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Abstract

Lidar has become crucial for autonomous driving, providing

high-resolution 3D scans that are key for accurate scene

understanding. To this end, lidar sensors measure the time-

resolved full waveforms from the returning laser light, which

a subsequent digital signal processor (DSP) converts to

point clouds by identifying peaks in the waveform. Conven-

tional automotive lidar DSPs process each waveform indi-

vidually, ignoring potentially valuable context from neigh-

boring waveforms. As a result, lidar point clouds are prone

to artifacts from low signal-to-noise ratio (SNR) regions,

highly reflective objects, and environmental conditions like

fog. While leveraging neighboring waveforms is investigated

extensively in transient imaging, applications remain limited

to scientific or experimental hardware. In this work, we

propose a learned DSP that directly processes full wave-

forms using a transformer architecture, leveraging features

from adjacent waveforms to generate high-fidelity multi-

echo point clouds. To assess our method, we capture data in

real-world driving scenarios and a weather chamber with a

conventional automotive lidar. Trained on synthetic and real

data, the method improves Chamfer distance by 32cm and

20cm compared to conventional peak finding and existing

transient imaging approaches, respectively. This translates

to maximum range improvements of up to 17m in fog and

14m in nominal real-world conditions.

1. Introduction

Scanning lidar sensors have become a cornerstone sensing

modality in autonomous driving [5, 9, 70], offering high

spatial and temporal resolution for accurate 3D scene under-

standing. Recent advancements in lidar technology, com-

bining solid-state scanning with single-photon avalanche

diodes (SPADs) [48], have substantially reduced both cost

and form factor, enabling widespread adoption across dif-

ferent types of autonomous vehicles [26]. These sensors

operate by emitting multiple laser pulses into the scene to ac-

quire the time-resolved full waveform of the returning light.

Subsequently, a digital signal processor (DSP) pipeline de-

tects peaks in the waveforms and returns a 3D point cloud.

Currently, automotive lidar manufacturers rely on analytic

DSP pipelines that process each measured waveform indi-

vidually [2, 31]. These pipelines are fine-tuned through a

combination of visual inspection and quality metrics, en-

abling accurate reconstruction in high signal-to-noise ratio

(SNR) areas. However, they struggle in challenging con-

ditions, such as object discontinuities - where diverging

beams interact with multiple surfaces (Fig. 1a)) - or dis-

tant low-reflectivity targets (Fig. 1b)), both of which cause

conventional DSPs to miss peaks. As shown in Fig. 1c),

retroreflective materials generate false positive points from

blooming [36, 80], distorted waveforms resulting in false

distance estimates [52], and multipath effects from reflec-

tions off the sensor cover glass. Scattering media, such as

fog [4, 8, 19, 30], rain [8, 16, 82], and snow [20, 30, 34],

cause falsely detected peaks while heavily attenuating actual

object peaks, see Fig. 1d).

To tackle these adverse conditions, waveform shape fea-

tures can be exploited to overcome the limitations of con-

ventional DSPs. Moreover, processing waveforms jointly,

instead of individually, enables DSPs to leverage neighbor-

hood information. Spatial neighborhoods for 3D reconstruc-

tion of waveform data have been used extensively in tran-

sient imaging, where existing work can be roughly grouped

into optimization-based and learned data-driven approaches.

Optimization-based approaches reconstruct scenes by for-

mulating a waveform lidar imaging model and solving the

inverse problem [63]. To this end, they derive complex imag-

ing models to account for different effects such as multiple

returns [69, 75], pulse broadening [74], or pile-up [23]. To

solve the ill-posed inverse problem, they rely heavily on

scene priors or regularization terms [63]. However, their

model assumptions and priors fail on large outdoor scenes

due to complex scene geometry and fluctuating scene param-

eters caused by, e.g., environmental effects. Furthermore,

their long runtimes, up to many hours [51, 75], prevent a

real-time application. On the other hand, existing learned

data-driven methods [39, 55, 73, 76] operate only on patches

instead of the full spatial resolution in order to handle the

uncompressed full waveform data. This limits their ability to

capture global context and introduces long run times. More-

over, they reconstruct only a single distance per waveform,
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Figure 1. Sensing Challenges for Automotive SPAD Lidar. Intensity-coded point clouds from conventional on-device processing in a)

multi-echo, b) low SNR, c) retroreflective, and d) foggy conditions, compared to ground truth. While conventional lidar DSPs process

waveforms κ individually, joint long-range transient waveform processing can mitigate these challenging conditions by exploiting their

waveform shape features and adjacency information. Ground truth is obtained from a) accumulated Velodyne scans for outdoor scenarios,

and (b,c) RGB-colored Leica scans for scenarios in the weather chamber.

which is often insufficient for automotive lidar applications

that frequently encounter multiple returns [45]. Common

to all existing transient imaging methods is their reliance

on scientific and experimental hardware with a limited field

of view (FoV), suited for controlled lab environments with

few objects [40, 59, 71] or extremely focused, long-range

applications over many kilometers [37, 46, 53]. In con-

trast, autonomous driving demands larger FoVs, ranges up

to 200m, and real-time capability.

Addressing these challenges, we introduce a novel neu-

ral DSP that learns to generate high-fidelity point clouds

from waveforms of a production-grade full waveform lidar

(FWL). Inspired by the success of transformers [14, 81],

we design our neural DSP with a transformer architecture

that processes all waveforms simultaneously, enabling it to

capture both temporal and spatial context. We demonstrate

that our proposed DSP is capable of mitigating environmen-

tal effects, such as fog, blooming, and distance distortions,

which are challenging for traditional methods in both out-

door driving scenarios and a weather chamber with distances

of up to 85 m. Additionally, we find that our neural DSP

can be easily extended to generate super-resolution point

clouds by exploiting waveform cues, outperforming tradi-

tional point cloud-based super-resolution methods. Specifi-

cally, we make the following contributions

• We devise a neural LiDAR DSP leveraging adjacent wave-

form features for improved peak detection, extendable to

predict super-resolved point clouds with 9× more points.

• We introduce a realistic FWL simulation model for

CARLA [13] to generate training data at large-scale.

• We validate our method using a real-world FWL dataset

we captured, observing a 32 cm Chamfer distance improve-

ment in 3D reconstruction and a up to 17 m increase in

sensor range compared to prior approaches.

2. Related Work

Although existing transient imaging methods are designed

for experimental hardware, lidar DSPs can be seen in the

context of transient imaging. Tab. 1 compares our work to

related transient imaging methods.

Classical DSPs. Conventional automotive lidar DSPs run

on-device with limited memory, significantly compressing

waveforms to reduce transfer rates [42, 82]. These DSP

pipelines are often proprietary but typically involve matched

filtering [63, 79] and peak or leading edge detection [31]

on individual waveforms to estimate distances. Spatial ef-

fects like blooming are corrected at the point cloud level

[15]. While efficient, these pipelines often fail in challeng-

ing low SNR or scattering conditions as they do not consider

neighboring waveforms. Conversely, optimization-based

transient imaging methods effectively reconstruct distant

objects [37, 46, 53], low-SNR scenes [32, 51] or improve

reconstruction in scattering media [22, 74]. These methods

construct imaging models and then solve the inverse prob-

lem using maximum likelihood estimation [77] or Monte

Carlo processing [6] to reconstruct the scene. However, these

methods are computationally expensive and unsuitable for

real-time automotive sensing, as integrating various complex

scene properties and sensor non-linearities becomes increas-

ingly intractable. Additionally, they rely on hand-crafted

spatial regularizers [21, 69], superpixels [60] or point cloud

denoising [75] to integrate spatial context. In contrast, our

method is real-time capable and integrates global 3D context.

Learned DSPs can be divided into multimodal approaches

[39, 73] requiring additional image data and unimodal ap-

proaches requiring solely waveform data [55, 56, 76]. Mul-

timodal approaches compromise the independence of lidar

and camera, eliminating the redundancy needed for robust

perception in autonomous driving. Existing learned DSPs



Conv. Opti. Multi. Uni. Ours

DSP [60, 74] [39, 73] [55, 56]

Data-Driven ✗ ✗ ✓ ✓ ✓

Neighborhood ✗ ✓ ✓ ✓ ✓

Multiple Echoes ✓ (✓) ✗ ✗ ✓

Full Res. ✓ ✓ ✗ ✗ ✓

Real-Time ✓ ✗ (✓) (✓) ✓

Sensing Scenario

Low-SNR ✗ ✓ ✓ ✓ ✓

Scattering ✗ (✓) (✓) (✓) ✓

Blooming ✗ ✗ (✓) (✓) ✓

Long-Range ✓ ✓ (✓) ✓ ✓

Table 1. Transient Imaging and Lidar DSPs. Each criterion is

fully ✓, partially (✓), or not ✗ met. We compare conventional

(Conv.), optimization-based (Opti.), learned multimodal (Multi.),

and unimodal (Uni.) DSPs with the proposed method.

function as waveform denoising methods, supervising with

a pseudo ground truth waveform using a Kullback-Leibler

(KL) divergence loss and reconstructing distance with an

argmax operation. This limits them to a single distance per

waveform and lacks supervision in sky regions where no

objects are present. In contrast, the proposed DSP treats

reconstruction as a classification problem, distinguishing

between empty and occupied areas, followed by distance

regression. This enables multiple peak detection and proper

handling of sky regions. While unimodal DSPs in [56, 76]

also consider multiple returns, they assume only one peak is

valid, which is reasonable for kilometer-range applications

where the beam divergence of a single emitted beam causes

returns on multiple receiver pixels, but is not suitable for

autonomous driving.

Full Waveform Lidar Sensors find various applications

in, e.g., airborne systems for geoscience [24], archaeology

[12], and forestry [57, 83], and non-line-of-sight imaging

[47, 62, 68]. The benefit of FWL data in adverse weather

conditions, where conventionally estimated point clouds

suffer from scattering, has been investigated by [58, 66, 82].

Recent works also demonstrate that it is possible to recover

neural radiance fields from FWL data [33, 43, 44]. The FWL

in our work acquires waveforms by recording timestamps

of SPAD trigger events in histograms via Time-Correlated

Single Photon Counting (TCSPC) [1, 10, 49] across multiple

pulse emission cycles. Following prior work, the SPADs in

our sensor operate in free-running mode [28, 72, 85] with

asynchronous acquisition [18, 78], enabling multiple photon

detections per cycle. Unlike first-photon methods [32] that

deactivate after initial detection until the next cycle, the

free-running mode allows detection of photons from objects

even after initial triggers from high ambient light, preventing

pile-up distortions mentioned in other works [23, 27].

3. Sensing Forward Model

In this work, we employ a sensor with a 2D SPAD array

capturing full waveform data via TCSPC sensing.

General Forward Model. We model full waveform sensing

using the transient photon flux ψ incident on the sensor

following [29, 50]. For an idealized pixel (i, j) illuminating

a single opaque point, the photon flux is given as

ψi,j(t) =

∫ ∞

0

g(τ)Hi,j(t− τ)dτ + ai,j(t), (1)

where g(t) is the temporal shape of the laser pulse, Hi,j

is the transient scene response and ai,j(t) accounts for am-

bient photon flux. The lidar illuminates the scene with N

sequential laser pulses g and records trigger events from

arriving photons within a time bin k ∈ [0..T − 1] to build up

the measured waveform histogram κ, where T denotes the

number of temporal bins. Building on Eq. (1), the photon

detection rate λ in bin k for N pulses can then be modeled

as the quantized version of the photon flux by

λi,j [k] = µ

∫ (k+1)∆

k∆

ψi,j(t)dt, (2)

where ∆ denotes the temporal bin width and µ ∈ [0, 1] is the

photon detection probability [63]. The captured waveform κ

is modeled as a random variable drawn from the probability

distribution P characterizing the sensor response as

κi,j [k] ∼ P (λi,j), (3)

that is an integer number representing the number of trigger

events per k. Since the distribution P depends on the photon

rates across all temporal bins, the sensor response inherently

models temporal correlations between neighboring bins [23,

64]. In the following, we analyze both low and high-flux

conditions before introducing a model for fog, see Fig. 2.

Low-Flux Transients. In the low-flux regime, we adopt the

multi-peak model from Goudreault et al. [17] to simulate

diverging laser beams. We discretize the scene into a grid

of points at distances d ∈ R
aH×aW by ray-tracing with

the view direction for every pixel (i, j), where a denotes an

integer upsampling factor. Following Rasshofer et al. [65],

the scene response of a single point object at di,j is given by

Hi,j(t) =
ρi,j

4d2ij
δ

(
t− 2

di,j

c

)
, (4)

where ρi,j denotes the incident angle dependent reflectivity,

c the speed of light, and δ a Dirac pulse. Substituting Eq. (4)

into Eq. (1) yields the photon flux

ψi,j(t) =
ρi,j

4d2ij
g

(
t− 2

di,j

c

)
+ ai,j(t). (5)

As indicated by Fig. 2f), due to beam divergence, the pulse

g can hit multiple objects, producing a multiple-peak wave-

form. Following [17], this is modeled as a linear combination
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Figure 2. Transient Waveform Lidar Forward Model. Full waveform lidar sensing is modeled by distinguishing between low-flux (a)

and high-flux returns from retroreflectors (b). In low-flux conditions, a multi-peak waveform κm,n at pixel (m,n) is simulated from a

supersampled scene [17]. For pixels illuminating retroreflectors (c), waveform distortions and multipath effects from sensor reflections are

considered to model high-flux FWL sensing. Pixels (u, v) that do not illuminate retroreflectors directly (d) might be affected by blooming

effects, due to sensor-internal scattering. Realistic fog transients (e) are simulated by adapting [19, 25]. For scene geometry, reflectivity, and

ambient light, we extract a supersampled scene, denoted with indices (i, j), from CARLA (f) to enable training data generation.

of neighboring transients from a supersampled scene. Specif-

ically, for a pixel (m,n) in the H×W SPAD array, the flux

ψm,n is computed by downsampling transients in the spatial

neighborhood around (m,n), such that

ψm,n(t) =
∑

i,j∈N (m,n)

Ki,jψi,j(t), (6)

where N defines the a × a spatial neighborhood and Ki,j

the spatial intensity profile of the beam.

In low-flux conditions, when the number of expected

photons per pulse is smaller than one [32], each bin k of

waveform κm,n can be modeled independently as a Poisson

random variable [54, 60, 63], simplifying Eq. (3) to

κm,n[k] ∼ Poisson

(
µ

∫ (k+1)∆

k∆

ψm,n(t)dt

)
. (7)

High-Flux Transients. In high-flux conditions, bins k

are no longer independent due to SPAD dead time [23, 61].

We model high-flux returns from retroreflective materials,

such as traffic signs. Other high-flux effects like pile-up

from strong ambient light (see [23]) are mitigated by operat-

ing our free-running SPADs in asynchronous mode [18, 78].

As shown in Fig. 2c), high-flux returns immediately trigger

events at t0 in early segments of the returning pulse g, in-

ducing a steep primary peak f prim. After a brief dead time

T dead, the SPADs are reactivated and detect subsequent pho-

tons. Since T dead ≈ 3-5ns is shorter than the pulse length

T g ≈ 10ns, photons immediately trigger additional events

from time t0+T
dead onward, forming a secondary peak f sec.

However, detector non-idealities, such as slow voltage ramp-

up after quenching [11], prevent SPAD recovery in every

cycle, reducing detection probability for photons arriving

during t ∈ [t0 + T dead, t0 + T g]. Moreover, the secondary

peak decays due to a combination of varying dead times of

the SPADs per pixel and fall-off of the emitted pulse in later

segments. We model the primary peak f prim as Gaussian

and the secondary peak f sec with an exponentially modified

Gaussian distribution, such that

κ′m,n[k] =f
prim(k, dm,n, θ

prim)+f sec(k, dm,n, θ
sec), (8)

where θprim and θsec parameterize the shape of both pulses.

We refer to the Supplementary Material for more details.

With high-flux returns, we observe returns that reflect

off the sensor front cover, travel back to the object, and

register as a multipath peak at double the distance, as shown

in Fig. 2c). To model multipath effects, Eq. (8) is extended

as

κ′′m,n[k] = κ′m,n[k] +
r

d2m,n

g′
(
k − 4∆

dm,n

c

)
, (9)

where r denotes the reflectivity of the retroreflector and g′

the quantized pulse by ∆. Integer quantization and clipping

to model saturation of κ′′m,n yields the final κm,n.

Highly reflective targets affect not only directly illumi-

nated pixels, but also neighboring ones, as photons scat-

ter within the sensor and illuminate adjacent SPADs (see

Fig. 2d). This effect, known as blooming, generates false

positive points around high-reflectance areas with exponen-

tially decaying intensity as the distance from the target in-

creases [15]. To model blooming, for each pixel (u, v) not

illuminating a retroreflector, the point pbloom
u,v at the intersec-

tion of the ray and the plane containing the high-reflectance

region is determined. Then, the Euclidean distance d
sign
u,v

between pbloom
u,v and the closest point on the retroreflective

target along line u is computed. Due to the line-wise readout

of our FWL, blooming effects are independent for each line.

Finally, the flux from indirect illumination generating the

blooming is computed as

ψbloom
u,v (t) = f bloom(dsign

u,v)g

(
t− 2

∥pbloom
u,v ∥

c

)
, (10)
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the neural DSP is able to output a multi-peak point cloud at inference time.

where f bloom = B exp(−αbloomd
sign
u,v) with B and αbloom de-

scribe the decaying blooming effect. The total flux ψ′
u,v is

computed by adding the blooming flux to the scene flux ψu,v ,

and Eq. (7) is used to simulate FWL sensing.

Scattering Transients. Existing work [20, 65] finds that

waveforms in fog exhibit exponential decay compared to

clear-weather waveforms plus an initial broad peak caused

by scattering from suspended droplets. Following [22, 25],

this initial scattering peak can be effectively modeled using

an exponentially modified Gaussian distribution f fog. Thus,

the flux ψ
fog
m,n(t) in foggy conditions can be written as

ψfog
m,n(t) = exp(−αfogt)ψm,n(t)+f

fog(t, θfog)+βfog, (11)

where αfog quantifies the fog thickness, θfog parameterizes

the shape of the initial scattering peak, and βfog is a small

offset to model multiple scattering, which improves wave-

form realism. FWL sensing is then modeled with Eq. (7) to

yield the foggy waveform.

4. Neural DSP

To leverage full waveform data in a learning-based ap-

proach, we devise a neural DSP that processes all waveforms

κ ∈ R
H×W×T in unison, where T is the number of tempo-

ral bins. We treat peak finding as a classification problem by

dividing the temporal axis into T̃ = 33 patches and classify-

ing whether each patch is occupied or empty. For occupied

patches, we regress a distance offset o ∈ R
H×W×T̃ to de-

termine the final distance as shown in Fig. 3. At inference

time, our neural DSP outputs a multi-peak point cloud by

thresholding with the classification score c ∈ R
H×W×T̃×2.

We describe the architecture in Sec. 4.1, an extension for

superresolution in Sec. 4.2, and training details in Sec. 4.3.

4.1. Spatio­Temporal Waveform Transformers

We first apply matched filtering [79] to increase SNR, pro-

cessing κ with a 1D temporal convolution. The waveform is

then divided into T̃ patches and tokenized to feature vectors

of sizeD = 32. The feature embeddings are augmented with

sinusoidal positional encodings along the temporal axis and

processed in an U-Net architecture [7] using spatio-temporal

transformers as elementary building blocks.

To handle the large number of patches, our spatio-

temporal transformer decomposes attention into temporal

and spatial attention [3], as illustrated in Fig. 3. Temporal

attention is computed between every patch of a specific pixel.

Spatial attention uses a shifted window (SWIN) approach

[41], operating on non-overlapping local windows. Window

positions are shifted between consecutive layers to enable

cross-window interactions. Given the non-square spatial res-

olution of κ, we adopt non-square 2x4 attention windows

following [84]. After adding features from residual connec-

tions and layer normalization, the resulting patch features

are processed with a multi-layer perceptron (MLP).

Downsampling employs patch merging layers [41], con-

catenating features from 2x2 neighborhoods and projecting

them to 2D-dimensional embeddings. The encoder applies

two downsampling steps, each halving the spatial resolu-

tion to capture global context, followed by a spatio-temporal

transformer at the bottleneck. For upsampling, the decoder

reverses this process using patch unmerging layers [84] to

restore the original spatial resolution.

We employ two prediction heads that process the patch

embeddings through linear projections: classification scores

c with softmax activation, and offsets o with sigmoid activa-

tion, constraining offsets within patches. The final distance

for an occupied patch defined by index (m,n, k̃), where

k̃ ∈ [0..T̃ − 1], can be determined as

dm,n,k̃ = k̃
T

T̃
+ om,n,k̃

T

T̃
. (12)

4.2. Learning Super­Resolution from Transients

Current lidar sensors suffer from lower resolution compared

to, e.g., cameras. However, the full waveform contains help-
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ful information to artificially increase the spatial resolution

without the need for more pixels. For example, multiple

peaks in the waveform suggest that a higher-resolution lidar

with smaller beam divergence would resolve distinct points.

Conversely, a single strong peak indicates that a higher-

resolution system would detect multiple points at similar

distances. To exploit these super-resolution (SR) waveform

cues, we extend our neural DSP by appending an additional

spatio-temporal transformer and an upsampling block to the

U-Net decoder. This allows to effectively disentangle Eq. (6)

to render a SR feature map of size aH×aW×T̃×D upsam-

pled by a = 3. We then apply classification and offset heads

to produce the final SR point cloud.

4.3. Training

We supervise patch classification with a focal loss [38] to

counter the imbalance of occupied and empty patches as

Lclass =

1∑

i=0

α(1− [c]i)
γ [cgt]i log ([c]i) , (13)

where α = 0.25 and γ = 2 are default hyperparameters, cgt

are the ground truth binary labels, [c]0 and [c]1 denote the

probability that a patch is occupied or empty, respectively.

The offset o is supervised with a L1 loss

Loffset = |m⊙ (ogt − o)|
1

, (14)

where ogt are the ground truth offsets computed by rewrit-

ing Eq. (12) and m is a boolean mask denoting all patches

including a ground truth scene point.

We train on synthetic data and fine-tune on real data.

We use Eq. (9) and Eq. (10) to augment additional traffic

signs, as well as Eq. (11) for fog into the real data. Note

that the neural DSP is only trained on synthetic fog and

has never seen real-world fog. More details on training and

augmentation are provided in the Supplementary Material.

5. Evaluation

We evaluate our method against conventional DSPs and state-

of-the-art learned transient imaging approaches on synthetic

data with perfect ground truth and real-world measurements

in clear and foggy conditions. For synthetic data, we follow

[17, 67] and integrate our forward model into CARLA, see

Fig. 2f). For real data, we configure a production-grade

Microvision MOVIA™ FWL to have a resolution ofH = 40
by W = 128 over a 15°(vertical) by 60°(horizontal) FoV.

Waveforms are recorded with a temporal resolution of 266 ps
over T = 2112 bins, allowing for a range of 85 m. As shown

in Fig. 1a), we capture data in outdoor scenarios - using

accumulated Velodyne VLS-128 point clouds as ground truth

- for fine-tuning and testing. Additional test data is captured

in both clear and foggy conditions in a weather chamber,

with dense Leica scans as ground truth.
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Lindell [39] 1.098 80.69 1.793 65.77 0.702 81.57

Peng [56] 0.505 88.87 0.659 78.79 0.501 86.74

Proposed 0.307 92.57 0.428 85.18 0.266 95.44

F
o

g

Conv. 2.199 36.62 2.912 23.13 0.539 94.15

Lindell [39] 4.711 40.93 5.293 31.99 2.165 73.68

Peng [56] 2.326 68.27 2.700 62.30 0.528 88.43

Proposed 1.110 73.78 1.265 68.43 0.499 94.35

Table 2. Quantitative Results. Existing transient imaging meth-

ods [39, 56] improve reconstruction in low SNR (0–2) scenarios.

At high SNR (2–4), their denoising strategy offers no advantage

over conventional peak finding (Conv.). The proposed neural DSP

outperforms baselines across all SNR ranges and excels in fog.

Conv. Lindell[39] Peng[56] Proposed

Clear 43.38 30.27 51.44 65.27

Fog 28.80 28.41 39.55 56.71

Table 3. Maximum Range (↑) [m]: On clear and foggy real-world

data, the neural DSP outperforms the best baseline by 14m and

17m maximum range in clear and foggy conditions, respectively.

As the ground truth may contain multiple valid distances

per pixel, we evaluate on the point cloud level using Chamfer

Distance (CD) and Recall as metrics. To assess the bene-

fit in challenging conditions, we evaluate two SNR ranges:

difficult low-SNR conditions (0-2) and easier high-SNR con-

ditions (2-4). Following commercial sensors, we further

introduce a maximum range metric on low-reflective targets.

We use low-SNR points (0–2) as these targets, bin them by

distance, calculate distance-binned Recall, and define max-

imum range as the farthest distance achieving 50% Recall.

Details on the simulator, datasets, and metrics are provided

in the Supplementary Material

5.1. Baseline DSPs

Since commercial on-device DSPs are proprietary (though

we compare against commercial lidar sensors below), we

implement a conventional ray-based pipeline following [17].

This pipeline employs matched filtering, ambient light re-

moval, and peak detection to identify up to four peaks per

waveform above a specified threshold. In foggy conditions,

we only use the last peak [4] and adjust the threshold. Fur-

thermore, we compare against two learned transient imaging

methods: Lindell et al. [39] and Peng et al. [56]. For Lin-

dell et al., we use their method without RGB camera input.

As discussed earlier, both methods struggle in sky regions.

Since 26% of pixels in our dataset correspond to sky re-

gions, this would hinder a fair comparison. Hence, we add

a lightweight convolutional network, operating along the

temporal dimension of the final feature map, to predict a sky

mask and supervise their denoising only on occupied pixels.

Scene Conv. Proposed w/o SR

GT SR ILN SR Proposed w/ SR

D
istan

ce [m
]

0

80

Figure 5. Qualitative Super-Resolution (SR) Results. Extending

our neural DSP to render SR point clouds is beneficial for distin-

guishing small hazardous items from the road, see zoom-ins for first

row compared to SR results in the second row. The best-performing

baseline ILN [35] suffers from artifacts and flying pixels.

5.2. Assessment

Reported in Tab. 2, our neural DSP improves point cloud

reconstruction on synthetic data, reducing CD by 63.22%

over conventional DSPs. Analyzing waveforms jointly is par-

ticularly effective in low-SNR conditions, where all transient

imaging methods, including our neural DSP, achieve higher

Recall than the conventional DSP. However, Lindell et al.

and Peng et al. produce less accurate reconstructions, espe-

cially at high SNR, where their denoising approach offers

no advantage over conventional peakfinding.

The results on synthetic data are consistent with those

from the real clear-weather test set. As shown in Fig. 4

(first row), all transient imaging methods reconstruct the

low-reflectivity black car missed by the conventional DSP.

However, only our neural DSP captures the car’s shape with

high-frequency details. This aligns with the second row,

where our neural DSP provides detailed reconstructions at

low SNR, accurately reconstructing the car’s side windows.

In contrast, Lindell et al. and Peng et al. reconstruct low-

frequency scene trends, but their distance predictions ex-

hibit more noise. Furthermore, as shown in the third row,

the proposed neural DSP corrects distance distortions and

multipath effects caused by retroreflectors, challenging for

baseline DSPs. Our classification approach differentiates

between blooming and actual target peaks, as seen e.g. for

the rightmost traffic sign. In contrast, the denoising strategy

of Lindell et al. and Peng et al. struggles to fully suppress

false peaks, resulting in excess points around the traffic sign.

Overall, the proposed neural DSP improves CD by 32 cm

over conventional peakfinding and by 20 cm over the best-

performing baseline by Peng et al. As CD merely penalizes

missed or false points over distance errors, this highlights our

method’s strength: suppressing false peaks and recovering

hard-to-detect ones, rather than refining distances.

In foggy conditions, existing transient imaging methods

fail to suppress false peaks, see Fig. 4 (fourth row). While

their higher Recall in Tab. 2 illustrates the benefit of joint

processing, both methods suffer from severe backscatter.



Real Data Pre-Training High-Flux CD [m] ↓ Recall [%] ↑

✗ ✓ ✓ 0.535 85.64

✓ ✗ ✗ 0.443 90.99

✓ ✓ ✗ 0.384 91.98

✓ ✓ ✓ 0.307 92.57

Table 4. Imaging Model Ablations. Point cloud quality decreases

on the clear test set when simulation components are withheld

during training, confirming the accuracy of the forward model.

Synthetic Real

CD [m] ↓ Recall [%] ↑ CD [m] ↓ Recall [%] ↑

Tulip [84] 0.552 89.76 0.678 86.93

ILN [35] 0.387 88.12 0.413 87.52

Proposed 0.264 92.81 0.273 94.47

Table 5. Quantitative Super-Resolution Evaluation. Our neural

DSP can leverage waveform information to render super-resolution

(SR) point clouds, allowing for improved reconstruction perfor-

mance compared to range image-based SR methods.

The proposed neural DSP reconstructs both the pedestrian at

30m and the low-reflective bumper, reducing CD by 1.08m

compared to the best-performing baseline.

These improvements translate to an increase in maximum

range of 13.8m and 17.2m compared to the best-performing

baseline in clear and foggy conditions, as shown by Tab. 3.

Our method processes waveforms in a single pass, achiev-

ing real-time rates of 68 Hz on unoptimized PyTorch code

(sensor at 15 Hz). Peng et al. and Lindell et al. require mul-

tiple passes, reducing rates to 12 Hz and 5 Hz, respectively.

5.3. Validation of Forward Model

To validate the accuracy and effectiveness of our forward

model, we ablate different components of the simulation

during training, and measure test performance. As shown in

Tab. 4, using only simulated data still achieves 0.535m CD

on the clear test set (comparable to the best baseline), while

removing the simulation altogether increases CD by 44.3%,

confirming its necessity. Omitting the high-flux simulation

increases CD by 25.1% as predicted point clouds suffer from

blooming. Removing the fog simulation reduces accuracy to

2.311m CD (+108.2%) on the fog test as the neural DSP is

unable to suppress false scattering peaks.

5.4. Lidar Super­Resolution

To assess our neural DSP for lidar SR, we compare against

state-of-the-art methods ILN [35] and Tulip [84], training

all methods to reconstruct point clouds with upsampling fac-

tor a = 3. On both synthetic and real-world data, we find

that the use of waveform data significantly improves recon-

struction compared to baseline methods, see Tab. 5. As the

baseline methods ingest point clouds with only the strongest

measured peak per pixel, they cannot leverage multiple peak

cues. These cues are beneficial for detecting small hazardous

items on the road, as illustrated by the qualitative findings

in Fig. 5. Regular DSPs (first row) produce few points on

small objects, making them hard to distinguish from the

road, while the proposed method (second row) allows clear

Distance accuracy [m] ↓ compared to dense GT scan in weather chamber

Sensor Proposed Aeva Aeries II Luminar Iris Velodyne VLS-128

Clear 0.056 0.071 0.067 0.035

Fog 0.074 0.126 0.166 0.103

Table 6. Comparison with Commercial Lidars and GT Velodyne.

Our proposed neural DSP compares favorably to commercially

available lidars, especially in fog.

distinction. The best-performing baseline ILN suffers from

a significant number of flying pixels, whereas the neural SR

DSP yields a high-frequency SR scene reconstruction.

5.5. Comparison with Automotive Lidar Sensors

We compare the point clouds produced by the neural DSP

against two commercially mass-produced lidar sensors:

Aeva Aeries II and Luminar Iris. The Velodyne VLS-128

targets ground-truthing applications and operates at a differ-

ent cost level. Tab. 6 shows distance accuracy comparisons

to the dense Leica ground truth scan in the weather chamber.

In clear conditions, the neural DSP yields higher accuracy

than the commercial sensors, second only to the Velodyne

used to train the network. In fog, the neural DSP is capable

of suppressing scatter points and delivers the best distance

accuracy, outperforming all sensors, including the Velodyne.

Qualitative results are reported in the Supplement.

6. Conclusion

We propose a neural DSP that learns high-fidelity multi-echo

point clouds from lidar waveforms by extracting waveform

features from adjacent rays. To train it, we devise a real-

istic sensor forward model simulating low-, high-flux, and

foggy transients. In clear weather, our neural DSP improves

point cloud quality by 32 cm and 20 cm CD over conven-

tional DSPs and transient imaging methods. Further, our

integrated super-resolution improves CD by 50% over the

best-performing baseline while allowing for a ninefold in-

crease in returned points. In fog, the Neural DSP reduces

CD by over a meter, translating to 17m maximum range

improvements, compared to the best-performing baseline.

While our approach builds on current production-grade lidar

sensors, limited on-device compute prevents deployment of

deep neural networks, requiring offloading to a host. Band-

width constraints further limit the frame rate, though this

may be alleviated in future hardware. As our methods out-

perform conventional DSPs, particularly under challenging

conditions, we hope this work encourages LiDAR manufac-

turers to make future sensing pipelines more programmable,

enabling end-to-end scene understanding directly on-device.
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[26] Hanno Holzhüter, Jörn Bödewadt, Shima Bayesteh, Andreas

Aschinger, and Holger Blume. Technical concepts of auto-

motive lidar sensors: a review. Optical Engineering, 62(3):

031213–031213, 2023. 1

[27] Hilmar Ingensand and Timo Kahlmann. Single-photon de-

tection for high precision ranging – a trade-off study. In

1st Range Imaging Research Day Proceedings, pages 33–42.

Hilmar Ingensand and Timo Kahlmann, 2005. 3

[28] Atul Ingle, Andreas Velten, and Mohit Gupta. High flux

passive imaging with single-photon sensors. In Proceedings



of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6760–6769, 2019. 3

[29] Adrian Jarabo, Belen Masia, Julio Marco, and Diego Gutier-

rez. Recent advances in transient imaging: A computer graph-

ics and vision perspective. Visual Informatics, 1(1):65–79,

2017. 3

[30] Maria Jokela, Matti Kutila, and Pasi Pyykönen. Testing

and validation of automotive point-cloud sensors in adverse

weather conditions. Applied Sciences, 9, 2019. 1

[31] B Jutzi and U Stilla. Laser pulse analysis for reconstruction

and classification of urban objects. International archives

of photogrammetry remote sensing and spatial information

sciences, 34(3/W8):151–156, 2003. 1, 2

[32] Ahmed Kirmani, Dheera Venkatraman, Dongeek Shin, An-

drea Colaço, Franco NC Wong, Jeffrey H Shapiro, and

Vivek K Goyal. First-photon imaging. Science, 343(6166):

58–61, 2014. 2, 3, 4

[33] Tzofi Klinghoffer, Xiaoyu Xiang, Siddharth Somasundaram,

Yuchen Fan, Christian Richardt, Ramesh Raskar, and Rakesh

Ranjan. Platonerf: 3d reconstruction in plato’s cave via single-

view two-bounce lidar. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 14565–14574, 2024. 3

[34] Matti Kutila, Pasi Pyykönen, Maria Jokela, Tobias Gruber,

Mario Bijelic, and Werner Ritter. Benchmarking automotive

LiDAR performance in arctic conditions. In IEEE Inter-

national Conference on Intelligent Transportation Systems

(ITSC), 2020. 1

[35] Youngsun Kwon, Minhyuk Sung, and Sung-Eui Yoon. Im-

plicit lidar network: Lidar super-resolution via interpolation

weight prediction. In 2022 International Conference on

Robotics and Automation (ICRA), pages 8424–8430. IEEE,

2022. 7, 8

[36] Jacob Lambert, Alexander Carballo, Abraham Monrroy Cano,

Patiphon Narksri, David Wong, Eijiro Takeuchi, and Kazuya

Takeda. Performance analysis of 10 models of 3d lidars for

automated driving. IEEE Access, 8:131699–131722, 2020. 1

[37] Zheng-Ping Li, Jun-Tian Ye, Xin Huang, Peng-Yu Jiang, Yuan

Cao, Yu Hong, Chao Yu, Jun Zhang, Qiang Zhang, Cheng-Zhi

Peng, Feihu Xu, and Jian-Wei Pan. Single-photon imaging

over 200km. Optica, 8(3):344–349, 2021. 2

[38] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

42(2):318–327, 2020. 6

[39] David B. Lindell, Matthew O’Toole, and Gordon Wetzstein.

Single-photon 3d imaging with deep sensor fusion. ACM

Trans. Graph., 37(4), 2018. 1, 2, 3, 6, 7

[40] David B. Lindell, Matthew O’Toole, and Gordon Wetzstein.

Towards transient imaging at interactive rates with single-

photon detectors. In 2018 IEEE International Conference on

Computational Photography (ICCP), pages 1–8, 2018. 2

[41] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In

Proceedings of the IEEE/CVF international conference on

computer vision, pages 10012–10022, 2021. 5

[42] Ievgeniia Maksymova, Christian Steger, and Norbert Druml.

Review of LiDAR Sensor Data Acquisition and Compression

for Automotive Applications. Proceedings, 2(13):852, 2018.

Number: 13 Publisher: Multidisciplinary Digital Publishing

Institute. 2

[43] Anagh Malik, Noah Juravsky, Ryan Po, Gordon Wetzstein,

Kiriakos N Kutulakos, and David B Lindell. Flying with

photons: Rendering novel views of propagating light. In

European Conference on Computer Vision, pages 333–351.

Springer, 2024. 3

[44] Anagh Malik, Parsa Mirdehghan, Sotiris Nousias, Kyros Ku-

tulakos, and David Lindell. Transient neural radiance fields

for lidar view synthesis and 3d reconstruction. Advances in

Neural Information Processing Systems, 36, 2024. 3

[45] Yunze Man, Xinshuo Weng, Prasanna Kumar Sivakumar,

Matthew O’Toole, and Kris M Kitani. Multi-echo lidar for

3d object detection. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 3763–3772,

2021. 2

[46] Aongus McCarthy, Nils J. Krichel, Nathan R. Gemmell, Xim-

ing Ren, Michael G. Tanner, Sander N. Dorenbos, Val Zwiller,

Robert H. Hadfield, and Gerald S. Buller. Kilometer-range,

high resolution depth imaging via 1560 nm wavelength single-

photon detection. Opt. Express, 21(7):8904–8915, 2013. 2

[47] Ji Hyun Nam, Eric Brandt, Sebastian Bauer, Xiaochun Liu,

Marco Renna, Alberto Tosi, Eftychios Sifakis, and Andreas

Velten. Low-latency time-of-flight non-line-of-sight imaging

at 5 frames per second. Nature communications, 12(1):6526,

2021. 3

[48] C. Niclass, A. Rochas, P. Besse, and E. Charbon. Design

and characterization of a cmos 3-d image sensor based on

single photon avalanche diodes. IEEE Journal of Solid-State

Circuits, 40(9):1847–1854, 2005. 1

[49] Desmond V. O’Connor and David Phillips. Time-Correlated

Single Photon Counting. Academic Press, 1984. 3

[50] Matthew O’Toole, Felix Heide, Lei Xiao, Matthias B Hullin,

Wolfgang Heidrich, and Kiriakos N Kutulakos. Temporal

frequency probing for 5d transient analysis of global light

transport. ACM Transactions on Graphics (ToG), 33(4):1–11,

2014. 3

[51] Matthew O’Toole, Felix Heide, David B. Lindell, Kai Zang,

Steven Diamond, and Gordon Wetzstein. Reconstructing Tran-

sient Images from Single-Photon Sensors. In 2017 IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

pages 2289–2297, Honolulu, HI, 2017. IEEE. 1, 2

[52] Angus Pacala and Mark Frichtl. Accurate photo detector

measurements for lidar. Ouster, Inc., 2021. Published patent

application US11209544B2. 1

[53] Agata M Pawlikowska, Abderrahim Halimi, Robert A Lamb,

and Gerald S Buller. Single-photon three-dimensional imag-

ing at up to 10 kilometers range. Optics express, 25(10):

11919–11931, 2017. 2

[54] Adithya K. Pediredla, Aswin C. Sankaranarayanan, Mauro

Buttafava, Alberto Tosi, and Ashok Veeraraghavan. Signal

Processing Based Pile-up Compensation for Gated Single-

Photon Avalanche Diodes, 2018. arXiv:1806.07437 [physics].

4



[55] Jiayong Peng, Zhiwei Xiong, Xin Huang, Zheng-Ping Li,

Dong Liu, and Feihu Xu. Photon-efficient 3d imaging with a

non-local neural network. In Computer Vision–ECCV 2020:

16th European Conference, Glasgow, UK, August 23–28,

2020, Proceedings, Part VI 16, pages 225–241. Springer,

2020. 1, 2, 3

[56] Jiayong Peng, Zhiwei Xiong, Hao Tan, Xin Huang, Zheng-

Ping Li, and Feihu Xu. Boosting photon-efficient image

reconstruction with a unified deep neural network. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

45(4):4180–4197, 2023. 2, 3, 6, 7
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