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A ADDITIONAL DETAILS ON IMAGE FORMATION MODEL AND RECONSTRUCTION
In this section, we provide additional details on the proposed nanophotonic image formation model and the
collaborative image deconvolution method for the on-sensor array camera.

A.1 Image Formation Model (Section 3.1 in main)
A camera will look at a scene 𝑈 in the visible spectrum. Our camera has six apertures, with relative 3D-2D
projection matrices 𝑃1, . . . , 𝑃6. The focal images are 𝑢1, . . . , 𝑢6 with 𝑢𝑘 = 𝑃𝑘𝑈 . It captures the fact that there is
parallax between images. Each image is defined locally on the visual spectrum Λ: 𝑢𝑘 : 𝜆 ∈ Λ ↦→ 𝑢𝑘 (𝜆). We denote
in what follows 𝑢𝑘

𝜆
= 𝑢𝑘 (𝜆).

Each aperture comes with a metalens, and thus a point-spread function (PSF) 𝑝𝑘 also defined on the visual
spectrum Λ. The PSF of a metalens is typically greatly varying on Λ. After passing through each of the𝐾 apertures,
we actually have blurry variants of the 𝑢𝑘 . This is commonly modeled with a convolutional forward process per
wavelength 𝜆 in Λ and for each aperture 𝑘 :

𝑣𝑘
𝜆
= 𝑝𝑘

𝜆
∗ 𝑢𝑘

𝜆
, (S1)

where ∗ is the convolution operator.
The process of converting a hyperspectral image 𝑢𝜆 to an RGB image is given by operator 𝐼 :

𝑢𝑐 = 𝐼 (𝑢𝜆) =
∫
𝜆∈Λ

𝑢𝜆𝜅
𝑐
𝜆
𝑑𝜆. (S2)

In this model, 𝜅𝑐
𝜆
is the camera spectral response function (CSRF) for color channel 𝑐 and wavelength 𝜆. These

coefficients mix the different bands of the input hyperspectral signal into three distinct discrete channels 𝑅, 𝐺
and 𝐵.

The recorded RGB images 𝑣1, . . . , 𝑣6 (what we alternatively call measurements in the main paper) are obtained
with:

𝑣𝑘,𝑐 = 𝐼

(
𝑣𝑘
𝜆

)
+ 𝜀𝑘,𝑐 = 𝐼

(
𝑝𝑘
𝜆
∗ 𝑢𝑘

𝜆

)
+ 𝜀𝑘,𝑐 , (S3)

where 𝜀𝑘,𝑐 is the additive noise. Additional mosaicking further leads to a final recorded image. We assume that an
in-body demosaicking algorithm is applied under the hood. We thus work with the measurements 𝑣𝑘,𝑐 in what
follows and neglect demosaicking artifacts.

In practice, one barely has access to hyperspectral measurements, but instead RGB ones. As a result, a common
approximation of the formation model above is for all channels, 𝑐

𝑣𝑘,𝑐 = 𝑝𝑘,𝑐 ∗ 𝑢𝑘,𝑐 + 𝜀𝑘,𝑐 = 𝐼
(
𝑝𝑘
𝜆

)
∗ 𝐼

(
𝑢𝑘
𝜆

)
+ 𝜀𝑘,𝑐 , (S4)

which swaps the operators 𝐼 and ∗, or in other words, swapping integration on the sensor, and passing through
an optical system.

A.2 Reconstruction (Section 3.2 and 3.3 in main)
Derivaton of Collaborative Joint Wiener Deconvolution. Assume for the moment we have access to the 𝑣𝑘

𝜆
and

𝑝𝑘
𝜆
values. Assume further that we have compensated for the parallax in the measurements 𝑣𝑘

𝜆
. As a result, we

have 𝑢1 = · · · = 𝑢6 = 𝑢, such that the formation model becomes:

𝑣𝑘
𝜆
= 𝑝𝑘

𝜆
∗ 𝑢𝜆 . (S5)

The problem has now become how can we combine the 𝐾 measurements and the PSFs to obtain an estimate
of 𝑢𝜆 . Since the formation model is independent of 𝜆, we can also posit the solution should not blend several
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4 • Sun et al.

wavelengths but instead be also independent with respect to 𝜆. We approach the recovery of𝑢𝜆 as a MAP estimate,
solving the following inverse problem

min
𝑢𝜆

1
𝐾

𝐾∑︁
𝑘=1

∥𝑣𝑘
𝜆
− 𝑝𝑘

𝜆
∗ 𝑢𝜆 ∥22 + 𝛽Ω(𝑢𝜆), (S6)

where Ω is an image prior that compensates for the ill-posedness of the data-fidelity term. A simple choice for Ω
is using the squared norm, which favors solution with smaller energy, i.e, no large peaks in the signal

min
𝑢𝜆

1
𝐾

𝐾∑︁
𝑘=1

∥𝑣𝑘
𝜆
− 𝑝𝑘

𝜆
∗ 𝑢𝜆 ∥22 + 𝛽 ∥𝑢𝜆 ∥22, (S7)

Via the Parceval theorem, this least-squares problem is equivalent in the Fourier domain to

min
𝑈𝜆

𝐾∑︁
𝑘=1

∥𝑉 𝑘
𝜆
− 𝑃𝑘

𝜆
⊙ 𝑈𝜆 ∥22 + 𝛽 ∥𝑈𝜆 ∥22, (S8)

where the capital letters are the Fourier transforms of the spatial quantities and ⊙ is the pointwise product. Each
entry in the Fourier transform arrays corresponds to a distinct spatial frequency. Taking the gradient of this
energy and setting it to 0 yields at the solution𝑈𝜆

0 =
1
𝐾

𝐾∑︁
𝑘=1

𝑃𝑘
𝜆
⊙ 𝑉 𝑘

𝜆
− 1
𝐾

𝐾∑︁
𝑘=1

𝑃𝑘
𝜆
⊙ 𝑃𝑘

𝜆
⊙ 𝑈𝜆 + 𝛽 𝐽 ⊙ 𝑈𝜆, (S9)

where 𝐽 is an array of the same size as 𝑈𝜆 full of ones (with the convention that 𝐽 ⊙ 𝑈𝜆 = 𝑈𝜆). Remarking that
𝑃𝑘
𝜆
⊙ 𝑃𝑘

𝜆
= |𝑃𝑘

𝜆
|2 and isolating𝑈𝜆 yields:

𝑈𝜆 =

∑𝐾
𝑘=1 𝑃

𝑘
𝜆
⊙ 𝑉 𝑘

𝜆∑𝐾
𝑘=1 |𝑃𝑘𝜆 |2 + 𝐾𝛽𝐽

. (S10)

The fraction bar is elementwise. In the main paper, we dropped 𝐽 with slight abuse of notation but the additive
term𝐾𝛽𝐽 means we add 𝐾𝛽 to each entry of |𝑃𝑘

𝜆
|2. The solution is thus the weighted average of the measurements

in the Fourier domain, with respect to the sharpness of the filters at each spatial frequency.

Analyis of Derived Joint Wiener Filter. Let us dissect the joint Wiener filter. First, let us understand the difference
between the case 𝐾 = 1, i.e., the original Wiener filter, and the joint Wiener filter for 𝐾 > 1. When 𝐾 = 1, the
solution reads:

𝑈𝐾=1
𝜆

=
𝑃1
𝜆
⊙ 𝑉 1

𝜆

|𝑃1
𝜆
|2 + 𝛽 𝐽

(S11)

In the original Wiener formulation, the filter multiplies by the inverse of the Fourier coefficients of the PSF, plus
𝛽 to not divide by 0 or multiply of +∞, the Fourier coefficients of the blurry image. Since the PSF is a low-pass
filter the Fourier coefficients of the higher frequencies are close to 0 so 𝛽 is crucial to not create large peaks in
the solution, and thus ensuring the validity of the inverse filter in the Fourier domain. However setting a value of
𝛽 that is large enough to prevent such peaks in the solution biases the coefficients that are not 0’s, and leads to
blurry solutions. There is thus a trade-off between retain too much blur in the reconstruction, and a sharp image
but at the cost of several overshoots in the reconstruction.

In the joint Wiener filter instead, the denominator is instead
∑𝐾
𝑘=1 |𝑃𝑘𝜆 |

2 +𝐾𝛽𝐽 . In the case where 𝐾 = 2, we can
see that at a given frequency 𝜔 if the first PSF has a coefficient that is 0, we could still have a valid denominator
without setting a large value of 𝛽 if the second PSF’s coefficient at the same frequency is not 0. As a result, if
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one selects the kernels 𝑃1
𝜆
and 𝑃2

𝜆
such that they are complementary over the whole Fourier domain, i,e, for all

spatial frequency 𝜔 , we have min( |𝑃1
𝜆
(𝜔) |, |𝑃2

𝜆
(𝜔) |) > 0, one could get a sharp result without the overshoots of

the single-frame case and without needing to tune 𝛽 to prevent blurring of the reconstructed image. When now
we have more than two PSFs, the probability that at least one PSF has not a 0 at frequency 𝜔 is larger, thus the
joint Wiener filter is more likely be invertible everywhere. Since the 𝐾 PSFs are all low-pass filters, we still need
𝛽 for the higher frequencies.

Converting HS Back to RGB Space. Although a hyperspectral image formation model is required to capture the
wavelength-dependent phase response of meta-optical elements, our metalens array is designed for general RGB
sensors. Consequently, the final reconstruction of interest also resides in the RGB domain.
Concretely, in the hyperspectral domain, converting a reconstructed volume 𝑈𝜆 into an RGB image 𝑈 𝑐 is

straightforward, involving an integration over the camera’s spectral response:

𝑈 𝑐 = 𝐼 (𝑈𝜆) =
∑︁

𝜆∈Λdisc

𝜅𝑐
𝜆
𝑈𝜆 =

∑︁
𝜆∈Λdisc

𝜅𝑐
𝜆

©­«
∑𝐾
𝑘=1 𝑃

𝑘
𝜆∑𝐾

𝑘=1 |𝑃𝑘𝜆 |2 + 𝐾𝛽
⊙ 𝑉 𝑘

𝜆

ª®¬ . (S12)

However, real physical experiments do not provide hyperspectral measurements 𝑉 𝑘
𝜆
but instead record RGB

images 𝑉 𝑐,𝑘 . To incorporate 𝑉 𝑐,𝑘 , we need to make the assumption that the PSF 𝑃𝑘
𝜆
is wavelength-invariant when∑

𝜆∈Λdisc 𝜅
𝑐
𝜆
= 1. Under this assumption, the equation becomes (we drop Λdisk for conciseness):

𝑈 𝑐 =

𝐾∑︁
𝑘=1

∑
𝜆 𝜅

𝑐
𝜆
𝑃𝑘
𝜆∑𝐾

𝑘=1 |
∑
𝜆 𝜅

𝑐
𝜆
𝑃𝑘
𝜆
|2 + 𝐾𝛽

⊙
∑︁
𝜆

𝜅𝑐
𝜆
𝑉 𝑘
𝜆

=

𝐾∑︁
𝑘=1

∑
𝜆 𝜅

𝑐
𝜆
𝑃𝑘
𝜆∑𝐾

𝑘=1 |
∑
𝜆 𝜅

𝑐
𝜆
𝑃𝑘
𝜆
|2 + 𝐾𝛽

⊙ 𝑉 𝑐,𝑘

=

𝐾∑︁
𝑘=1

𝑃𝑐,𝑘∑𝐾
𝑘=1 |𝑃𝑐,𝑘 |2 + 𝐾𝛽

⊙ 𝑉 𝑐,𝑘

=

𝐾∑︁
𝑘=1

𝐼 (𝑃𝑘
𝜆
)∑𝐾

𝑘=1 |𝐼 (𝑃𝑘𝜆 ) |2 + 𝐾𝛽
⊙ 𝐼 (𝑉 𝑐

𝑘
)

This reformulation maps the hyperspectral reconstruction into RGB space to directly leverage measured 𝑉 𝑐,𝑘(𝛼,𝛾 ) .
One may then perform deconvolution using either the integrated broadband PSFs 𝑃𝑘

𝜆,(𝛼,𝛾 ) obtained by simulation
or the empirically measured RGB PSFs 𝑃𝑐,𝑘(𝛼,𝛾 ) . In practice, however, wavelength-invariant PSFs rarely hold,
prompting previous literature to incorporate explicit spectral consistency losses [?] in broadband deconvolution.
By contrast, we adopt an end-to-end training paradigm that implicitly enforces spectral consistency, resulting in
superior broadband imaging performance.

Note that this form of𝑈 𝑐 is straightforward if we derive the joint Wiener filter for each color channel 𝑐 starting
from the approximate formation model in Eq. (S4). This suggests that the assumption that

∑
𝜆∈Λdisc 𝜅

𝑐
𝜆
= 1 is what

allows to permute 𝐼 and ∗. We could thus measure how far away from the real model we are by simply measuring
how far

∑
𝜆∈Λdisc 𝜅

𝑐
𝜆
is from 1.
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A.3 Noise Variance After Joint Wiener Deconvolution (Section 3.3 in main)
We assume that each sensor noise 𝜀𝑘 (we drop here the color upscript 𝑐) is i.i.d. white in the spatial domain with
variance 𝜎2

𝑘
. Let us denote by 𝜂𝑘 the Fourier transform of the noise 𝜀𝑘 . Evaluating the joint Wiener filter applied

to 𝐾 measurements reads:

𝑈 =

∑𝐾
𝑘=1 𝑃

𝑘 ⊙ 𝑉 𝑘∑𝐾
𝑘=1 |𝑃𝑘 |2 + 𝐾𝛽

=

∑𝐾
𝑘=1 𝑃

𝑘 ⊙ (𝑃𝑘 ⊙ 𝑈 + 𝜂𝑘 ))∑𝐾
𝑘=1 |𝑃𝑘 |2 + 𝐾𝛽

=

∑𝐾
𝑘=1 |𝑃𝑘 |2 ⊙ 𝑈∑𝐾
𝑘=1 |𝑃𝑘 |2 + 𝐾𝛽

+
∑𝐾
𝑘=1 𝑃

𝑘 ⊙ 𝜂𝑘∑𝐾
𝑘=1 |𝑃𝑘 |2 + 𝐾𝛽

.

The term on the left corresponds to the restored image and the term on the right corresponds to the boosted
correlated noise in the final image. We call 𝜂 the correlated noise:

𝜂 =

∑𝐾
𝑘=1 𝑃

𝑘 ⊙ 𝜂𝑘∑𝐾
𝑘=1 |𝑃𝑘 |2 + 𝐾𝛽

. (S13)

One can note that the distribution of the noise in the prediction 𝑈 depends on the distribution of 𝜖𝑘 and the 𝐾
MTF of our camera array.
Since we assume that 𝜖𝑘 is zero-mean, we can compute the variance of this correlated noise via the power

spectrum of 𝜂, we call 𝑆𝜂 . First, the expected square modulus of 𝜂 reads for each spatial frequency 𝜔 (we drop the
dependency on 𝜔 everywhere for conciseness):

E[|𝜂 |2] =
E[|∑𝐾

𝑘=1 𝑃
𝑘 ⊙ 𝜂𝑘 |2]

(∑𝐾
𝑘=1 |𝑃𝑘 |2 + 𝐾𝛽)2

=
E[∑𝐾

𝑘=1 |𝑃𝑘𝜂𝑘 |2]
(∑𝐾

𝑘=1 |𝑃𝑘 |2 + 𝐾𝛽)2

=

∑𝐾
𝑘=1 |𝑃𝑘 |2E[|𝜂𝑘 |2]

(∑𝐾
𝑘=1 |𝑃𝑘 |2 + 𝐾𝛽)2

=

∑𝐾
𝑘=1 |𝑃𝑘 |2𝜎2𝑘

(∑𝐾
𝑘=1 |𝑃𝑘 |2 + 𝐾𝛽)2

.

Passing from the second to third line uses the fact that the different instances of noise are independent. Passing
from the third to the fourth line uses the fact that the expected energy of white noise at a given frequency 𝜔 is its
variance.

Summing over all the spatial frequencies 𝜔 gives 𝑆𝜂 , which normalizes the contribution of all the frequencies
on the Fourier domain and gives the total energy of the noise, which is the variance of the correlated noise in the
reconstructed image𝑈 (up to a normalization factor):

𝑆𝜂 =
∑︁
𝜔

∑𝐾
𝑘=1 |𝑃𝑘 (𝜔) |2𝜎2𝑘

(∑𝐾
𝑘=1 |𝑃𝑘 (𝜔) |2 + 𝐾𝛽)2

. (S14)
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This final expression can be evaluated for each wavelength (or wavelength band) in a broadband meta-lens
array design. By combining these wavelength-specific noise variances appropriately, we obtain an overall noise
estimate for the multi-lens, multi-wavelength joint Wiener deconvolution result.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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B ADDITIONAL DETAILS ON COMPUTATIONAL MODELING OF METASURFACE

B.1 Proxy FDTD Simulation Details (Section 3.1 in main)
The phase and amplitude response of the nanopillar for the proxy estimation were computed through simulations
using the finite-difference time-domain (FDTD) method in Lumerical software. The unit cell comprised a silicon
nitride pillar deposited on a fused silica substrate, with a fixed thickness of 1000 nm and widths ranging from 80
nm to 280 nm. The array featured a pitch of 350 nm. Periodic boundary conditions were applied along the x- and
y-axes, with perfectly matched layers (PML) at the top and bottom boundaries. A linearly polarized plane wave
(x-polarized) was incident from the substrate side along the positive z-axis. The phase and amplitude data were
collected using a power monitor positioned several wavelengths above the silicon nitride layer.

B.2 Shifted ASM Kernel (Section 3.1 in main)
Wave propagation in free space from one plane to another can be calculated by Rayleigh-Sommerfeld scalar
diffraction integral [Goodman 2005], numerically implemented by a band-limited (shifted) angular spectrum
propagation model [Matsushima 2010; Matsushima and Shimobaba 2009] as

U(𝛼,𝛾 )
𝑑

= F −1{F {U(𝛼,𝛾 )
𝑠 } ⊗ H}

H(𝑢, 𝑣) = 𝑒 𝑗2𝜋 (Δ𝑥𝑝 (𝛼,𝛾 )𝑢+Δ𝑦𝑝 (𝛼,𝛾 ) 𝑣+𝑓 𝑤 )rect
(
𝑢 − 𝑢0
𝑢width

)
rect

(
𝑣 − 𝑣0
𝑣width

)
𝒘 (𝑢, 𝑣) =

𝑒
𝑗2𝜋 𝑓

√︃
1
𝜆2

−𝑢2−𝑣2 if
√
𝑢2 + 𝑣2 ≤ 1

𝜆

0 otherwise

(S15)

whereU(𝛼,𝛾 )
𝑠 andU(𝛼,𝛾 )

𝑑
denote source and destination fields of interest. F {·} represents the fast Fourier transform,

and 𝑢, 𝑣 are the corresponding spatial frequencies. rect(·) is the window function that truncates the high-
frequency parts of the transfer function to suppress aliasing, see [Matsushima 2010] for the detailed derivation.
𝑓 is the focal length of the designed camera. (Δ𝑥𝑝 (𝛼,𝛾 ) ,Δ𝑦𝑝 (𝛼,𝛾 ) ) = (−𝑓 tan𝛼, −𝑓 tan𝛾) indicate the spatial
coordinate shifts — the origin of the destination coordinates (𝑥,𝑦) is shifted from the source coordinates as
𝑥 = 𝑥 + Δ𝑥𝑝 (𝛼,𝛾 ) , 𝑦 = 𝑦 + Δ𝑦𝑝 (𝛼,𝛾 ) . We utilize this algorithm for PSF computation. Given the wavefront modulated
by metalens defined in Equation (7) of the main paper, we can derive the destination field in the sensor plane
with Eq. (S15) and finally compute its intensity (the square of the field amplitude) to get the corresponding PSF.
Note the transfer function H(𝑢, 𝑣), i.e., the ASM kernel, also depends on the incident angle (𝛼,𝛾).

B.3 Distributed Learning Pipeline Details (Section 3.4 in m qain)
Our distributed framework addresses three core issues: data distribution, model sharding, and communica-
tion synchronization. To meet these demands, our pipeline features three principal components: a distributed
incident wavefield sampler, forward and backward model sharding, and global information synchronization.
For illustration, we will use our optical training task as an example where six 1.5mm-aperture sublenses are

jointly optimized for broadband, full-angle illumination. Each of the following components plays a distinct role
in this pipeline:

Distributed Incident Wavefield Sampler. In our framework, the incident wavefield—characterized by wavelength
(𝜆) and incident angles (𝛼,𝛾)—serves as the input data. A naive parallelization strategy, assigning each GPU
rank a static subset of wavelengths or angles, would be prohibitively memory-intensive. For instance, sampling
wavelengths at 0.5 nm resolution from 400 nm to 700 nm, along with 1◦ angle increments from 0◦ to 30◦, demands
approximately 360 TB of GPU memory for our computational model. To circumvent this, we employ a stochastic
sampling approach. Rather than allocating fixed spectral or angular ranges, each iteration randomly selects a
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Fig. S1: Proposed Distributed Large Meta-Optics Training Framework.

subset of wavefields covering diverse wavelengths and angles. This ensures thorough exploration of the high-
dimensional sampling space over multiple iterations and keeps per-GPU memory requirements within practical
limits. After this sampling stage, each GPU rank receives a distinct set of three wavefields for further processing.

Forward and Backward Model Sharding. Although the parameter count of a single meta-optics model can
typically fit within a single GPU, the intermediate tensors from phase-response calculations over multiple
wavefields can exceed the GPU memory by up to two orders of magnitude. To address this, we split the model
across several GPU ranks and partition the wavefield inputs accordingly. Leveraging PyTorch’s Distributed Data
Parallel (DDP) [Li et al. 2020], our pipeline divides both the model and data, ensuring each GPU stores only
a fraction of the intermediate results. This design lowers memory usage by approximately a factor of 𝑁 (the
world size), while maintaining an end-to-end training flow. Furthermore, our pipeline supports Fully Sharded
Data Parallel (FSDP) [Zhao et al. 2023], which fragments the meta-optics model itself across multiple ranks,
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dynamically reassembling the shards at runtime. This flexibility is particularly advantageous for multilayer
meta-optics or cases in which backward computations incur a large memory footprint.
In our example, each rank initializes its own instance of the metalens array model. The model is wrapped

via DDP or FSDP so that gradient synchronization among intermediate results is handled automatically once
the sharding strategy is defined. Incident wavefields are modulated by the metasurface on a per-rank basis and
propagated to the sensor plane to form the PSF, all computed locally on each GPU.

Global Information Synchronization. Beyond parameter and gradient synchronization, which is managed by
DDP or FSDP, large-scale meta-optics models require additional coordination of intermediate computational
results across ranks. For example, the broadband PSF calculation during training (see Eq. (16)) necessitates an
all-gather operation, aggregating each rank’s partial PSFs into a unified dataset.

Our framework features several custom utility functions to facilitate cross-rank tensor gathering with gradient
tracking. Once the broadband PSFs are collected from all ranks, the model continues with its forward pass and
subsequent backward pass. Rank-specific losses are computed and then backpropagated, with synchronization
performed by the DDP/FSDP module. Since the entire pipeline remains differentiable and global synchronization
retains gradients, the resulting loss function can effectively backpropagate through all metalens parameters,
enabling an end-to-end update of the metasurface design to achieve the desired task objectives.
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C ADDITIONAL EXPERIMENTAL PROTOTYPE DETAILS
Here, we describe additional details on the implemented hardware prototype.

C.1 Meta-Optic Fabrication
To fabricate the device, a 1000 nm silicon nitride (SiN) thin film was deposited on a 500 µm fused silica wafer
using plasma-enhanced chemical vapor deposition (PECVD) in an SPTS chamber. The wafer was diced into
1.5 cm × 1.5 cm chips with a Disco wafer dicer. A positive-tone resist (ZEP 520A) was spin-coated at 4000 rpm for
60 s, baked at 180 ◦C for 3min, then coated with a conductive polymer (DisCharge H2O) to mitigate charging.
Resist patterning was performed on a JEOL JBX-6300FS 100 kV electron-beam lithography system at a dose

of 275 µC cm−2 and developed in amyl acetate for 2min. A 67 nm aluminum oxide layer was deposited by
electron-beam evaporation, followed by overnight liftoff in N-methyl-2-pyrrolidone (NMP). The exposed SiN
was etched in an Oxford PlasmaLab 100 ICP-RIE using a C4F8/SF6 gas mixture.

For aperture fabrication, a negative-tone resist (NR9G3000PY) was spin-coated, patterned via optical direct laser
writing (Heidelberg DWL66), and developed in AZ 726 MIF for 1min. A 200 nm chromium layer was deposited
by e-beam evaporation, and liftoff was carried out in acetone for 5min. The final metasurface array measures
6.57mm × 10.64mm. A customized inner baffle was then designed to mount the array above the bare-board
sensor.

C.2 Optical Mounting (Section 4.2 in main)
We designed a specialized internal baffle for metasurface on-sensor mounting to mitigate optical cross-talk among
the sublenses. We first obtained a 3D model of the board-level sensor (Allied Vision, Alvium 1800 U-2050c) from
the official website [AlliedVision 2025]. Due to the presence of the cover glass, we experimentally measured the
distance between the sensor cover glass and the best lens focusing plane to be 1.3mm. This implies that the total
thickness between the outer cover glass plane and the sensor plane is 2.3mm.

Using the 1.3mm distance, we calculated the aperture size of each lens opening on the inner baffle based on the
52◦ field of view (FOV) of the sublens. We also incorporated a lofting operation into the baffle design to reduce
internal reflections. Subsequently, we 3D-printed the inner baffle using stereolithography with Accura 7820
material. After precisely aligning the metalens with the baffle apertures, we used tape to affix the metasurface onto
the baffle. Finally, we fastened the assembly to the board-level sensor using M2 screws. Notably, by employing an
internal baffle rather than an external one, we did not introduce any additional thickness to the imaging system.

C.3 Experimental Acquisition with A Dual Camera Setup (Section 4.2 in main)
We constructed a dual-camera characterization system for reference captures and comparison. Figure S3 illustrates
the setup, along with the hyperspectral PSF calibration system: (a) a precision optical breadboard assembly
with kinematic mounts supporting our metalens prototype and a FLIR reference camera, and a beam splitter at
calculated angles, utilizing industry-standard mounting hardware for precise and robust alignment; and (b) a
hyperspectral PSF calibration module incorporating a linear translation stage (Thorlabs, XF100) with millimeter
precision for positioning the spectral filter (Edmund Optics, 88-365) during bandpass PSF characterization.
Figure S4 shows our custom-developed graphical user interface (GUI) for the metalens/ground truth (GT)

camera capture system provides comprehensive control over both imaging systems. The interface features three
main control sections: Metalens Settings, GT Settings, and Capture Settings. The Metalens Settings panel allows
adjustment of exposure time (in milliseconds) and white balance parameters (red and blue). The GT Settings
section enables configuration of the ground truth camera with an exposure ratio (relative to the metalens camera)
and white balance values. The Capture Settings section includes options for single image capture and video
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Fig. S2: We 3D-printed a customized optical baffle that mounts the metalens together with the sensor and
serves as an optical stop to prevent crosstalk between adjacent lenses.

(a) (b)

Fig. S3: Experimental setup for dual-camera system and PSF characterization: (a) optical breadboard configu-
ration showing kinematic mounts, two cameras, and precision beam splitter arrangement; (b) hyperspectral
PSF calibration module with Thorlabs XF100 translation stage and Edmund Optics 88-365 spectral filter.
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Fig. S4:Metalens/GT camera control interface showing dual-camera preview and parameter adjustment panels.
Control panels for exposure, white balance, capture settings, and real-time preview of metalens camera output
(2 × 3 grid). The real-time processing and visualization here are preliminary; not the paper’s full method. The
scene is a ChArUco broad pattern for homography calibration.

recording with an adjustable frame count. The interface displays real-time previews from both cameras side-by-
side: the metalens camera showing a 2 × 3 grid of captures with a ChArUco broad pattern, and the GT camera
displaying a single view of the same ChArUco broad pattern. A checkbox for ‘Enable Real-Time Processing’ and
an ‘Open Session Folder’ button provide additional functionality for processing, real-time reconstruction, and
data-saving management. The GUI allows us to capture images and videos for indoor and outdoor scenes and
visualizes preliminary reconstruction results in real-time. Exposure times were adjusted differently for scenes
under various illumination conditions.

C.4 Experimental PSF Measurements
The optical hyperspectral PSFs were measured to validate the fabrication quality of the prototype. A fiber-coupled
broadband LED source (Thorlabs, MBB1F1) was spatially filtered through a 100 µm pinhole (Thorlabs, P100K) and
spectrally filtered using a linear variable bandpass filter (Edmund Optics, 88-365). The filtered light was collimated
by an achromatic doublet lens (Thorlabs, AC254-150-A-ML) with an iris (Thorlabs, ID20). The calibration setup
was positioned at ∼2m from the prototype to ensure proper PSF formation on the sensor plane. For spectral
sampling, the variable bandpass filter was mounted on a manual translational stage (Thorlabs, XF100) and laterally
shifted in 1mm increments, spanning 400-700 nm. This yielded 37 distinct spectral bands with 8.1 nm bandwidth
per PSF measurement. At each spectral band, PSFs were captured across multiple exposure times (20-1500ms),
with exposure time adjusted per spectral window to compensate for the source’s spectral power distribution
and prototype image sensor spectrum response. Figure S5 shows the measured PSFs for each sublens across
the spectrum range, normalized to each spectrum band for visualization purposes. While all sub-lenses exhibit
spectrally uniform PSFs, different elements focus in different bands of the spectrum – matching the trend in
simulation – and this allows us to collaboratively recover full-color images.
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Fig. S5:Measured hyperspectral PSFs from the 2 × 3 metalens array demonstrate sharp focusing with minimal
aberrations across 400 nm-700 nm over 37 spectral bands, validating our broadband design.
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D PSF SIMULATION AND ADDITIONAL SYNTHETIC RESULTS
We present additional synthetic PSF simulations that visualize the full-angle response of the proposed lens array
design, along with ablation results, to further support the effectiveness of the proposed reconstruction method
discussed in the main manuscript.

Fig. S6: Simulated Full-Angle PSF Response of the Proposed Metalens Array. We simulated the 9 × 9 RGB
spatially varying PSFs based on the incident angle of the center pixel of each image patch. The PSFs were
calculated using the shifted ASM kernel in hyperspectral space and subsequently integrated into RGB space
based on the camera spectral response function. For improved visualization, the PSFs were center-cropped.
Notably, the collaborative lens array exhibits different spectral focusing behaviors for each sublens, as evidenced
by the varying RGB colors of the PSFs under identical broadband plane waves.

Full-Angle PSF Response Simulation. The PSFs were calculated based on the center pixel coordinates of the
image patches and the focal length of the proposed lens array design. In our experiments, we divided the 576×576
sub-image measurements into 9 × 9 patches, each with a size of 64 × 64. The incident angles (𝛼,𝛾) were derived
from the center pixel coordinates (𝑥,𝑦) of the patches and the focal length 𝑓 = 3.6mm, as follows:

𝛼 = arctan
(
𝑥

𝑓

)
, 𝛾 = arctan

(
𝑦

𝑓

)
. (S16)

This calculation resulted in the following incident angles for both 𝛼,𝛾 :
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−22.6220◦,−17.3558◦,−11.7695◦,−5.9475◦, 0.0000◦, 5.9475◦, 11.7695◦, 17.3558◦, 22.6220◦.
For each incident angle combination, we utilized the proposed distributed meta-optics framework to infer the

hyperspectral response for wavelengths sampled every 2 nm across the visible spectrum. These hyperspectral
responses were then integrated into RGB space using the camera spectral response function. The broadband
array PSF tensors were saved as intermediate results, which were subsequently used to train the reconstruction
network to accelerate the training speed.

Fig. S7: Additional Ablation Experiments on the Proposed Reconstruction Method. In line with the ablation
findings presented in the main text, the method’s performance degrades distinctly when each submodule is
disabled, underscoring the necessity of each design component.

Additional Ablation Study Results on the Proposed Synthetic Hyperspectral Dataset. We conducted further
ablation experiments on the synthetic hyperspectral array dataset exhibiting parallax. The results corroborate
the observations made in the main manuscript. Specifically, deactivating the shift-variant deconvolution module
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reduces resolution in the peripheral regions, while omitting the parallax aligner adversely affects the resolution
of nearby objects. Replacing joint deconvolution with six individual Wiener deconvolutions introduces color-
aberration artifacts, and removing the noise estimator prevents compensation for wavelength-dependent noise.
Collectively, these findings reinforce the efficacy of our reconstruction method and its various submodules.
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E ADDITIONAL EXPERIMENTAL RESULTS

Fig. S8: Additional Reconstruction Results on the Experimental Capture Dataset.

To further corroborate the real-world reconstruction performance, we include additional results from the
experimental capture dataset, covering both indoor and outdoor scenes. The reconstruction results are consistent
with those presented in the main paper, maintaining high-quality reconstructions despite varying illumination
conditions.
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Fig. S9: Additional results on comparison with [Chakravarthula et al. 2023].

Under similar scenes and illumination conditions, the collaborative metalens array provides hallucination-free
reconstruction results. Here, we present more results of different indoor and outdoor scenes under different
illumination conditions. From top to bottom, the collaborative metalens array shows details like building wall
textures, text on the trash bin, text on the book, bricks on the ground, and details on the toy model, which are
invisible or not distinguishable in the corresponding [Chakravarthula et al. 2023] results.
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