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Abstract

Outside of urban hubs, autonomous cars and trucks have to
master driving on intercity highways. Safe, long-distance
highway travel at speeds exceeding 100 km/h demands per-
ception distances of at least 250 m, which is about five
times the 50–100m typically addressed in city driving, to
allow sufficient planning and braking margins. Increasing
the perception ranges also allows to extend autonomy from
light two-ton passenger vehicles to large-scale forty-ton
trucks, which need a longer planning horizon due to their
high inertia. However, most existing perception approaches
focus on shorter ranges and rely on Bird’s Eye View (BEV)
representations, which incur quadratic increases in mem-
ory and compute costs as distance grows. To overcome
this limitation, we built on top of a sparse representation
and introduced an efficient 3D encoding of multi-modal and
temporal features, along with a novel self-supervised pre-
training scheme that enables large-scale learning from un-
labeled camera-LiDAR data. Our approach extends per-
ception distances to 250 meters and achieves an 26.6% im-
provement in mAP in object detection and a decrease of
30.5% in Chamfer Distance in LiDAR forecasting compared
to existing methods, reaching distances up to 250 meters.

1. Introduction
Autonomous vehicles rely on precise perception of their
surroundings for scene understanding, prediction, and plan-
ning. Today’s most successful methods that allow for 360�
perception rely on BEV features to perform 3D object de-
tection [39, 69], semantic occupancy prediction [52], track-
ing [76] and planning [16, 62]. The methods operate on
BEV features that encode critical information about the 3D
environment, derived from single or multiple sensors that
perceive the surroundings.
However, most existing BEV-based methods focus on short-
term planning with ranges below 50m [30, 36], making
them well-suited for robo-taxi applications in urban envi-
ronments but insufficient for long-term planning needs, par-
ticularly necessary for highway driving and in the context
of robo-trucking, where long braking distances demands the
perception of objects and planning decisions at long-ranges,

Figure 1. Autonomous vehicles, especially trucks with long brak-
ing distances, require long planning horizons for efficient and safe
driving in highway scenarios (bottom). This requires extending the
typical perception range from 50–100m (top [5]) to beyond 250m
where dense representations struggle. We introduce a sparse voxel
fusion approach for efficient and accurate 3D scene understanding
enabling processing of long-range LiDAR-camera data that lever-
ages spatio-temporal context up to 250m. The proposed model
outputs depth, occupancy, velocity, future LiDAR forecast, accu-
rate object detection, see Fig. 6 and Fig. 7.

to ensure safe, strategic planning beyond 70 m, which ex-
isting approaches do not address [16, 22, 62] (Fig. 1).
Extending BEV features to cover longer ranges presents sig-
nificant challenges, as computational complexity and mem-
ory footprint grow rapidly. A dense BEV feature map
that holds all the information alone grows quadratically in
memory with detection ranges. Relying on computations
to projecting camera information into a unified representa-
tion, such as Lift-Splat-Shoot [42], also increases compu-
tational complexity quadratically with range. Therefore, in
this work we propose a method that enables BEV features
far beyond surround LiDAR and camera data by using a
sparse voxel implementation, addressing the limitations of
current approaches in long-range perception.
To prevent the training data corpus from growing equally, as
objects become increasingly sparse at extended distances,
we propose a self-supervision approach. As shown in Fig. 2,
the frequency of object instances decreases significantly
with distance, so simply increasing the spatial coverage
forces a steep increase in required labeled data, which is
both costly and time-consuming. Recent approaches have
embraced self-supervised pre-training strategies [1, 70], no
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longer requiring large labeled ground truth datasets. By
encoding both current and past sensor data, these methods
leverage temporal information to predict future states of the
environment. This forecasting is supervised by reconstruct-
ing sensor inputs and letting the model learn robust encod-
ings from the natural evolution of the scene over time.
However, such existing self-supervised pre-training ap-
proaches are limited to a single modality (e.g., camera-only
[70] or LiDAR-only [1]), which restricts their ability to gen-
eralize in multi-sensor systems, most commonly deployed
in autonomous vehicles. Fusing multiple modalities, such
as surround LiDAR and cameras, requires learning to iden-
tify complementary information and sparse 3D data from
LiDAR with dense, high-resolution imagery from cameras,
which we solve with a sparse local attention scheme. The
proposed approach enables occupancy prediction, depth
prediction, lidar forecasting and object detection.
To train the proposed method for these diverse tasks, we
devise a new self-supervised pre-training method that en-
ables long-range multimodal perception without relying on
labeled data. Through direct supervision of future LiDAR
point clouds and velocities, we demonstrate that the pre-
training leads to high performance on tasks such as LiDAR
forecasting and 3D object detection for ranges up to 250m.
We make the following contributions:
• We introduce a long-range LiDAR-camera fusion ap-

proach built with a computationally efficient fully sparse
voxel representation.

• We devise a self-supervised training approach that in-
corporates temporal information from past frame history
and with self-supervised pretraining providing spatio-
temporal context without labels.

• We validate that the method achieves state-of-the-art
performance on the LiDAR forecasting task, improving
Chamfer Distance by up to 30.5% for ranges up to 250m
range and by up to 29% on the NuScenes Dataset for up
to 51.2m, on the hardest 3sec future horizon prediction.

• We validate the method for Object Detection, improving
by 26.6% (+11.06 mAP) on long detection ranges of up
to 250m over existing methods.

2. Related Work

3D Scene Representations are the underpinning of effi-
cient 3D environment perception. Existing work has mod-
eled 3D space as voxels, where each voxel is character-
ized by an assigned vector [80]. While voxel-based rep-
resentations excel at capturing detailed 3D structures for
tasks such as 3D semantic occupancy prediction, includ-
ing LiDAR segmentation [7, 57, 59], they lack computa-
tional efficiency due to the large number of voxels involved.
However, since the vertical dimension typically carries less
critical information than the horizontal dimensions, BEV-
based approaches streamline the representation by encod-

Figure 2. Experimental Long-Range Dataset. To assess the pro-
posed method, we capture and annotate a long-range dataset,
showing the instance distribution in the training split alongside
NuScenes [5]. While only NuScenes is shown, other popular
datasets like Argoverse2 [63] and ONCE [37] follow similar ur-
ban distributions, with a concentrated peak of instances in the very
close range, unlike our long-range setting with boxes up to 400m.

ing height data within each grid cell [26]. BEV-based ap-
proaches are popular in 3D object detection [30, 36, 39], but
also semantic occupancy prediction [18], trajectory predic-
tion [12, 50] and planning [16, 20, 21, 62]. As a compro-
mise between voxel and BEV representations, the TPV (Tri-
Perspective View) representation has been proposed [17]
which relies on three perpendicular cross-planes to repre-
sent the 3D scene, initializes query sets on these planes to
gather features from images, and exchanges features across
views using attention. Other works explore sparse BEVs
for 3D detection [34] and sparse voxels [29], drawing on ef-
ficient implementations from sparse pointcloud processing
for tasks like occupancy prediction [48] and other down-
stream applications [56]. GaussianFormer [19] propose a
latent 3D gaussian representation that is splatted to voxels
for 3D Occupancy prediction.
Multi-Modal Perception aim to enrich LiDAR feature
maps by integrating semantic information from camera im-
ages [53, 55, 72]. These methods were foundational in
combining data from different sensor types. Subsequent re-
search has explored cross-modal feature-level fusion, fur-
ther refining this integration by directly merging features
from both modalities [66, 75]. To address the challenge of
accurately projecting RGB camera features into the LiDAR
space [28] leverage deformable attention mechanisms [82]
to create a unified 3D voxel representation, blending both
modalities within a shared spatial framework. More re-
cent approaches operating within the BEV space have en-
abled fusion of features from multiple sensors in a com-
mon reference frame (typically the LiDAR BEV perspec-
tive). The aggregated features are then processed by task-
specific decoders for applications such as 3D object detec-
tion [6, 30, 31, 35, 71], lane estimation [27, 35, 41], ob-
ject tracking [16], semantic segmentation [30, 35, 36], and
planning [16]. This multi-task and multi-modal setup bene-
fits from additional supervision and regularization, improv-
ing overall performance across various perception tasks.
However, current BEV-based methods still face limitations
in projecting detailed camera features into BEV coordi-



nates, primarily due to their reliance on monocular depth
estimation techniques [25] or Lift-Splat-Shoot (LSS) meth-
ods [36], which estimate depth for camera features and may
introduce inaccuracies.
Depth Estimation is a core capability of camera-only ge-
ometric perception. Approaches [30, 36] utilize variants
of Lift-Splat-Shoot (LSS) [42] to lift 2D camera features
into a 3D space. Alternatively, some methods [39] focus
on using predicted dense maps and subsequently projecting
image features into the 3D LiDAR frame based on the esti-
mated depth. Such depth maps could be predicted by apply-
ing widely used monocular depth estimation [2, 43, 68, 74],
though with limited accuracy, especially at long ranges due
to the inherent scale ambiguity. Stereo depth estimation
[4, 33, 54, 65], in contrast, has shown to be more accurate,
particularly over long distances, but requires overlapping
camera setups for effectiveness. In configurations that in-
clude both camera and LiDAR sensors, depth completion
methods [40, 47, 77, 83] can be employed to achieve the
highest-precision depth predictions. These methods project
sparse LiDAR points into image space and utilize image
features to interpolate and complete the sparse depth infor-
mation effectively. We build on this idea to predict dense
depth for accurate image feature projection, but devise a
lightweight architecture that extends ranges beyond 250m.
Large Scale Self-Supervised Pretraining methods have
employed contrastive approaches [9, 13, 23, 51] and masked
signal modeling [10, 14, 58, 64]. However, method that rely
on pre-training for autonomous driving, which demands se-
mantic understanding, 3D structure, and temporal model-
ing, have only recently been explored. VoxelMAE [15] ex-
tends Masked AutoEncoders to LiDAR data for object de-
tection. UniPAD [67] builds on this by reconstructing color
and depth from masked multi-modal inputs. ALSO [3] uses
surface reconstruction from present-time LiDAR rays as a
pre-training task. ViDAR [70] explores pre-training with
temporal modeling by reconstructing future LiDAR from
current and past images. Similarly, UnO [1] learns a 4D
spatiotemporal occupancy field for the reconstruction of fu-
ture LiDAR from past LiDAR. Recently, DistillNeRF [56]
has demonstrated the distillation of foundation models such
as DINOv2 [38] as pretraining for enhancing semantic un-
derstanding of scenes. In contrast to existing work, we learn
multi-model perception systems and encode 3D structure,
semantic understanding, and temporal modelling, focusing
on long ranges.

3. LRS4Fusion
In this section, we introduce the proposed Long-Range
Self-Supervised Sparse Sensor Fusion (LRS4Fusion) ap-
proach, which is illustrated in Fig. 3. To support prediction
distances of up to 250 meters, we rely on a sparse voxel rep-

resentation that allows us to exploit multi-modal and tempo-
ral cues. We train the method with a novel self-supervised
training scheme. We first introduce the multi-modal fea-
ture extraction and fusion architecture using sparse voxels
in Sec. 3.1, then the self-supervised pre-training scheme in
Sec. 3.2.

3.1. Sparse Sensor Fusion

The Camera Encoder extracts features from each multi-
view image and projected lidar pointcloud. Therefore, we
project the lidar pointcloud P onto every camera frame
IRGB
i

for each camera i, producing a corresponding sparse
depth image ID

i
. This results in a 4-channel image de-

fined as IRGBD
i
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⇤
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age features F are extracted using fimg a multi-scale feature
pyramid based on Vim [81] as follows,

F i

1, F
i

2, F
i

3, F
i

4 = fimg(I
RGBD

i
). (1)

We additionally concatenate a camera embedding, derived
from intrinsic and extrinsic calibration matrices, to each
flattened patch sequence—small non-overlapping image re-
gions encoded by the Vim [81] backbone—to explicitly in-
corporate camera-specific geometry into feature extraction.
Encoded features are extracted at 4 different Vim depths and
then decoded to generate feature maps at multiple scales.
The resulting outputs are fed into an FPN network [32] to
generate features that are later lifted to 3D.
The Depth Estimation build on top of the multi-scale fea-
tures F = {F i

1, F
i

2, F
i

3, F
i

4}, which are passed to the depth
model fdepth to predict dense depth Di for each frame i.
The model employs a multi-scale recurrent architecture that
iteratively refines depth predictions by integrating sparse
LiDAR depth and image features with increasing resolu-
tion. For each scale, a small backbone B extracts context
ht and confidence Cinp features which guide the refinement
process, that is Cinp, ht = B(F ) (2)

We employ a convolutional update block that uses a Min-
imal Gated Unit (MGU) [78] to improve the depth map.
The MGU, designed with a single forget gate for simplic-
ity, updates depth gradients by adjusting the hidden state
based on current depth estimates, whereas more widely ap-
plied GRU-based networks [33, 49, 83] typically rely on
separate update and reset gates to control state adjustments.
This consolidation of gates reduces computational load and
parameter count by one third, enhancing efficiency while
maintaining effective control for accurate depth predictions.
Each iteration refines the depth map by first estimating a
depth gradient rdt = Fg(ht) from context features, in
a depth gradient network Fg , then merging that gradient
with the previous depth estimate in a depth integration mod-
ule. This module balances sparse LiDAR depth with image-



Figure 3. LRS4Fusion: Sparse Multi-Modal Self-Supervision and Fusion. Camera features are lifted to 3D through accurate depth-maps
and joined with LiDAR features in a unified sparse representation. The resulting features are fused through a custom sparse attention with
past features before being further processed by the Multi-Modal Late Encoder. During the pre-training stage, final features are passed to the
custom sparse occupancy decoder and velocity decoder. In contrast to existing SOTA methods that focus on pre-training mono-modality
backbones, our approach aims at pre-training multimodal encoders. The method produces depth, occupancy, velocity, and LiDAR at future
frames, along with object detection (OD) predictions.

derived gradients, producing a refined map that incorporates
both sensor measurements and visual context. Formally, the
updated depth is given by:

dt+1 = dt ��d, (3)

where the correction term �d is computed as

�d = fupdate (rdt � g, (dt � sd)�M, Cdg, Cinp) . (4)

Here, rdt is the gradient of the current depth estimate dt, g
is the predicted depth gradient, sd is the sparse depth mea-
surement, M is the valid sparse mask, Cdg is the confidence
in the depth gradient, and fupdate represents the convolu-
tional operations within the integration module.
By integrating depth and gradient discrepancies with con-
fidence information across multiple scales, the network in-
crementally refines the depth map over successive passes,
initially ensuring global consistency and later incorporat-
ing high-frequency details while smoothing out inaccura-
cies. The confidence information is predicted by Cdg =
fconf(ht), where fconf is a learned confidence head applied
to the hidden state ht in the MGU update block.
Lifting 2D Features into 3D is performed as first step by
projecting each image frame using the camera matrix K and
predicted depth Di to 3D points XC from pixel coordinates
(u, v), as XC = Di(u, v)K�1(u, v, 1). The predicted co-
ordinates are casted into sparse voxels and features are ag-
gregated per voxel cell, that results in a sparse representa-
tion in the form of F i

C
= [FC ,XC ]i for i = 1, ..., N and

FC 2 RN,F ,XC 2 NN,3, where N is the number of hidden
features and F the hidden feature dimension.
The LiDAR Encoder processes the LiDAR scan P , which
is first voxelized and encoded using flid. We implement flid
as voxel-wise PointNet [44]. Features are then extracted
through sparse convolutions, followed by a sparse U-Net
[45]. Similar to the camera branch, this process yields a

sparse representation FL = [FL,XL], where FL 2 RM,F

and XL 2 NM,3, with M being the number of occupied
voxels and F the feature dimension.

Camera-LiDAR Fusion combines the sparse voxels from
both modalities in a unified sparse voxel space by con-
catenating the features from both modalities in the Sparse
Fusion Module fMM . Features are first fed into batch
norm layers to normalize values from different encoding
branches. During the concatenation, for voxels that are
empty in either of the two modalities, zeros are appended.
After the concatenation the features are passed into a sparse
convolution module as a first fusion step. The resulting
fused features form a single sparse representation FLC =
[FLC ,XLC ] and FLC 2 RQ,F ,XLC 2 NQ,3 where Q =
M + N � O is the number of occupied voxels, O is the
number of overlapping Camera and LiDAR features and F
the hidden feature dimension.

Late Sparse Encoding is applied as subsequent step, where
the resulting features FLC are processed through a se-
quence of Completion Blocks and Contextual Aggrega-
tion Blocks fcon, following [48]. A pyramid of features
is then assembled, where the final multi-scale features are
fused within the sparse representation. Compared to previ-
ous work [48], the proposed representation remains sparse
along all scales, further reducing the memory footprint and
enabling the use of finer-grained discretization. The result-
ing latent embedding consists of sparse voxels at 4 different
scales V = [V1, V2, V3, V4]. Multiple scales captures coarse
and fine-grained information separately, preserving details
while maintaining global context. This enables specialized
processing before strategic fusion, while larger voxels help
fill gaps and propagate information across sparse areas for
better long-range perception.

Temporal Sparse Fusion is applied within the Late Sparse
Encoding to the second smallest V2 Voxel representation



only. Therefore we utilize the current t0 and last t�1 times-
tamp. For abbreviation we drop the 2 exponent and write
V t0 and V t�1 . To align the voxel maps we need both
the rigid body transformation R | T t�1!t1 between the
timestamps and the velocity per voxel to correct the vehi-
cle movements. The velocity are observed directly from the
FMCW LiDAR measurements and we accumulate the ve-
locity per voxel vt�1

q . The R | T t�1!t1 are obtained from
the vehicle odometry. Past features V t�1 = [Vt�1 ,Xt�1 ]
are warped to V t

0
0 = [Vt�1 ,Xt

0
0 ], where the new positions

are computed as

X
t
0
0
q = (Xt�1

q
+ vt�1

q
dt)R|Tt�1!t0 . (5)

Here, q = 1, . . . , Q represents the number of past occupied
voxels cells.
To maintain sparsity transformed features can not be con-
catenated with the current features as it we would sequen-
tially add more and more occupied voxels to the latent rep-
resentation over time, completely neglecting the memory
efficiency of the sparse representation.
Therefore, we introduce a novel sparse windowed attention
layer, see Fig. 4. Inspired by local attention mechanism,
each occupied voxel at the current timestamp t0 attends to
a 3D window of voxels in the previous warped timestamp
t�1. The operation directly operates in the sparse represen-
tation, without the need of converting the features to a dense
BEV grid or dense voxel volume. This approach signifi-
cantly reduces computational cost while enabling the win-
dowed attention to capture information beyond local neigh-
borhoods, effectively capturing moving actors and correct-
ing misalignments between past voxels transformed into the
current reference. Hence, sparse history enhanced features
are calculated as

V⇤ =
X

V
t002Js

softmax
✓
V t0 (V t

0
0)Tp

d

◆
V t

0
0 , (6)

where Js is the set of neighboring voxels inside the atten-
tion sampling window and d the softmax normalization fac-
tor representing the dimensionality of the hidden features.
Note, basing the mechanism on top of the occupied voxels
V t0 the queries don’t include unoccupied cells ensuring that
the amount of occupied voxels does not explode.

3.2. Self-Supervision
Due to the quadratically shrinking resolution for long
ranges and the diminished number of objects at very long
distances (Fig. 2), training requires an extensive amount of
data. To tackle this challenge, we self-supervise the embed-
ding by a loss composed of a reconstruction loss for sparse
occupancy and sparse velocity.
Sparse Occupancy and Velocity Decoder are auxiliary
prediction heads predicting a dense geometric and dynamic

Figure 4. Sparse Window Attention. Occupied voxels in the cur-
rent frame T = 0 attends to a window of occupied voxels in the
previous timestamp T = �1. The attention is computed between
each query in the current frame and all occupied key,values in-
side the attention window centered at the same location but at the
previous timestamp. The method ensure that the final number of
occupied voxels does not explode when the number of occupied
previous voxels is high. In the example, we consider an attention
window of 3x3x3, Red Query attends to 3 voxels in the past frame,
Blue to 3, Green to 2 and Purple to 4.

representation from the voxel embeddings and are shown
Fig. 5. Both can be trained at scale from self supervi-
sion alone from arbitrary driving recordings without ground
truth labels. Both take as input a four-dimensional query
point Q (x, y, z, t), where x, y, z are spatial coordinates and
t is time, and its outputs are both density and velocity for
each queried point. If the query point lies in the past or
future, the current voxel representation may not accurately
reflect the scene. Rather than transforming the entire voxel
space, we only transform the queried point [1], building on
top of an existing rigid transformation between the current
encoding and both past and future timestamp. This allows
us to account for the movements of the ego-vehicle and dy-
namic actors. A lightweight neural network fpose predicts
the new position of the query point, whether in the past or
future, by using the query (x, y, z, t) and tri-linearly inter-
polated voxels at the (x, y, z) location. We interpolate the
N nearest neighbors at the query point intersection with the
voxel grid, creating a new voxel that captures the precise
sub-voxel location. The new query position is calculated
as (x0, y0, z0) = (x, y, z) + fpose(V ⇤(x, y, z), Q). At the
new position, voxel features are again interpolated with N
nearest neighbors at all latent scales. The two sets of inter-
polated voxel features, from both the current and new po-
sitions, are stacked and used to predict occupancy ô and
velocity v̂ through two lightweight heads focc and fvel, as

ô = focc(V
⇤(x, y, z), V ⇤(x0, y0, z0), Q),

v̂ = fvel(V
⇤(x, y, z), V ⇤(x0, y0, z0), Q).

(7)

GT values for self-supervision can be estimated from the
recorded LiDAR scan. Occupied labels and non-zero veloc-
ities can be directly inferred by the presence and measured
velocity of a LiDAR point, while all positions along one Li-
DAR ray are taken as unoccupied labels as the LiDAR ray
travels through free space. More details on occupancy and
velocity decoder are provided in the supplemental material.



Figure 5. Occupancy and Velocity Decoder. The proposed decoder
takes a 4D query point, interpolates nearby occupied voxels to re-
fine the interpolation position based on temporal information and
decodes the features from the first and second sampling to gener-
ate occupancy and velocity predictions.

3.3. Training

Our training strategy is divided into three stages. In the first
stage, we train the image feature encoder and depth pre-
diction modules using a combination of image reconstruc-
tion, depth supervision, and feature distillation losses. The
second stage involves training the complete model with su-
pervision for past, current, and future frames, covering oc-
cupancy and velocity reconstruction. Lastly, we train the
object detection on top. Additional training details are pro-
vided in the Supplemental Material.

4. Dataset

In order to overcome the range limitations of existing
LiDAR-based datasets [5, 8, 11, 46] with sensors restricted
to 80 meters, we capture a new multi-modal dataset specif-
ically tailored to heavy-duty trucking scenarios, shown in
Fig. 2. We equip a semi-truck with 5 synchronized OnSemi
AR0820 cameras, each featuring a 1/2-inch CMOS sensors
that captures raw RCCB data at a resolution of 3848 × 2168
pixels, and arrange them to record a near 360° view at 5 Hz.
The system is complemented by Aeva Aeries 4D LiDARs,
capturing 3D point clouds up to 400m as well as radial ve-
locity measurements at 10Hz, synchronized with the cam-
era feeds. The dataset includes recordings from diverse lo-
cations in Texas, New Mexico and Virginia, spanning high-
way and urban environments. The captures feature a variety
of natural lighting conditions and include 60, 000 unlabeled
frames and 36, 000 manually annotated frames for object
detection. From these, we curate 25, 000 at 5Hz for our
training split, capturing seven object classes with the fol-
lowing distribution: “Passenger-Car” (194, 807 instances,
38.21%), “Vehicle” (105, 116, 20.62%), “SemiTruck-
Trailer” (70, 495, 13.83%), “Road-Obstruction” (95, 862,
18.80%), “SemiTruck-Cab” (40, 982, 8.04%), “Person”
(2, 448, 0.48%), and “Bike” (157, 0.03%). Further infor-
mation is in the Supplemental Material.

Table 1. The proposed depth model brings boost in speed and
reduction in memory footprint while achieving the same accuracy
to SOTA methods. Evaluation on accumulated LiDAR point cloud
from 0 to 250m, more details to the depth evaluation are provided
in the supplemental material.

Method MAE # RMSE # Runtime [ms] # MEM [GB] #
Completion Former [77] 4.98 12.36 188 2.1
OGNI-DC [83] 4.76 13.16 364 2.4
LRS4Fusion 3.46 9.21 64 1.3

Table 2. 3D Object Detection performances on Long Range
Dataset. ‡ is with ViDAR [70] pre-train.

Method Modality mAP " NDS "
PointPillars [26] L 39.31 41.52
BEVFormer [30] C 23.67 37.99
BEVFormer [30] (w/ Pre-train‡) C 24.51 38.93
BEVFusion [36] L + C 40.10 48.43
SAMFusion [39] L + C 41.55 52.44
LRS4Fusion (w/o Pre-train) L + C 49.58 59.12
LRS4Fusion L + C 52.61 58.06

5. Experiments
In this section, we validate the proposed method. Specif-
ically, we assess the quality of the depth predictions in
Sec. 5.1, object detection in Sec. 5.2, and LiDAR forecast-
ing tasks in Sec. 5.3. Additionally, we report ablation stud-
ies validating the design choices of the proposed method.
Further details on the experimental setup can be found in
the Supplementary Material.

5.1. Depth Evaluation
We first evaluate depth prediction of the proposed method
and recent existing methods [77] and [83] compared to ac-
cumulated LiDAR ground truth. The experimental setup is
detailed in the Supplemental Material. The role of the depth
network is to reduce inference time and reduce memory
footprint without compromising accuracy. Tab. 1 reports
how the proposed architecture achieves the lowest MAE and
MSE among the three methods. The proposed architecture
improves MAE by 27% and MSE by 25%, it achieves the
lowest inference time of 0.064s and 1.3GB of memory.

5.2. Object Detection
We compare the proposed method on the OD task against
recent existing single-modality and multi-modality meth-
ods on the common Mean Average Precision (mAP) and
NuScenes Detection (ND) Score metrics. We project sparse
features at the smallest scale into a BEV grid and pass
them to a CenterPoint [73] head. The camera-only method
BEVFormer [30] (23.67mAP ) fails to achieve the perfor-
mance of LiDAR models. Pre-training the feature extrac-
tor on ViDAR [70] increases the detection accuracy by
3.55% (24.51mAP ), reinforcing the importance of the pre-
training step in the long-range scenarios. The LiDAR-



Table 3. LiDAR Forecasting on Long Range Dataset. We consider
a ROI of [+100m, �100m] on the Y axis of the Ego Vehicle and
[+250m, �100m] on the X axis.

History Method Modality 1s 3s
Horizon CD # L1 (m)# CD # L1 (m)#

1s
4DOcc [24] L 18.933 4.685 - -
ViDAR [70] C 58.228 20.209 51.720 20.688
LRS4Fusion L + C 15.821 3.313 39.031 3.825

3s
4DOcc [24] L 23.580 2.996 47.81 4.293
ViDAR [70] C 57.284 20.141 56.200 20.531
LRS4Fusion L + C 16.382 2.493 42.932 4.051

Table 4. LiDAR Forecasting on NuScenes. ROI of 51.2m on all
sides around the Ego Vehicle. † denotes results as reported in [70].

History Method Modality Chamfer Distance #
Horizon 0s 0.5s 1s 1.5s 2.0s 2.5s 3s

0s HERMES [79] C 0.59 - 0.78 - 0.95 - 1.17
LRS4Fusion L + C 0.087 0.348 0.566 0.748 0.963 1.205 1.510

1s
4DOcc† [24] L - 1.26 1.88 - - - -
ViDAR [70] C - 1.11 1.25 1.40 1.57 1.76 1.97
LRS4Fusion L + C 0.06 0.31 0.48 0.64 0.79 0.99 1.25

3s
4DOcc† [24] L - 0.91 1.13 1.30 1.53 1.72 2.11
ViDAR [70] C - 1.01 1.12 1.25 1.38 1.54 1.73
LRS4Fusion L + C 0.11 0.33 0.47 0.61 0.77 0.97 1.23

Table 5. LiDAR Forecasting on NuScenes. [1] evaluation setting.

Method SPFNet [60] S2Net [61] RayTracing [24] 4D-OCC [24] UnO [1] LRS4Fusion
NFCD # 2.50 2.06 1.66 1.40 0.89 0.72

CD # 4.14 3.47 3.59 4.31 1.80 0.88

only method PointPillars achieves 39.31mAP . The fu-
sion method BEVFusion [36] performs only marginally bet-
ter (+2.01%) than the LiDAR-only approach, 40.10mAP ,
confirming the drawbacks of the LSS approach. SAMFu-
sion [39] methods, based on depth-based 3d lifting of cam-
era features, improves by 5.70% over the LiDAR only base-
line. The proposed method (52.61) achieves state-of-the-
art quality in the long-range dataset, improving the mAP
by 26.6% over the second-best method, SAMFusion, on
the long-range dataset. Finally, we report that the pro-
posed occupancy-velocity self-supervision improves per-
formance by +6.11% over the proposed model without self-
supervision (49.58). Fig. 6 reports qualitative detections at
long ranges for vehicles and road debris.

5.3. LiDAR Forecasting
We analyze the performance of our second training step by
evaluating the LiDAR reconstruction accuracy at 1s and 3s
into the future. Following [24, 70], we report Chamfer dis-
tance (CD) between predicted and ground truth point cloud
at 1s, 3s into the future and with 0s, 1s, and 3s preced-
ing historical horizon. We compare two LiDAR forecasting
methods [24, 79] and the camera method [70].
NuScenes Evaluation We evaluates the LiDAR forecast-
ing task on the NuScenes dataset [5] following the more
comprehensive protocol of [70] in Tab. 4 and following
[1], condensing the performance into a single metric, in
5. The proposed method achieves state-of-the-art results,
with a Chamfer distance of 0.48 (+61.6% over the second
best model) on the 1s in, 1s out tasks, 1.25 (+36.5%) on

Table 6. Depth ablations. All methods use two iterative refinement
steps. “DI” = depth-integration.

Method Backbone DINOv2 Update DI Cam MAE# RMSE# Time# MEM#dist. Block Module Token
OGNI-DC CF [77] false GRU OGNI-DC No 4.76 13.16 364ms 2.4GB
Ours Vim [81] No GRU OGNI-DC No 3.83 11.14 245ms 1.3GB
Ours Vim [81] Yes GRU OGNI-DC No 3.61 10.32 245ms 1.3GB
Ours Vim [81] Yes MGU OGNI-DC No 3.58 10.41 213ms 1.3GB
Ours Vim [81] Yes MGU Ours No 3.51 9.31 63ms 1.3GB
Ours ResNet50 Yes MGU Ours No 3.53 9.28 58ms 2.9GB
Ours Vim [81] Yes MGU Ours Yes 3.46 9.21 63ms 1.3GB

Table 7. Ablation Experiments. (a) Backbone Ablation, (b) His-
tory Horizon Ablation, (c) Self-Supervision Decoders.

(a) Backbone Ablation

Backbone Pre-train mAP "
ResNet50 stage 2 50.22
VisionMamba stage 2 52.61

(b) Self-Supervision Decoders
Occupancy

Decoder
Velocity
Decoder CD - 1s # CD - 3s #

Yes No 16.592 42.152
Yes Yes 15.821 39.031

(c) History Horizon Ablation

History H Pre-train mAP "
0s stage 1 50.75

1s
stage 1 49.58
stage 2 52.61

Improvement +6.11%

3s
stage 1 51.16
stage 2 51.86

Improvement +1.37%

the 1s in 3s out tasks, 0.47 (+58.0%) on the 3s in 1s out
tasks and 1.23 (+28.9%) on the 3s in 3s out tasks. We also
compare the performance of the proposed method on the
no-history (0s history horizon) task with the recent Hermes
[79] work based on large Vision Language Model (VLM):
we achieve state-of-the-art results - 0.566 on 1s forecasting
- with future horizon less then 2s, where the complex rea-
soning capabilities of VLMs are able to better forecast, but
also compute-heavy.
Long-range Evaluation Tab. 3 evaluates the method on
the proposed long-range dataset. 4D-Occ struggle to ex-
tract temporal information from the history horizon due to
the large motion between frame in the highway scenarios;
this is visible by the drop in performance between 1s, CD
16.87, and 3s, CD 23.58, history horizon. ViDAR [70] is
less affected by large scene movements due to its use of
expensive deformable attention and multi-frame reasoning
but still struggles with accurate long-range 3D geometry, as
monocular surround cameras lack the necessary depth cues
and geometric constraints for estimating distant structures.
This is reflected by the large CD, 56.2 for 3s input 3s out-
put, 58.23 for 1sec in 1sec out, in the full range setting.
Instead, the proposed method is able to exploit the multi-
modal input and to effectively extract temporal clues from
the history horizon, achieving CD of 15.821 on 1sec in 1sec
out and 42.932 on 3sec in 3sec out.

5.4. Ablation Experiments
We conduct a series of ablation studies to evaluate the de-
sign choices of the proposed architecture.
Depth Model. Table 6 reports ablation experiments vali-
dating the proposed architectural components in terms of
accuracy gains, inference time reduction, and memory foot-
print. Starting from [83], replacing their backbone with our



Figure 6. Object Detection. The method detects vehicles and small lost cargo objects at long distances beyond 100m. 3D bounding boxes
of Car, Truck-Cab, Truck-Trailer, Road Obstruction with cyan, blue, orange, yellow color, respectively. Please zoom in for details.

Figure 7. Future predictions up to 3 seconds of depth, occupancy,
and LiDAR. The method captures fine details in the occupancy de-
coder, such as fine structures on the truck, forecasts the motion of
other agents (evident in the trailing car), and expresses uncertainty
through a gradual spread of occupancy. Please zoom in for details.

proposed Vim [81] encoding leads to a notable reduction
of memory of 45% while boosting accuracy in MAE by
24%. Further replacing the GRU update block with MGU
improves inference time by 41% over [83], while integrat-
ing our proposed Depth Integration Module further reduces
it to a total improvement of 82%. Finally, adding Camera
Tokens in the image encoding leads to a final improvement
of 27% in MAE over the baseline. Using the for BEV tasks
commonly deployed ResNet50 instead of Vim decreases in-
ference time marginally but doubles the memory footprint.
As scaling to long ranges requires a lightweight backbone,
we adopt the Vim-based model.
Camera Backbone. Tab. 7a reports mAP performance on
the OD task with Vim [81] backbone and with ResNet50
backbone. Our model with Vim improves mAP by 4.75%
over the proposed model with ResNet image backbone.
History Horizon. In Tab. 7c we ablate the input history
horizon. Departing from existing work on urban scenarios

[30], we empirically find that using a horizon of 1 second
on the long-range dataset leads to better Object Detection
performance (+1.44%) than 3 seconds. This can be ex-
plained by the higher speeds involved in highway scenar-
ios: higher velocities imply larger motions between frames
during which instances can fall out of ROI and, in general,
make the feature alignment harder. A car at highway speeds
travels in 3 seconds almost the entire region of interest of
the NuScenes dataset [5] (⇠ 100m).
Velocity Decoder. In Tab. 7b, we ablate the velocity de-
coder during pre-training. Training stage 2 with a 1-s input
shows that velocity supervision improves LiDAR forecast-
ing by 4.6%, improving the encoding of moving objects,
leading to more accurate predictions of dynamic actors.

6. Conclusion
We introduce a long-range camera-LiDAR BEV method
that learns a sparse voxel representation for efficient and
spatio-temporal 3D scene understanding. To tackle the
need for a large amount of training data, we devise a self-
supervised pretraining approach that integrates temporal
cues from past frames, enabling the model to predict fu-
ture occupancy through supervision from raw sensor data.
While existing BEV perception methods have been limited
to 100m, the method achieves long-range object detection
up to 250m, improving mAP by 26.6% (+11.06 mAP) at
distances up to 250m. Our method also sets a new state-of-
the-art in LiDAR forecasting, reducing Chamfer Distance
by up to 30.5% across the full [�100m : +250m] range
and outperforming existing work on the hardest 3-second
future horizon in NuScenes by 29%. We find that tackling
highway scenarios for trucking is fundamentally different
than urban perception, thus opening the avenue for a new
line of work, specializing in achieving real-time long-range
perception high-resolution sensors.
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