additional Tracking Details
	Supplementary Note 9: Generative Object Model
	Supplementary Note 10: Fair Comparison to End-to-end Approaches
	Supplementary Note 11: Multi-Class and Human Generator Extension
	Supplementary Note 12: Practical Impact of Interpretable INR-based Tracking
	Supplementary Note 13: Validation of Retrieved Object Properties and Downstream Applications

