
Self-Supervised Sparse Sensor Fusion for Long Range Perception

(Supplementary Information)

Edoardo Palladin∗1 Samuel Brucker∗1

Filippo Ghilotti1 Praveen Narayanan1 Mario Bijelic1,2 Felix Heide1,2

1Torc Robotics 2Princeton University ∗Equal contribution

https://light.princeton.edu/LRS4Fusion

The following document provides supplemental materials to support the findings in the main manuscript. In Section 1,

we report additional details about the experimental long-range highway dataset, and we include samples extracted from the

recordings. In Section 2, we provide additional implementation information on the components of the proposed architec-

ture. In Section 3, we describe the experimental setup for the Depth, Lidar Forecasting and Object detection experiments.

In Section 4, we detail the implementation and training of baseline methods in the different tasks presented in the main

manuscript. In Section 5, we present additional quantitative results for object detection and a modality ablation study for

LiDAR forecasting. Finally, in Section 6, we show additional qualitative results.

Contents

1. Long-Range Experimental Highway Dataset 4

2. Implementation Details 4

2.1. Model Architecture . 4

2.1.1 . Input Sensors. 5

2.1.2 . Depth Network. 5

2.1.3 . Sparse Operations. 6

2.1.4 . Sparse Windowed Attention. 6

2.1.5 . Occupancy and Velocity Decoders. 6

2.2. Down-Stream Tasks . 6

2.3. Pre-Training Details . 8

2.4. Hyper-Parameters . 9

3. Experimental Setup 9

3.1. Depth Prediction . 9

3.2. LiDAR Forecasting. 11

3.3. Object Detection. 11

4. Baseline Implementation Details 11

4.1. Depth Prediction . 11

4.2. LiDAR Forecasting . 11

4.3. Object Detection . 11

5. Additional Quantitative Results 12

5.1. Object Detection . 12

5.2. Modality Ablation on the LiDAR forecasting task . 13

1

https://light.princeton.edu/LRS4Fusion

6. Additional Qualitative Results 13

6.1. Latent Features . 13

6.2. LiDAR Forecasting . 14

6.3. Velocity Prediction . 16

6.4. Object Detection . 17

Figure 1. Long Range Dataset Image Samples. We present a visualizations of some of the 60000 image samples part of our high-

resolutions (3848 × 2168 pixels) cameras, in different environments, light and weather conditions.

1. Long-Range Experimental Highway Dataset

Dataset Description. We introduce a dataset designed for long-haul trucking, with a focus on long-range perception critical

for high-speed highway environments. Unlike popular public datasets, like NuScenes [2], Argoverse 2 [20], KITTI [5], and

the Waymo Open Dataset [18], which primarily rely on LiDAR sensors capable of capturing data in the short- or mid-range,

our dataset employs 4D LiDAR sensor (AEVA AERIS II), which extend detection range up to 400 meters and directly mea-

sure radial velocity for each point through Frequency-Modulated Continuous-Wave (FMCW) technology. Figure 2 compares

the distribution of labeled bounding boxes by distance from the ego vehicle in our dataset, NuScenes [2], and Argoverse

2 [20]. The comparison highlights that our dataset addresses a critical gap in public benchmarks by providing long range

scenarios necessary for training and evaluating autonomous driving performance at extended distances, which is essential for

safe and reliable highway driving.

Mounted atop a semi-truck’s driver cabin within a dedicated sensor module, our system integrates both LiDAR and camera

data to enhance object detection and depth prediction capabilities. The imaging component uses OnSemi AR0820 cameras

with 1/2-inch CMOS sensors, capturing raw RCCB data at a high resolution of 3848 × 2168 pixels and nearly complete

360° coverage at a frame rate of 5 Hz. High-resolution images aid in capturing more details and boundaries, which is

especially important for perception at long ranges where smaller objects and subtle variations in texture or color can hinder

model capabilities. Assessing the long-range camera with a horizontal FoV of 30◦, the camera has a range of up to ≈
1070m assuming a sedan with 1.5m height and 100 pixels for reliable detection. In Figure 1 we present some example

samples extracted from our data capture system, in different light-road conditions and scenarios. Both the camera and

LiDAR sensors are synchronized to ensure cohesive data acquisition, with manual calibration performed between recordings

to maintain precision. To ensure accurate annotations, the dataset leverages both camera and LiDAR data in a complementary

manner. The dataset comprises 60,000 unlabeled frames and 36,000 frames with manual annotations realized leveraging

both camera and LiDAR data in a complementary manner, spanning seven object categories: Bike, Passenger-Car, Person,

RoadObstruction, SemiTruck-Cab, SemiTruck-Trailer, and Vehicle.

FMCW Velocity Capturing. FMCW LiDAR measures both distance and radial velocity by transmitting a continuous wave

whose frequency is modulated over time. The transmitted signal can be expressed as

stx(t) = A cos
(

2π
(

f0 + µt
)

t
)

. (1)

When the signal reflects off a moving target at range R and radial velocity vr, it is delayed by τ = 2R
c

and undergoes a

Doppler shift fD = 2v
λ

. The received signal becomes

srx(t) = A cos
(

2π
[

f0 + µ(t− τ) + fD
]

(t− τ)
)

. (2)

Mixing the transmitted and received signals a so called beat frequency can be obtainedfbeat ≈ µτ − fD from which both

range and velocity can be determined. It is important to note that the radial velocity vr is defined as the component of an

object’s velocity v along the line of sight and can, therefore, be obtained as

vr = v cos θ, (3)

where θ is the angle between the object’s velocity vector and the line-of-sight. For an object moving perpendicularly to the

line of site, it´s true that cos θ = 0, shwoing that for perpendicular motion, the radial velocity is zero. Since our LiDAR

system offers complet 360◦ coverage, and objects have a non-zero spatial extent, points will exhibit zero velocity if belonging

to vehicles driving on a circular trajectory around the ego one.

2. Implementation Details

We provide implementation details, including the model architecture, downstream task setup, pre-training procedures, and

hyperparameters.

2.1. Model Architecture

The model architecture includes the input sensors, depth prediction network, sparse convolutional operations, sparse win-

dowed attention, and the occupancy and velocity decoders.

Figure 2. Comparison of labeled bounding box distributions over distance from the ego vehicle in our Long Range Dataset, NuScenes [2],

and Argoverse 2 [20].

2.1.1. Input Sensors.

• Images: We make use of 5 cameras, two front/side wide lens cameras, 1 narrow camera in the front for long range

perception and 2 rearward facing cameras. We downscale the input images to a resolution of 544 x 960.

• LiDAR: We make use of a single joint point cloud composed of calibrated multiple scans recorded by the different LiDAR

sensors. We clip the input LiDAR point cloud to [−100 : +250] on the x axis, [−100 : +100] and the y axis and

[−12 : +12] on the z axis and voxelize it with voxels of dimension 0.20m in the x and y axis and 0.38 on the z axis.

2.1.2. Depth Network.

In this section, we describe the implementation details of our depth completion model, expanding upon the methodology

outlined in the main paper.

Multi-Scale Iterative Refinement. The model iteratively refines depth predictions across multiple spatial scales. At each

scale, the depth-backbone extracts contextual features F = {F i
1, F

i
2, F

i
3, F

i
4} and corresponding confidence maps used to

guide depth estimation. Each scale’s feature map is processed independently by the depth-backbone network:

(ht, Cinp) = B(F), (4)

where ht is the hidden state, and Cinp represents the decoded confidence features derived from input features F .

Minimal Gated Unit (MGU) Update Block. To efficiently update depth predictions across iterations, we employ a Minimal

Gated Unit (MGU), simplifying traditional gated architectures by combining reset and update gates. Each iterative refinement

step follows

ht = (1− rt)⊙ ht−1 + rt ⊙ ϕ (Ch([ht−1, xt])) , (5)

with gate computation

rt = σ (Cr([ht−1, xt])) , (6)

where Ch and Cr are convolutional layers, and xt is the concatenation of context features and gradient discrepancies. Ad-

ditionally, the MGU module employs separate convolutional gates consisting of convolutional layers followed by batch

normalization and nonlinear activations. This gated convolutional approach effectively integrates image-derived context and

depth gradient discrepancies, balancing model simplicity and predictive accuracy.

Depth Integration Module. The depth integration module updates the depth estimate iteratively

dt+1 = dt −∆d, (7)

with

∆d = fupdate (∇dt − g, (dt − sd)⊙M,Cdg, Cinp) , (8)

where ∆d is computed via convolutional layers in fupdate, taking gradient discrepancies, depth discrepancies masked by

LiDAR validity (M), and confidence maps (Cdg , Cinp) as inputs. The depth integration module employs three sequen-

tial convolutional layers with ReLU activations, transforming input discrepancies and confidence maps into incremental

depth corrections. This iterative convolutional refinement ensures depth updates balance fidelity to sparse measurements and

smoothness informed by image features.

2.1.3. Sparse Operations.

For the sparse operations we rely on the SPConv implementation [3]. For the sampling operation in the sparse voxels, used

to lift camera features in 3D, to sample features in the occupancy and velocity decoders and to excecute sparse windowed

attention, we implement a custom ball query interpolation operations, that exploit the integer nature of the coordinates

representation of occupied voxels, removing the need for KNN and rely solely on indexing operations. The dimension of the

hidden voxels in the latent features at scale 1 matches the input voxel size (0.20m in the x and y axis and 0.38m on the y

axis) and doubles in every subsequential scale, with shape 1.60m in the x and y axis and 3.00m on the z axis in the lowest

scale.

2.1.4. Sparse Windowed Attention.

For the Sparse Windowed Attention, we set a 3D local window of 3x3x3, effectively attending 1 occupied voxel in the current

frame to 27 voxels in the past frame. For the un-occupied voxels inside the sampling window we set an attention mask to

exclude them from the attention mechanism. Sampled features are first feed into a projection module composed by 2 linear

layers, with a layer norm and a Gelu activation, then a positional embedding is added encoding the 3D position of the feature

and temporal difference between the two fused frames. We implement the attention mechanism as a multi-head attention,

with 4 heads and latent dimension of 16. The resulting features are passed to a last projection module.

2.1.5. Occupancy and Velocity Decoders.

Occupancy and Velocity heads are implemented as semi-implicit decoders. They take a query position and time as input and

they predict the occupancy and velocity values. The two heads shares the sampling component over the sparse grid, but the

sampled features are passed to two independent branches to predict occupancy and velocity. The query position is converted

from real world coordinate in LiDAR frame, to sparse volume coordinates; we then sample a first time in the sparse volume

at scale 2, considering a window composed by the point itself and the 6 direct neighbors. The sampled features are then

passed into a projection layers and summed with an embedding produced by a linear projection of the query position and

time to generate the sampling offset. The offset is now summed to the original query position to generate a refined sampling

point. We sample again from the sparse volume, this time from all 4 hidden volume scales, taking 1 neighbor features for

the 2 smallest scale and 7 from the biggest 2. We concatenate the first sampled feature with the latest 4 features and pass the

resulting tensor to two independent velocity and occupancy heads. These are parametrized as a series of 3 residual blocks,

where in the first block we add the query position and time embedding. The occupancy head presents an additional sigmoid

activation at the end to produce occupancy values in the 0 : 1 range. To visualize occupancies, we apply an threshold of 0.5,

displaying regions where the predicted occupancy exceeds this value while omitting lower values.

The anticipation of dynamic motion for future forecasting in our method relies on three key design choices. (i) We utilize

multi-scale interpolated voxels, enabling a large receptive field that captures inter-voxel motion across spatial scales. (ii)

Sparse temporal fusion integrates past observations into the current encoding, effectively embedding historical actor motion

to inform predictions. (iii) Additionally, when available, 4D LiDAR data containing velocity measurements is explicitly

encoded, providing direct velocity cues that further enhance the model’s ability to anticipate future positions.

2.2. Down­Stream Tasks

LiDAR Reconstruction To facilitate the evaluation of our pre-training scheme, we additionally reconstruct the recorded

LiDAR point clouds at different timestamps. To this end, we generate a query ray for each point in the current and future point

clouds to reconstruct the distance at which the LiDAR beam intersects a surface. We first sample uniformly QLiDAR rec points

along the ray and then query the model occupancy decoder head from Sec. 2.1.5 at every sampling position. The generated

occupancy predictions are then concatenated and processed with the LiDAR reconstruction decoder fLiDAR rec, composed by

a sequence of 1D convolutions and linear layers. The final linear layer predicts a scalar value per ray, representing the ray

length.

d̂r = fLiDAR rec(σ̂r) (9)

where σ̂r ∈ R
N,4 and σ̂i

r
= fdens(Q

i
LiDAR rec) with i = 0, ...N . We supervise this depth measurement against the ground truth

dr with an ℓ1 loss. By prompting the model with denser query rays, sampled according to the camera’s intrinsics (including

focal length and principal point), the reconstruction head can generate dense depth maps that align with the perspective

geometry of any input view.

Object Detection To evaluate the proposed architecture on the OD task we replace the pre-training occupancy reconstruction

head with an object detection head. Due to the modularity of the method, any OD head can be used. In the experiments

Table 1. Network Details of LRS4Fusion.

Component Sub-Component Layers Parameters

Image Branch
Backbone Vim - Seg embed dim: 192, depth: 24, patch size: 16

Neck FPN for OD in: [192, 192, 192, 192], out: 64

Depth Model

Depth Backbone B

ctx dec1 - Conv2D (64, 64), k=3, s=1, p=1, BatchNorm, ReLU

ctx dec0 - Conv2D (64, 64), k=3, s=1, p=1

cfi dec1 - Conv2D (32), k=3, s=1, p=1, BatchNorm, ReLU

cfi dec0 - Conv2D (32, 1), k=3, s=1, p=1, Sigmoid

BasicUpdateBlockMGU

×6

Encoder - Conv2D-d (1, 64), k=7, p=3, ReLU

Encoder - Conv2D-d (64, 32), k=3, p=1, ReLU

Encoder - Conv2D-g (2, 64), k=7, p=3, ReLU

Encoder - Conv2D-g (64, 32), k=3, p=1, ReLU

Encoder - Conv2D (64, 61), k=3, p=1, ReLU

MGU - Conv2d-z (128, 64), k=3, p=1, BatchNorm, TanH

MGU - Conv2d-n (128, 64), k=3, p=1, BatchNorm, TanH

DepthGradHead - Conv2d (64, 128, 2), k=3, p=1, ReLU

ConfidenceHead - Conv2d (64, 32, 2), k=3, p=1, ReLU, Sigmoid

DepthIntegrationModule IntegrationUpdateBlock - Conv2D (6, 64, 54, 54, 54, 1), ReLU

ImageDecoder

ConvReduce - Conv2D (64, 32), k=3, s=1, p=1, RelU

Deconv - ConvTrans2D (32, 32, 32), k=4, s=2, p=1, RelU

ConvOut - Conv2D (32, 3), k=3, s=1, p=1, Sigmoid

LiDAR Branch
Backbone - Unet Encoder ((32,), (64, 64,), (128, 128,), (128, 128, 128), (256, 256, 256))

Backbone - Unet Decoder ((256, 256, 128), (128, 128, 128), (128, 128, 64), (64, 64, 32), (32, 32, 32))

Sparse MM Fusion Sparse Conv SubMConv3d (96, 64), LayerNorm, ReLU

Late Encoder

Scale 1
complBlock (32, 32), k=3, Batch Norm, only xy=True

aggreBlock (32, 32), k=3, Batch Norm, pooling: True

Scale 2
complBlock (32, 32), k=3, Batch Norm, only xy=False

aggreBlock (32, 64), k=3, Batch Norm, pooling: True

Scale 3
complBlock (64, 64), k=3, Batch Norm, only xy=True

aggreBlock2D (64, 128), k=5, Batch Norm, pooling: True

Scale 4
complBlock (128, 128), k=3, Batch Norm, only xy=True

aggreBlock2D (128, 256), k=5, Batch Norm, pooling: False

Temporal Fusion

query proj MLP (32, 16, 16), Layer Norm, GeLU

key proj MLP (64, 16, 16), Layer Norm, GeLU

out proj MLP (16, 16, 32), Layer Norm, GeLU

pos emb query MLP (4, 16, 16), Layer Norm, GeLU

pos emb key MLP (4, 16, 16), Layer Norm, GeLU

Attnention MultiHead Heads: 4, embed dim: 16

Occupancy Head

Query Proj Linear (4, 16)

Feat Proj Linear (64, 16)

Offset 1 Linear (16, 16)

Offset 2 Linear (16, 16)

Offset Head Linear (16, 3)

Query Proj Block 1 Linear (4, 16)

Feat Proj 1 Linear (544, 16)

Residual1 MLP (16, 16, 16), ReLU

Feat Proj 2 Linear (544, 16)

Residual2 MLP (16, 16, 16), ReLU

Feat Proj 3 Linear (544, 16)

Residual3 MLP (16, 16, 16), ReLU

Occ Head MLP (16,1), Sigmoid

Occupancy Head

Feat Proj 1 Linear (544, 16)

Residual1 MLP (16, 16, 16), ReLU

Feat Proj 2 Linear (544, 16)

Residual2 MLP (16, 16, 16), ReLU

Feat Proj 3 Linear (544, 16)

Residual3 MLP (16, 16, 16), ReLU

Vel Head MLP (16,1)

LiDAR Head
Occ Encoder Linear (1, 128)

Depth Ray Encoding Linear (1, 128)

CNN Pooling Conv1D (128, 64, 32, 16, 16, 16, 8) K=4, S=2, ReLU

MLP Decoder Linear (232, 64, 32, 16, 1), ReLU

Object Detection

Backbone SECOND in: 256, out: [128, 256], layer nums: [5, 5], layer strides: [1, 2], Batch Norm

Neck SECONDFPN in: [128, 256], out: [256, 256], upsample strides: [1, 2], Batch Norm

Head CenterHead in: [256, 256], conv ch: 64, single head

conducted we first apply a max pooling on the pillar axis over the smaller scale 3D sparse features, followed by a densification

and flattening operation to bring the features into a BEV grid. We employ two common object detection losses:

• L1 bounding boxes regression loss LL1BB

• Gaussian Focal Loss LGaussian [10, 26]

The total object detection loss is then determined by

LOD = wL1BB ∗ LL1BB + wGaussian ∗ LGaussian (10)

with wL1BB = 0.25 and wGaussian = 1.

2.3. Pre­Training Details

Image and Depth Pre-Training. Our pre-training consists of two stages. First, we train the image feature encoder and

depth prediction components using three primary losses: image reconstruction, depth supervision, and feature distillation.

Specifically, the losses include:

• Image Reconstruction Loss Limg: A weighted combination of the structural similarity (SSIM) loss [19] and the L1 loss

between the input and reconstructed images: Limg = 0.7 · SSIM + 0.3 · L1. This supervision prevents the model from

focusing solely on depth prediction and helps retain semantic information. The loss is scaled by a factor of 40.

• Depth Supervision Loss: The model jointly optimizes multiple depth-related losses:

– LiDAR Loss Llidar: A weighted L1-L2 (BerHu [8]) loss applied to sparse depth measurements.

– Gradient Consistency Loss Lseqgrad: Ensures the learned depth gradient aligns with computed gradients from the current

depth map [28].

– Smoothness Loss Lsmooth: Encourages smoothness using an edge-aware term based on image gradients.

– Monocular Depth Loss Lmono: Aligns predicted depths to a pretrained monocular depth estimator [24], using RANSAC

regression with LiDAR depth to mitigate scale and shift discrepancies.

These loss terms are weighted and summed, with iterative predictions contributing proportionally decreasing weights to

encourage coarse-to-fine refinement:

Ldepth = 3Llidar + 5Lseqgrad + 0.25Lmono + Lsmooth. (11)

• Feature Distillation Loss Lfeat: A combination of L1 loss and cosine embedding loss between extracted DINOv2 [14]

features and Vim [27] features projected using a small adapter head, following [16]. This loss is weighted by a factor of 5.

The total loss for stage one training is:

Lstage1 = Limg + Ldepth + Lfeat. (12)

Figure 3 illustrates the stage one training process.

Figure 3. Overview of image Feature Extraction and Depth Prediction training. Image and project LiDAR scans are encoded with Vim

[27] backbone. The resulting features are passed to a feature pyramid (FPN) and then are passed to the depth model to predict dense depth.

Vim Features are supervised with a distillation loss to DINOv2 [14] features; FPN features are supervised to reconstruct the original image

with a light weight decoder; depth is supervised with LiDAR depth and monocular depth where LiDAR scans cannot be projected into the

image frame.

Model Training. In the second stage, we train the full model by supervising the past, current, and predicted future frames

with occupancy and velocity prediction. The total loss is here given by

Lstage2 = Locc + Lvelo (13)

Table 2. Training Hyper-Parameters.

Dataset Stage Iterations LR

NuScenes

Stage 1 100 ∗ 103 Constant 4 ∗ 10−4

Stage 2 100 ∗ 103 Constant 4 ∗ 10−4

Lidar Forecasting 40 ∗ 103 Cyclic 2 ∗ 10−3

LongRange

Stage 1 20 ∗ 103 Constant 4 ∗ 10−4

Stage 2 40 ∗ 103 Constant 4 ∗ 10−4

Lidar Forecasting 20 ∗ 103 Cyclic 2 ∗ 10−3

Object Detection 40 ∗ 103 Cyclic 1 ∗ 10−3

For Long Range Dataset we weight the Locc by 10 and Lvelo by 1. For NuScenes Dateset, giving the abscence of velocity

supervision we turn off Lvelo.

For the last and third stage to learn to predict object detections we supervise the method applying an Object Detection loss

Ldetection following [23].

Occupancy Loss (Locc). The occupancy is supervised using occupancy ground-truth generated from the LiDAR data. We

treat a LiDAR ray as unoccupied up to the point where the LiDAR detects an object. After this point, we follow [1] and

account for a small margin δ that is marked as occupied. We set δ = 0.1. We generate N query points, sampling an equal

number of occupied and unoccupied points, NO = NU , from the ground truth. For each query point, we predict an occupancy

value ô and compare it to the binary occupancy ground truth ogt. We use the binary cross-entropy loss defined as:

Ldensity = −
1

N





∑

q∈Q−

log(1− ôq) +
∑

q∈Q+

log(ôq)



 (14)

Where N is the total number of sampled points, ôq is the predicted occupancy for point q, and ogt,q is the ground truth

density for that point.

Velocity Loss (Lvelo). The velocity loss supervises the predicted velocity using the LiDAR-derived ground truth. For unoc-

cupied regions, we assign vgt = 0, and for occupied regions, we use the velocity measured by the 4D LiDAR, vgt = vL. The

velocity loss is defined as

Lvelo =

N
∑

q=1

|v̂q − vgt,q| , (15)

where v̂q and vgt,q are the predicted and the ground truth velocity for point q.

2.4. Hyper­Parameters

For all the trainings we use AdamW as optimizer with 0.1 weight decay and 35 gradient clipping. We train stage 1 for 20∗103

iterations with batch size 8 with a constant learning rate of 4 ∗ 10−4 on the Long Range Dataset and for 100 ∗ 103 on the

NuScenes dataset. We train stage 2 for 40∗103 with a constant learning rate of 10−4 and warm-up of 1∗103 iterations on the

Long Range Dataset and for 100 ∗ 103 on the NuScenes dataset. For the LiDAR forecasting task we freeze the entire model

and train only the LiDAR reconstruction head for 20 ∗ 103 iterations on the Long Range Dataset and for 40 ∗ 103 epochs on

NuScenes with a cyclic learning rate with a peak of 0.002 (Tab. 2). For the object detection task we train the full model for

40 ∗ 103 iterations with a cyclic learning rate with a peak of 0.001.

Object Detection Implementation For Object Detection we use a Second FPN neck and a CenterPoint head [23].

3. Experimental Setup

Following we describe the experimental setup of depth prediction and the downstream tasks LiDAR forecasting and object

detection.

3.1. Depth Prediction

Accumulated LiDAR Ground Truth. We evaluate depth prediction using an accumulated LiDAR ground truth, rather then

a sparse, single-frame one, to achieve a denser and more consistent reference.

To generate this ground-truth we adapt a SLAM-based algorithm [17] to our unique sensor setup, and accumulate 150

LiDAR scans from each scene. Since our highway dataset is rich of dynamic actors, we pre-process each LiDAR recording

by removing points identified as moving, reducing the number of floaters and artifacts in each map.

The moving-objects segmentation leverages the sensor’s radial velocity measurements: we split positive and negative

velocity components, compute their respective means (µ+),(µ−) and standard deviation (σ+),(σ−) and classify as moving if

its velocity exceeds µ++2.0σ+ for positive velocities and |µ−|+2.0σ− for negative velocities. To address cases in which an

object moves perpendicularly to the sensor, thus showing minimal radial velocity, we further rely on state of the art moving

object segmentation method [13] to complement the prediction.

In order to re-generate single frames for validation, for each timestamp t we exploit the pose provided by the slam algo-

rithm to transform the accumulated points back into the original LiDAR coordinates, reintroducing moving points removed

in the pre-processing relevant to the current t.

We then iterate at 2 levels to remove occluded points not visible from the current viewpoint. First, at LiDAR level we

employ a simplified binned ray-tracing strategy: we subdivide the space in bins (i, j) and record the minimum range r
(i,j)
min of

points in each bin. We define a range-dependent threshold function T (r) = 1 + αr and retain any point k in bin (i, j) if

rk ≤ r
(i,j)
min + T (rk) (16)

and otherwise discard it as occluded. Second, at image level, we project the remaining LiDAR points into the camera

frame and we compare each valid depth value d at pixel (x, y) against min(Dlocal), the minimum depth in a local circular

neighborhood of radius r = 3. If
d

min(Dlocal)
> τ, τ = 1.25 (17)

then d is considered occluded and excluded from further consideration. Otherwise, the new depth value updates the buffer in

that local region. Iterating over all pixels, in ascending depth order, ensures that only non-occluded points remain in the final

depth map.

This refined, dense accumulated LiDAR serves as a robust, dense ground-truth for evaluating depth models only: the full

model remains independent of this pre-processing step and can be trained without it.

In Figure 4 we show an example of our accumulated LiDAR scans compared to the sparse version, showing consistency

in occlusions between the two as well as higher density at all ranges.

Figure 4. Accumulated Evaluation LiDAR Ground-Truth. We show an example of our accumulated LiDAR scan (right), retaining 3×

the number of points compared to the normal sparse version (left), with increased ranges and accurate occlusion management.

3.2. LiDAR Forecasting.

For the LiDAR forecasting tasks we allign to prior work [22] and computer Chamfer Distance (CD) between predicted

and ground truth point clouds. For NuScenes dataset we evaluate CD inside the ROI [−51.2m : +51.2m] on the x axis,

[−51.2m : +51.2m] on the y axis and [−51.2m : +51.2m] on the z axis. For the LongRange dataset we evaluate CD inside

the ROI [−100m : +250m] on the x axis, [−100m : +100m] on the y axis and [−12m : +12m] on the z axis. We calculate

the Chamfer distance as

CD =
1

2N

∑

x∈X

min
x̂∈X̂

∥x− x̂∥22 +
1

2M

∑

x̂∈X̂

min
x∈X

∥x− x̂∥22 (18)

where x ∈ R
Nx3, x̂ ∈ R

Mx3 represent the ground-truth and predicted point clouds, respectively.

For the Long Range Experimental Dataset we additionally report L1 error between forecasted depths along each LiDAR

ray D̂ ∈ R
N and ground truth depths D ∈ R

M as

L1 = mean(abs(D− D̂)) (19)

3.3. Object Detection.

To assess the performance on Object Detection task, we rely on standard 3D object detection metrics. These include Mean

Average Precision (mAP) and NuScenes Detection (ND) Score, which combines mAP with other auxiliary metrics (mATE,

mASE, mAOE, mAVE, and mAAE) to provide a comprehensive evaluation of 3D object detection performance, capturing the

precision, accuracy in positioning, scale estimation, and orientation of detected objects in 3D space. Metrics are calculated

for detections inside the considered ROI of [−100m : +250m] on the x axis, [−100m : +100m] on the y axis, with true

positives defined by a distance threshold of less than 6 m.

4. Baseline Implementation Details

In the following we provide training and implementation details for depth estimation, LiDAR forecasting and object detection.

4.1. Depth Prediction

Completion-Former and OGNI-DC. For Completion-Former [25] OGNI-DC [28] we rely on the provided implementation

and training code. We initialize both with KITTI pretrained weights and finetune the models for 10 epochs on our training

split.

4.2. LiDAR Forecasting

4D-Occ. For 4D-Occ [7] results we rely on the codebase that was provided with the the publication. The model is extended to

the full ROI of the Long Range Dataset (−100m : +100m on y axis, −100m : +250m on x axis) and the voxels dimension

are set to 0.5m due to GPU memory limitations. For the 1s setting we take as input a queue of length 5 at 5Hz and for the 3s
setting we keep the queue length to 5 but we downsample the data frequency by 3 times. The model is trained for 15 epochs

with the original scheduling.

ViDAR. For ViDAR [22] results also builts ontop of the publicly available implementation by the original authors. The model

is extended to the full ROI of the Long Range Dataset (−100m : +100m on y axis, −100m : +250m on x axis) but the

BEV grid size is kept to the original proposed configuration (200x200) due to GPU memory limitations. For the 1s setting

we take as input a queue of length 5 at 5Hz and for the 3s setting we keep the queue length to 5 but we downsample the data

frequency by 3 times. The model is pre-trained on the NuScenes checkpoint and fine-tuned for 15 epochs on the Long Range

Dataset. In Tab. 3 we report a small ablation study on ViDAR performance with different ROIs.

4.3. Object Detection

In this section we provide Implementation and training details for object detection baseline models. For all training we use

AdamW scheduler, gradient clipping set to 35 and 0.1 weight decay.

PointPillars. For PointPillars [9] results, we train for 20 epochs with a cyclic learning rate starting at 0.0005 with peak at

0.004.

BEVFusion. For BEVFusion [12] results, we start from the trained PointPillars model weights and fine-tune for other 20

epochs with a cyclic learning rate starting at 10−4 with peak at 10−3.

Table 3. Addtional results for ViDAR. Full Range considers a ROI of [+100m, −100m] on the Y axis of the Ego Vehicle and [+250m,

−100m] on the X axis, while Short Range restrict the ROI to 51.2m on all sides.

History
Range

CD ↓
Horizon 1s 3s

1s
Short 15.180 14.915

Full 58.228 51.720

3s
Short 15.204 14.840

Full 57.284 56.200

SAMFusion. For SAMFusion [15] results, we follow the implementation for the NuScenes dataset reported in the work,

removing the Gated-Imaging branch and the Radar branch, essentially keeping only the Camera and LiDAR branches. We

initialize the Camera backbone with pre-trained ResNet50 and the LiDAR backbone from scratch. We train the model jointly

for 40 epochs with a cosine aneling learning rate, starting from 5 ∗ 10−5, growing to 5 ∗ 10−4 in 16 epochs and then dropping

to 0.

BEVFormer. For BEVFormer [11] results we rely on the provided codebase implementation. The model is extended to the

full ROI of the Long Range Dataset (−100m : +100m on y axis, −100m : +250m on x axis) but the BEV grid size is kept

to the original proposed configuration (200x200) due to GPU memory limitations. We follow the original implementation

and train the model for 20 epochs with a cosine aneling learning rate, with 500 warp-up iterations to 2 ∗ 10−4.

We additionally test different history horizon and empirically find that using a shorter horizon leads to better results. This

is also visible from the drop in perfomance on LiDAR Forecasting on ViDAR model. Tab. 4 shows the mAP and NDS

performance on the 1s and 3s settings with and without ViDAR pre-training.

Table 4. BEVFormer Additional Results.

History Horizon Pre-Training mAP ↑ NDS ↑

1s
ImageNet 19.40 30.40

ViDAR 25.32 29.56

3s
ImageNet 15.53 25.97

ViDAR 13.21 23.97

5. Additional Quantitative Results

In the following section we provide additional quantitative results.

5.1. Object Detection

In Tab. 5 we report voxel sizes, memory footprint and inference run time measured on a Nvidia A100 for pytorch native

float32 implementations and binned mAP - Short (SR 0:50m), Medium (MR 50:150m) and Long (LR 150:250m) Range. We

note that the attention layers in [21] require substantial memory (nuScenes: ∼29Gb, LongRange: >40Gb) during training,

limiting voxel size.

Table 5. Extended LongRange Object Detection Results

Method Mode
Voxel Size Mem↓ Time↓ mAP↑ mAP↑ mAP↑ mAP↑

[m] [Gb] [ms] Full SR MR LR

PointPillars [9] L 0.195×0.195×12 1.1 51 39.31 48.2 32.1 31.0

BEVFormer [11] (w/ Pre-train) C 1.75×1.0×12 2.1 212 24.51 43.8 12.8 0.3

BEVFusion [12] L+C 0.195×0.195×12 5.7 148 40.10 45.6 39.7 38.0

SAMFusion [15] L+C 0.195×0.195×12 4.6 402 41.55 44.8 41.5 43.1

FSDv2 [4] L 0.195×0.195×0.6 3.3 558 38.23 43.7 34.6 27.1

Far3D [6] C 0.2×0.2×0.2 2.2 157 14.48 33.3 13.4 0.2

SparseFusion [21] L+C 0.4375×0.25×0.6 3.8 289 22.44 32.9 20.1 14.2

LRS4Fusion (w/o Pre-train) L+C 0.195×0.195×0.375 1.9 144 49.58 60.9 46.2 40.3

LRS4Fusion L+C 0.195×0.195×0.375 1.9 144 52.61 63.6 48.6 43.4

5.2. Modality Ablation on the LiDAR forecasting task

We ablate the two sensor modalities on the LiDAR forecasting task on the LongRange set on the Near (NFCD 0m to 50m)

and Long (LFCD 50m to 250m) Field Chamfer Distance in Tab. 6

Table 6. Modality Ablation on the LiDAR forecasting task

Modality NFCD ↓ LFCD ↓

Camera 6.163 39.296

LiDAR 3.389 17.338

Fusion 2.547 11.941

6. Additional Qualitative Results

We present additional qualitative results showcasing latent features, LiDAR forecasting, velocity prediction, and object de-

tection.

6.1. Latent Features

Figure 5. Representation of hidden voxels at different scales extracted by the proposed architecture on the Long Range Dataset. LiDAR

Point Cloud for reference. Earlier voxel scales have smaller voxels, capturing finer details with more specialized information, while later

scales encompass a larger area, providing a more general representation of the scene.

6.2. LiDAR Forecasting

Figure 6. Occupancy and LiDAR reconstruction performances on the NuScenes Dataset. The model is able to accurately reconstruct future

LiDAR scans from the predicted 4D occupancy. The Rendered Depth is generated by sampling the occupancy decoder along pixel ray

directions and calculating the distance to the first occupied voxel for every ray.

Figure 7. Occupancy and LiDAR reconstruction performances on the Long Range Dataset. The model is able to reconstruct future LiDAR

scans from the current frame, correctly predicting vehicle movements in the future.

Figure 8. Occupancy and LiDAR reconstruction performances on the NuScenes Dataset. The Proposed model is able to perceive occupancy

for small objects in the scene such as traffic cones. The Rendered Depth is generated by sampling the occupancy decoder along each pixel

ray directions and calculating the distance to the first occupied voxel for every ray.

6.3. Velocity Prediction

Figure 9. Occupancy and Velocity prediction performances on the Long Range Dataset. The proposed model reconstructs the FMCW

velocity of the 4D LiDAR and generalizes it to all points in space beyond the input. From left to right are shown: LiDAR input, LiDAR

velocity input, occupancy and predicted velocity.

6.4. Object Detection

Figure 10. Examples of 3D object detections on the Long Range validation set.

Figure 11. Examples of 3D object detections on the Long Range validation set.

Figure 12. Examples of 3D object detections on the Long Range validation set.

Figure 13. The proposed model is able to detect small lost cargo in the Long Range Dataset. 3D bounding boxes of Road Obstruction with

yellow colors.

References

[1] Ben Agro, Quinlan Sykora, Sergio Casas, Thomas Gilles, and Raquel Urtasun. Uno: Unsupervised occupancy fields for perception

and forecasting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14487–14496,

2024. 9

[2] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo

Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving, 2020. 4, 5

[3] Spconv Contributors. Spconv: Spatially sparse convolution library. https://github.com/traveller59/spconv, 2022. 6

https://github.com/traveller59/spconv

[4] Lue Fan, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang. Fsd v2: Improving fully sparse 3d object detection with virtual voxels,

2023. 12

[5] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In 2012

IEEE conference on computer vision and pattern recognition, pages 3354–3361. IEEE, 2012. 4

[6] Xiaohui Jiang, Shuailin Li, Yingfei Liu, Shihao Wang, Fan Jia, Tiancai Wang, Lijin Han, and Xiangyu Zhang. Far3d: Expanding the

horizon for surround-view 3d object detection, 2023. 12

[7] Tarasha Khurana, Peiyun Hu, David Held, and Deva Ramanan. Point cloud forecasting as a proxy for 4d occupancy forecasting,

2023. 11

[8] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab. Deeper depth prediction with fully

convolutional residual networks. In 2016 Fourth international conference on 3D vision (3DV), pages 239–248. IEEE, 2016. 8

[9] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders for object

detection from point clouds. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 12697–

12705, 2019. 11, 12

[10] Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints, 2019. 8

[11] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer: Learning bird’s-

eye-view representation from multi-camera images via spatiotemporal transformers. In European conference on computer vision,

pages 1–18. Springer, 2022. 12

[12] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L Rus, and Song Han. Bevfusion: Multi-task multi-

sensor fusion with unified bird’s-eye view representation. In 2023 IEEE International Conference on Robotics and Automation

(ICRA), pages 2774–2781. IEEE, 2023. 11, 12

[13] B. Mersch, X. Chen, I. Vizzo, L. Nunes, J. Behley, and C. Stachniss. Receding Moving Object Segmentation in 3D LiDAR Data

Using Sparse 4D Convolutions. IEEE Robotics and Automation Letters (RA-L), 7(3):7503–7510, 2022. 10

[14] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haz-

iza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. arXiv preprint

arXiv:2304.07193, 2023. 8

[15] Edoardo Palladin, Roland Dietze, Praveen Narayanan, Mario Bijelic, and Felix Heide. Samfusion: Sensor-adaptive multimodal fusion

for 3d object detection in adverse weather. In Proceedings of the IEEE European Conference on Computer Vision (ECCV), 2024. 12

[16] Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. Am-radio: Agglomerative vision foundation model – reduce all

domains into one, 2024. 8

[17] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Rus Daniela. Lio-sam: Tightly-coupled lidar inertial

odometry via smoothing and mapping. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

5135–5142. IEEE, 2020. 10

[18] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai,

Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy

Gao, Aditya Joshi, Sheng Zhao, Shuyang Cheng, Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in

perception for autonomous driving: Waymo open dataset, 2020. 4

[19] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural

similarity. IEEE transactions on image processing, 13(4):600–612, 2004. 8

[20] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Ratnesh Kumar,

Andrew Hartnett, Jhony Kaesemodel Pontes, Deva Ramanan, Peter Carr, and James Hays. Argoverse 2: Next generation datasets for

self-driving perception and forecasting, 2023. 4, 5

[21] Yichen Xie, Chenfeng Xu, Marie-Julie Rakotosaona, Patrick Rim, Federico Tombari, Kurt Keutzer, Masayoshi Tomizuka, and Wei

Zhan. Sparsefusion: Fusing multi-modal sparse representations for multi-sensor 3d object detection, 2023. 12

[22] Zetong Yang, Li Chen, Yanan Sun, and Hongyang Li. Visual point cloud forecasting enables scalable autonomous driving. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14673–14684, 2024. 11

[23] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-based 3d object detection and tracking, 2021. 9

[24] Wei Yin, Chi Zhang, Hao Chen, Zhipeng Cai, Gang Yu, Kaixuan Wang, Xiaozhi Chen, and Chunhua Shen. Metric3d: Towards

zero-shot metric 3d prediction from a single image. In Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 9043–9053, 2023. 8

[25] Youmin Zhang, Xianda Guo, Matteo Poggi, Zheng Zhu, Guan Huang, and Stefano Mattoccia. Completionformer: Depth completion

with convolutions and vision transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 18527–18536, 2023. 11

[26] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points, 2019. 8

[27] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision mamba: Efficient visual

representation learning with bidirectional state space model. arXiv preprint arXiv:2401.09417, 2024. 8

[28] Yiming Zuo and Jia Deng. Ogni-dc: Robust depth completion with optimization-guided neural iterations. Proceedings of the IEEE

European Conference on Computer Vision (ECCV), 2024. 8, 11

