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Towards generalizable and interpretable 
three-dimensional tracking with inverse 
neural rendering
 

Julian Ost1,3, Tanushree Banerjee    1,3, Mario Bijelic1,2 & Felix Heide    1,2 

Today, the most successful methods for image-understanding tasks rely 
on feed-forward neural networks. Although this approach offers empirical 
accuracy, efficiency and task adaptation through fine-tuning, it also comes 
with fundamental disadvantages. Existing networks often struggle to 
generalize across different datasets, even on the same task. By design, these 
networks ultimately reason about high-dimensional scene features, which 
are challenging to analyse. This is true especially when attempting to predict 
three-dimensional (3D) information based on two-dimensional images. We 
propose to recast vision problems with RGB inputs as an inverse rendering 
problem by optimizing through a differentiable rendering pipeline over the 
latent space of pretrained 3D object representations and retrieving latents 
that best represent object instances in a given input image. Specifically, 
we solve the task of 3D multi-object tracking by optimizing an image 
loss over generative latent spaces that inherently disentangle shape and 
appearance properties. Not only do we investigate an alternative take on 
tracking but our method also enables us to examine the generated objects, 
reason about failure situations and resolve ambiguous cases. We validate 
the generalization and scaling capabilities of our method by learning the 
generative prior exclusively from synthetic data and assessing camera-based 
3D tracking on two large-scale autonomous robot datasets. Both datasets 
are completely unseen to our method and do not require fine-tuning.

Inverse rendering offers a new perspective on computer vision by com-
bining differentiable rendering pipelines1 and generative models2 as a 
prior for spatial reasoning. Forward rendering describes the synthe-
sis of two-dimensional images from a three-dimensional (3D) scene 
description. By contrast, inverse rendering is the process of inferring 
a 3D scene description solely from two-dimensional image observa-
tions of the given scenes1. Existing image-understanding methods 
almost exclusively use feed-forward neural networks for performing 
vision tasks, including segmentation3–5, object detection6–8, object 
tracking9,10 and pose estimation11. Typically, these approaches learn 

network weights using large, labelled datasets. At inference time, the 
trained network layers sequentially process a given two-dimensional 
image to make a prediction. Despite being a successful approach across 
disciplines from robotics to health and being effective in operating at  
real-time rates, this approach also comes with several limitations:  
(1) Networks trained on data captured with a specific camera and geogra-
phy generalize poorly. (2) They typically rely on high-dimensional inter-
nal feature representations, which are often not interpretable, making 
it hard to identify and reason about failure cases. (3) It is challenging 
to enforce 3D geometrical constraints and priors during inference.
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we evaluate the method for single-class vehicle tracking as a repre-
sentative and well-explored task in driving, we confirm that the method 
generalizes to several classes for broader tracking scenarios. The 
approach achieves a 57.8% higher recall than existing learning-based 
methods transferred to unseen datasets. Moreover, we report an aver-
age multi-object tracking accuracy (AMOTA) of 0.413 which is a 6.5% 
improvement over the next best generalizing method. See Supplemen-
tary Video or https://light.princeton.edu/inverse-rendering-tracking.

Results
Single-shot object retrieval with inverse rendering
In the following, we assess the proposed approach, which is described 
in Methods in detail. Having trained our generative scene model solely 
on simulated data27, we test the generalization capabilities on the 
nuScenes32 and Waymo33 datasets, both of which are unseen by the 
method. We analyse generative outputs of the test-time optimization 
and compare them against existing 3D multi-object trackers9,20,24,26,36 
on camera-only data.

Although trained only on general object-centric synthetic data, 
ShapeNet27, our method is capable of fitting a sample from the genera-
tive prior to observed objects in real datasets that match the vehicle 
type, colour and overall appearance closely, effectively making our 
method dataset-agnostic. We analyse the generations during optimi-
zation in the following.

Given an image observation and coarse detections, our method 
aims to find the best 3D representation, including pose and appear-
ance, solely with inverse rendering. In Fig. 1b we analyse this iterative 
optimization process, following scheduled optimization as described. 
We observe that the colour of an object is inferred in only two steps. 
Further, we can observe that even though the initial pose is incorrect, 
the rotation and translation are optimized jointly with inverse render-
ing together with the shape and scale of the objects, thus recovering 
from the suboptimal initial guesses. The shape representation close 
to the observed object is reconstructed in only five steps. Quantita-
tive metrics for reconstruction show improving quality of optimized 
objects. We provide a numerical evaluation in Supplementary Note 13.

Generalization
To provide a fair comparison of 3D multi-object tracking methods 
using monocular inputs, we compare against existing methods by run-
ning all our evaluations with the method reference code. We evaluate 
only methods that consider past frames but have no knowledge about 
future frames, which is a different task. Although our method does not 
store the full history length of all images, we allow such memory tech-
niques for other methods. We consider only purely mono-camera-based 
tracking methods. In contrast to our method, most existing meth-
ods we compare to are fine-tuned on the respective training set. For 
all two-stage detect-and-track methods, we use CenterPoint13 as the 
detection method. We compare with CenterTrack20 as an established 
learning-based baseline and present results from the very recent 
PF-Track25, a transformer-based tracking method, QTrack24 as a met-
ric learning method, and QD-3DT (ref. 9) as a state tracker based on 
long short-term memory combined with image feature matching. Of 
all learning-based methods, only CenterTrack20 allows us to evaluate 
tracking performance with identical detections. Finally, we compare 
with AB3DMOT36, which builds on an arbitrary 3D detection algorithm 
and combines it with a modified Kalman filter37 to track the state of each 
object. AB3DMOT36 and the proposed method are the only methods 
that are data-agnostic in the sense that they have not seen the training 
dataset. For a fair evaluation of these generalization capabilities in 
learning-based methods, we include another version of QD-3DT solely 
trained on the Waymo Open Dataset33 and evaluate on nuScenes32. We 
discuss the findings in the following.

Table 1 reports quantitative results on the test split of the nuScenes 
tracking dataset32 on the car and motorcycle object class for all six 

We focus on multi-object tracking as a task at the heart of auto-
nomous robotics that must tackle all these challenges. Accurate multi- 
object tracking is essential for safe robotic planning. Although 
approaches using lidar point clouds (and camera image input) are 
successful because of the explicitly measured depth12–18, camera-based 
approaches to 3D multi-object tracking have been studied only 
recently9,19–26. Monocular tracking methods, typically consisting of 
independent detection, 3D dynamic models and matching modules, 
often struggle, as the errors in the distinct modules tend to accumulate. 
Moreover, wrong poses in the detections can lead to ID switches in the 
matching process.

We propose an alternative approach that recasts visual inference 
problems as inverse rendering tasks, jointly solving them at test time by 
optimizing over the latent space of a generative object representation. 
Specifically, we combine object retrieval through the inversion of a 
rendering pipeline and a learned object model with a 3D object-tracking 
pipeline (Fig. 1a). This approach allows us to reason about the 3D shape, 
appearance and 3D trajectory of an object simultaneously from only 
a monocular image input. The location, pose, shape and appearance 
parameters corresponding to the anchor objects are then iteratively 
refined with test-time optimization to minimize the distance between 
their corresponding generated objects and the given input image. 
Rather than directly predicting scene and object attributes, we opti-
mize over a latent object representation to synthesize image regions 
that best explain the observed image. Then, we match the inverse 
rendered objects by comparing their optimized representations. As 
the proposed method relies on image renderings of all tracked objects, 
it also provides a new tool for interpretable debugging and analysis, 
for example, when the association between tracked object instances 
in adjacent frames fails.

Our method hinges on an efficient rendering pipeline and gen-
erative object representation at its core. Although the approach is 
not tied to a specific object representation, we adopt GET3D (ref. 2) 
as the generative object prior. It is is trained only on synthetic data27 
to synthesize textured meshes and corresponding images with an 
efficient differentiable rendering pipeline28. Note that popular implicit 
shape and object representations either do not support class-specific 
priors29,30 or require expensive volume sampling31.

The proposed method builds on the inductive geometry priors 
embedded in our rendering forward model by solving several differ-
ent tasks simultaneously. Our method refines the object pose as a 
by-product merely by learning to represent objects of a given class. 
Recovering object attributes with inverse rendering also provides inter-
pretability ‘for free’, once our proposed method detects an object at test 
time. It can extract the parameters of the corresponding representation 
alongside the rendered input view, which is human-interpretable and, 
as such, offers insights into the tracking process. This structured rep-
resentation facilitates reasoning about failure cases and contributes 
to the explainability of the tracking decision.

We validate that the method naturally exploits 3D geometry priors 
and generalizes across unseen domains and datasets within the context 
of 3D multi-object tracking in driving scenes, without requiring retrain-
ing or fine-tuning on new data. To do this, we combine the proposed 
inverse rendering approach with an object dynamics model and match-
ing strategy across adjacent frames (Fig. 1a). We match all objects in 
adjacent time steps by computing similarity across all available state 
parameters, including inverse rendered object shapes, textures and 
optimized poses. After training solely on simulated object appearance 
data, we test on nuScenes32 and Waymo driving33 datasets. Note that 
this setting is like offline auto-annotation for large-scale datasets34,35, 
which requires generalizable methods that often do not have access 
to training data.

Although untrained, our method outperforms both existing 
dataset-agnostic multi-object tracking approaches and dataset-specific 
learned approaches20 when operating on the same inputs. Although 
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cameras (Fig. 2). We list results for the multi-object tracking accuracy 
(MOTA)38 metric, the AMOTA36 metric, average multi-object tracking 
precision (AMOTP)36 and recall of all methods. First, we evaluate a 
version of QD-3DT (ref. 9) that has been trained on the Waymo Open 
Dataset33 but tested on nuScenes. This experiment is reported in row 
four of Table 1 and confirms that recent end-to-end detection and 
tracking methods do not perform well on unseen data (see qualita-
tive results in Supplementary Note 9) on cars and fail on sparse object 
classes. Moreover, perhaps surprisingly, even when using the same 
vision-only detection backbone as in our approach, the established 
end-to-end trained baseline CenterTrack20, which has seen the dataset, 
performs worse than our method. Our inverse rendering method out-
performs the general tracker AB3DMOT36 on the car class and shows 
higher precision and recall and comparable accuracy performance 
on the rare motorcycle class. When other methods are given access 
to the dataset, recent learning-based methods such as the end-to-end 
method based on long short-term memory QD-3DT (ref. 9) perform on 
par across all classes. Only the most recent transformer-based methods 
such as PF-Track25 and QTrack24, which use a quality-based association 
model on a large set of learned metrics, such as heat maps and depth, 
achieve higher scores. Note again, that these methods, in contrast to 

the proposed method, have been trained on this dataset and cannot be 
evaluated independently of their detector performance.

In Fig. 2, we ablate the optimization objective, which is composed 
of the RGB mean-squared-error loss, a learned perceptual loss (Sup-
plementary Note 5) and equation (8) as well as the proposed schedule, 
and we provide the design choices. The absence of an optimization 
schedule led to less robust matching, as the quantitative and qualita-
tive results in Supplementary Fig. 3 reveal. However, the core efficacy 
of our tracking method remained intact, as indicated in the last row of 
Supplementary Table 2. This nuanced understanding underscores the 
importance of component interplay in our approach.

We visualize the rendered objects predicted by our tracking 
method in Fig. 3. We show an observed image from a single camera at 
time step k = 0, followed by rendered objects overlaid over the observed 
image at time steps k = 0, 1, 2 and 3 along with their respective bound-
ing boxes, with colour-coded tracklets. Our method does not lose any 
tracks in challenging scenarios in diverse scenes shown here from dense 
urban areas to suburban traffic crossings, and it handles occlusions 
and clutter effectively.

We additionally provide qualitative results from the 3D tracking on 
the validation set in the Waymo Open Dataset33 in Fig. 3. The only public 
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Fig. 1 | Inverse rendering for monocular multi-object tracking and inverse 
rendering optimization. a, We initialize the embedding codes of an object 
generator zS for shape and zT for texture for each detected object k. The 
generative object prior (for example, GET3D (ref. 2), pretrained on synthetic 
data) is frozen. Only embedding codes for an object’s geometry zS and texture zT, 
location t k, rotation ψk and size sk for each object instance k are optimized with 
inverse rendering to fit the image observation best. The inverse rendering loss 
(ℒIR) quantifies the discrepancy between the observed and rendered images to 
guide the optimization. Solid connectors denote sequential processing steps, 
and dashed connectors indicate iterative feedback loops for optimization. The 
process terminates after a maximum fixed number of steps or when ℒIR 
converges. Inverse rendered texture and shape embeddings and refined object 
locations are provided to the matching stage to match predicted states of tracked 
objects of past with their historical, exponentially moving averaged (EMA) 

texture and shape embeddings zT,EMA and zS,EMA, and new observations. Matched 
and new tracklets are updated, and unmatched tracklets are ultimately discarded 
before predicting states in the next step (data from ref. 33). b, An example of this 
test-time optimization method with zoomed-in views of rendered objects. From 
left to right: the observed image, the rendering predicted by the initial starting 
point latent embeddings, the predicted rendered objects after the texture code is 
optimized, the predicted rendered objects after the translation, scale and 
rotation are optimized, and the predicted rendered objects after the shape latent 
code is optimized. The ground-truth images are faded to show our rendered 
objects clearly. Our proposed method effectively refines the predicted texture, 
pose and shape over several optimization steps, even if initialized with poses or 
appearances far from the target, all found at test time with inverse rendering. 
Init., initial; IoU, intersection over union.
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results on the provided test set are presented for QD-3DT (ref. 9), which 
may indicate that it fails on this dataset. Although the size of the dataset 
and its variety is of high interest for all autonomous driving tasks, ref. 9 
concludes that vision-only test set evaluation is not representative of a 
test set developed for surround-view lidar data on partial unobserved 
camera images only. As such, we provide qualitative results in Fig. 3 
that validate that the method achieves tracking of similar quality on 
all datasets, thus providing a generalizable tracking approach. This is 
further verified by the results of experiments on tracking presented in 
Fig. 3, which show similar performance across several classes (car and 
motorcycle). Although the proposed method is limited to rigid objects, 
we outline potential future extensions to deformable classes, such as 
humans and animals, in Supplementary Note 11. We demonstrate the 
potential of this direction with qualitative single-shot object retrieval 
for the pedestrian class in an extended multi-class experiment. For all 
experiments, we show that our method does not lose tracks on both 
Waymo33 and nuScenes32 scenes in diverse conditions.

Analysis and interpretation
By visualizing the rendered objects and analysing the matching and 
loss components, our method allows us to reason about and explain 
success and failure cases effectively. The rendered output images pro-
vide interpretable inference results that explain successful or failed 
matching due to shadows, appearance, shape or pose. For example, the 
blue car in the inverse rendered inference (column 2 in the top row of 

Fig. 3b) was incorrectly matched due to an appearance mismatch in a 
shadow region. Note that a future rendering model including ambient 
illumination may resolve this ambiguity; see the discussion in Sup-
plementary Note 3.

Figure 4 shows inverse rendered scene graphs in isolation and 
bird’s-eye-view (BEV) tracking outputs showing the layout. Combined 
with rendered object instance masks Mc,p, this method can be directly 
leveraged for free-space detection in the image space without requiring 
explicit segmentation (Supplementary Fig. 7). Our method accurately 
recovers the object pose, instance type, appearance and scale. As such, 
our approach directly outputs a 3D model of the full scene, that is, layout 
and object instances, along with the temporal history of the scene recov-
ered through tracking. This rich scene representation can be directly 
ingested by downstream planning and control tasks or simulation meth-
ods to train downstream tasks. As such, the method also allows us to 
reason about the scene by leveraging the 3D information provided by 
our predicted 3D representations. The 3D locations, object orientations 
and sizes recovered from such visualizations can not only enable us to 
explain the predictions of our object-tracking method, especially in 
the presence of occlusions or ID switches, but can also be used in other 
downstream tasks that require a rich 3D understanding, such as planning.

Discussion
In this work, we investigate inverse neural rendering as an alternative 
to existing feed-forward tracking methods. Specifically, we recast 

Table 1 | Quantitative evaluation for camera-only multi-object tracking

Training  
data  
unseen

Method Car Motorcycle Modality

AMOTA ↑ AMOTP (m) ↓ Recall ↑ MOTA ↑ AMOTA ↑ AMOTP (m) ↓ Recall ↑ MOTA ↑

× PF-Track 0.622 0.916 0.719 0.558 0.448 1.245 0.457 0.384 Camera

× QTrack 0.692 0.753 0.760 0.596 0.531 1.098 0.861 0.500 Camera

× QD-3DT 0.425 1.258 0.563 0.358 0.253 1.543 0.437 0.243 Camera

✓ QD-3DT (trained on 
WOD)

0.000 1.893 0.226 0.000 0.000 2.000 0.000 0.000 Camera

× (CP) CenterTrack 0.202 1.195 0.313 0.134 0.011 1.636 0.141 0.033 Camera

✓ (CP) AB3DMOT 0.387 1.158 0.506 0.284 0.254 1.549 0.360 0.232 Camera

✓ (CP) Inverse neural 
rendering (ours)

0.402 1.213 0.521 0.315 0.244 1.479 0.389 0.220 Camera

Bold entries denotes best and underlined second best scores for methods that did not train on the dataset or use the same detection backbone.
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Fig. 2 | Quantitative Evaluation and Ablation Experiments for Camera-only 
Multi-Object Tracking. Evaluation on ‘cars’ and ‘motorcycles’ in the test split of 
the nuScenes tracking dataset33 in a. Our IR-based tracker outperforms the recent 
AB3DMOT37 on all metrics and CenterTrack21 on accuracy on ‘cars’ and shows 
competitive and better performance on ‘motorcycles’ respectively. All three 
methods use the same detection backbone for fair comparison, while only 
CenterTrack requires end-to-end training on the dataset. Even when allowing 
other methods (but not ours) to train on nuScenes33, the proposed method 
performs on par with QD-3DT19. We note that QD-3DT trained on the Waymo 
Open Dataset (WOD)34 does not generalize to nuScenes and does not achieve 
competitive results on cars and fails on motorcycles. Only very recent 
transformer-based methods, such as PF-Track26 and the metric learning approach 

of Q-Track25 achieve a higher score and require end-to-end training on each 
dataset. In a, ‘CP’ denotes the vision-only version of CenterPoint21 was used for 
object detection. Bold denotes best and underlined second best for methods 
that did not train on the dataset or use the same detection backbone. In b, we 
report ablation experiments on a small subset of the nuScenes33 validation set. 
We analyse the proposed optimization scheme including the loss components 
and optimization schedule. Here ℒIR is the sum of the RGB MSE and learned
perceptual loss, as described in Eq. S2 and Eq. S3 in Supplementary Note 5 in 
Supplementary Information. The INR loss function components ℒRGB fail due to
the optimizer fitting objects to the background instead, increasing the size of 
each object and resulting in an out-of-memory error.
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3D multi-object tracking from RGB cameras as an inverse test-time 
optimization problem over the latent space of pretrained 3D object 
representations that, when rendered, best represent object instances 
in a given input image. This approach to tracking also enables us to 
examine the reconstructed objects, reason about failure situations 
and resolve ambiguous cases. The rendering object layouts and 

loss function values provide interpretability ‘for free’. We analyse 
the single-shot capabilities and the interpretability of our method 
using the image generated by our method during test-time optimi-
zation. Given a single image observation, our findings validate the 
potential for interpretable inverse rendering in safety-critical down-
stream tasks, such as 3D occupancy-based planning and free-space 
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Fig. 3 | Generalizing multi-object tracking results. a,b, Tracking with inverse 
neural rendering using the Waymo open driving dataset33 (a) and nuScenes32 (b). 
The proposed method can generalize to unseen datasets. From left to right, we 
show observed images from diverse scenes at time step k = 0 and the optimized 
generated object and its 3D bounding boxes at time steps k = 0, 1, 2 and 3 overlaid 
over the input frame, which is faded for visibility. The colour of the bounding 
boxes for each object corresponds to the predicted tracklet ID. Even in such 

diverse scenarios, our method does not lose any tracks and performs robustly 
across all scenarios, although the dataset is unseen, validating that the approach 
generalizes. All tracked frames show images with objects in classes car and 
motorcycle (top row in b) overlaid over the ground-truth images, which are faded 
to show our rendered objects clearly. Panel a adapted with permission from  
ref. 33, CVPR.

(a) Input frame (b) Inverse-rendered 3D generation (c) Inverse-rendered BEV layout

y

x 10 m

10 m
y

x

Fig. 4 | Layout generation. a, Images for two scenes observed by a single camera. 
b, Test-time optimized inverse rendered objects. c, BEV layouts of the scenes. In 
the BEV layout (a common representation for autonomous driving tasks), black 
boxes represent the ground truth and coloured boxes represent predicted BEV 

boxes. The bottom shows a zoomed-in region at 60 m distance. The complete 
set of tracked objects can be seen in the BEV layout, confirming that the method 
recovers the accurate appearance, shape, pose and size of the objects.
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prediction in autonomous systems. This and other natural down-
stream extensions to our approach include cost-effective general 
offline auto-annotation and multi-sensor extensions (see also Sup-
plementary Note 12). Trained only on synthetic data, we validate 
the generalization capabilities of our method by evaluating it on 
unseen automotive datasets. Our method achieves a 57.8% higher 
recall score compared with a learning-based method transferred to 
unseen datasets.

We investigate not only object detection with inverse rendering 
but broad, in-the-wild object class identification with conditional 
generation methods, thus unlocking analysis-by-synthesis in vision 
with generative neural rendering. By design, our approach allows a ret-
rospective analysis of perception failure cases, specifically in scenarios 
where the association of tracked object instances in adjacent frames 
fails. Although it facilitates the inverse rendering, the iterative opti-
mization in our method makes it slower than classical object-tracking 
methods based on feed-forward networks. We hope to address this 
limitation in the future by accelerating the forward and backward 
passes with adaptive level-of-detail rendering techniques. Although 
generative object models trained on synthetic data show wide data-
set, domain and object class generalization capabilities in our work, 
we also see failure cases under adverse weather and lighting. Further 
improving the generative model on a wide set of real data, including 
surface materials and a more sophisticated rendering pipeline, will be 
a promising next step in improving the robustness and explainability 
of inverse rendering perception pipelines.

Methods
Overview
In this work, we leverage inverse rendering and generative object 
priors to infer and track 3D multi-object scenes by jointly optimizing 
object pose, geometry and appearance. Our approach focuses on 
scenarios where an accurate scene understanding is crucial for down-
stream decision-making, such as autonomous driving. Specifically, 
we cast object tracking as a test-time inverse rendering and synthesis 
problem that we solve by searching for latent object representations 
of all scene objects that match the image observations across time. 
We achieve this by optimizing a 3D object latent for each instance to 
the observed image frames with inverse rendering to minimize the 
visual distance between the rendered 3D representation and observed 
images. Therefore, we first structure a complex multi-object scene 
as a scene graph representation that describes individually gener-
ated object 3D models as its leaf nodes. This representation enables 
efficient gradient computation in both the object and camera coor-
dinate systems.

Given a differentiable forward-rendering pipeline and observation 
image loss (Fig. 1b), we find the best set of generated objects for the 
scene with inverse rendering by minimizing the difference between the 
view generations of each observed object instance and the observation. 
Using a differentiable rasterized rendering pipeline, we directly unlock 
access to scene gradients, which is key to making our approach both 
efficient and interpretable.

We formulate a tracking pipeline based on the inverse rendered 
multi-object scenes in Fig. 1a to track objects through time with inverse 
neural rendering. We provide a detailed definition of our end-to-end 
tracking algorithm as Algorithm 1 in Supplementary Note 8.

Object generation
We employ an object-centric scene representation and model the 
underlying 3D scene for a frame observation as a composition of all 
object instances. To represent a large, diverse set of instances per class, 
we define each object instance o as a sample from a distribution O over 
all objects in a class:

(zS, zT) ∼ O, (1)

where O is a learned representation of a known prior object distribu-
tion. Here, the prior distribution is modelled by a differentiable genera-
tive 3D object model:

op = G (zS,p, zT,p) , (2)

that maps a latent embeddings zS,p and zT,p to an object instance op. In 
particular, the latent space comprises two disentangled spaces zS ∈ ℝdS 
and zT ∈ ℝdT  for shape S and texture T.

Multi-object scene rendering
We model a multi-object scene as a differentiable scene graph39  
composed of affine transformations in the edges and object instances 
in the leaf nodes. The scene graph models object relationships  
and occlusions, including camera and scene objects, for differen-
tiable coordinate system conversions to enable efficient gradient  
computation. The transformation in a render view for camera c is 
defined as

Tc,p = diag ( 1
sp
)TpT−1c , (3)

where the factor sp is a scaling factor along all axes to allow a shared 
object representation of a unified scale. This canonical object scale is 
necessary for representing objects of various sizes, independent of 
the learned prior on shape and texture. Further, the object-centric 
projection Pc,p = KcTc,p is used to render the RGB image Ic,p ∈ ℛH×W×3 and 
mask Mc,p ∈ [0, 1]H×W for each individual object/camera pair with the 
forward-rendering operator, which is a differentiable rasterization 
function R, as

Ip,Mp = R (G (zS,p, zT,p) ,Pc,p) . (4)

Individual rendered RGB images are ordered by object distance 
∣tc,p∣, such that p = 1 is the shortest distance to c. We define individual 
occlusion-aware alpha masks:

γp = max((Mc,p −
p
∑
q=1

Mc,q) ,0H×W) . (5)

We then compose the final image of the multi-object scene ̂Ic for all No 
objects by alpha-masking occluded pixels of occluded objects using 
the Hadamard product of the respective mask as

̂Ic =
No

∑
k=1

Ik ∘ γk, (6)

which is, thus, a method for rendering and composing several gener-
ated objects into a single view image output corresponding to the 
camera model. This involves ordering objects by distance from the 
camera and sequentially rendering them while accounting for occlu-
sions using masks. Instance masks are generated similarly using the 
same occlusion-aware composition process.

Inverse rendering and object generation
We invert the described differentiable rendering model defined in 
equation (4) by optimizing the set of all object representations in a 
given image Ic with gradient-based optimization. We assume that, 
initially, each object op is placed at a pose ̂Tc,p and scaled with ̂sp near its 
underlying location. We represent object orientations in their respec-
tive Lie algebraic form 𝔰𝔰𝔰𝔰(3). We sample an object embedding ẑS,p and 
ẑT,p in the respective latent embedding space.

For in-the-wild images, Ic is composed of sampled object instances, 
other objects and the scene background, which poses a challenge for 
the prior.
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As our goal for tracking is to reconstruct all object instances of  
specific object classes, a naive ℓ2 image matching objective of the  
form ‖Ic − ̂Ic‖2  is noisy and challenging to solve with vanilla stochastic 
gradient descent methods. To tackle this issue, we optimize visual 
similarity in the generated object regions inside MIc = ∑No Mc,p  instead 
of the full image consisting of an RGB pixel loss and a learned perpetual 
similarity metric40 (LPIPS) as

ℒIR = ℒRGB + λℒperceptual = ‖(Ic − ̂Ic) ∘ M̂Ic ‖2 + λ1 LPIPSpatch(Ic, ̂Ic,p, M̂Ic ). (7)

See Supplementary Note 5 for a detailed description of this loss 
component.

Instead of using vanilla gradient descent methods, we propose 
an alternating optimization schedule with distinct properties that 
includes aligning zS before zT to reduce the number of optimization 
steps. See Supplementary Note 6 for the details of this optimization 
schedule. Initial object proposals are realized at the bounding-box 
centroid locations of the upstream object detector. We initialize all 
shape and texture embeddings with the same fixed values inside the 
embedding space. We then apply two optimization steps solely based 
on colour using the described loss and freeze the colour for the joint 
optimization of the pose. We add shape and scale only in the last steps 
(Fig. 1b). We regularize out-of-distribution generations averaged across 
all objects with

ℒembed = ‖αTzT + (1 − αT)zavgT ‖ + ‖αSzS + (1 − αS)zavgS ‖, (8)

which minimizes a weighted distance for each dimension of zS or zT 
with respect to the average embedding. For optimization, we use the 
Adam optimizer41. The values zavgS  and zavgT  are computed as the mean 
of the embeddings for shape and texture of the prior distribution of G. 
The final loss objective sums the RGB, perceptual cost ℒIR and the regu-
larization with the balancing factor αT = 0.7 and αS = 0.7 between the 
texture and shape instance, and respective mean embeddings in  
equation (8).

3D multi-object tracking by inverse rendering
Finally, we use the described inverse rendering approach to track 
objects in the proposed representation across video frames, which is 
illustrated in Fig. 1a. For readability, we omit p and the split of z into zS 
and zT in the following.

Common to tracking methods, we initialize observation yk with 
a given initial 3D detection on image Ic,k, and we set object location 
tk = [x, y, z]k in all three dimenstions and scale sk = max(wk, hk, lk) using 
the detected bounding-box width, length and height and heading ψk 
in frame k. We then find an optimal latent shape and texture repre-
sentation zk and a refined location and rotation of each object o with 
the inverse rendering pipeline for multi-object scenes. The resulting 
location, rotation and scale lead to the updated observation vector 
yk = [tk, sk, ψk]. Although we are not tied to a specific dynamics model, 
we use a linear state-transition model A for the object state xk = [x, y, z, 
s, ψ, w, h, l, x′, y′, z′]k, and a forward prediction using a Kalman filter37, a 
vanilla approach in 3D object tracking36. The derivates x′, y′, z′ are the 
respective velocities in all three dimensions of object k.

Matching between all objects in adjacent time steps is facilitated 
by computing the similarity across all available states. This includes the 
centroid distances and the 3D bounding-box intersection over union 
and places an additional focus on information about the appearance 
of the object and geometry embeddings (zT, zS), which improves the 
interpretability of such models. For all tracked states in xk, we follow 
the traditional Kalman filter match, update and predict design (Fig. 1). 
Supplementary Algorithm 1 and the derivations in Supplementary Note 
8 provide a detailed pseudo-algorithm and mathematical derivation of 
all steps. Only embeddings are updated through an exponential moving 
average zk,EMA over the past observations of the object.

Implementation details
We describe the implementation of all design choices, including the com-
position of the loss term, the proposed optimization schedule, the heuris-
tics applied in the matching stage of the multi-object tracker and details 
about the generative object model, in Supplementary Information.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used to generate the findings of this study are accessible through 
the respective public dataset download pages. The nuScenes dataset can 
be downloaded from https://www.nuscenes.org/nuscenes#download 
and access to the Waymo Open Dataset can be requested at https://
waymo.com/open/download/. We have included instructions on how to 
run the supplementary code on the nuScenes dataset in the supplemental 
code repository. Source data are provided with this paper.

Code availability
The code used to generate the findings of this study is available via 
Zenodo at https://doi.org/10.5281/zenodo.15659175 (ref. 42) or GitHub 
at https://github.com/princeton-computational-imaging/INRTracker.
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