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Fig. 1. We designed a collaborative metasurface array imager of 2 X 3 metalenses (left) positioned 3.6 mm from the sensor plane that enables broadband
focusing (see 1-D PSF sections alongside spectrum in the middle) across the full 50°x50° field of view, including both axial and off-axis incident angles. The
design collaboratively optimizes 100 million nanophotonic parameters through a neural structure-to-phase proxy and a distributed meta-optics training
framework incorporating a parallax-aware spatially-varying method for accurate, hallucination-free image reconstruction (right). In reconstructing a book
containing ‘86” and portrait, our collaborative metalens array accurately captures both elements, while existing flat metalens arrays [Chakravarthula et al.

2023] produces hallucinated reconstructions that more closely resemble ‘65’.

Modern nanofabrication techniques have enabled us to manipulate the wave-
front of light with sub-wavelength-scale structures, offering the potential to
replace bulky refractive surfaces in conventional optics with ultrathin meta-
surfaces. In theory, arrays of nanoposts provide unprecedented control over
manipulating the wavefront in terms of phase, polarization, and amplitude at
the nanometer resolution. A line of recent work successfully investigates flat
computational cameras that replace compound lenses with a single metalens
or an array of metasurfaces a few millimeters from the sensor. However,
due to the inherent wavelength dependence of metalenses, in practice, these
cameras do not match their refractive counterparts in image quality for
broadband imaging, and may even suffer from hallucinations when relying
on generative reconstruction methods.

In this work, we investigate a collaborative array of metasurface elements
that are jointly learned to perform broadband imaging. To this end, we learn
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a nanophotonics array with 100-million nanoposts that is end-to-end jointly
optimized over the full visible spectrum—a design task that existing inverse
design methods or learning approaches cannot support due to memory
and compute limitations. We introduce a distributed meta-optics learning
method to tackle this challenge. This allows us to optimize a large parameter
array along with a learned metaatom proxy and a non-generative reconstruc-
tion method that is parallax-aware and noise-aware. The proposed camera
performs favorably in simulation and in all experimental tests irrespective
of the scene illumination spectrum.
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1 INTRODUCTION

The aperture of an optical system fundamentally limits its optical
resolution. As such, large aperture optics are essential for appli-
cations across diverse domains, including photography, robotics,
remote sensing, mobile smartphones, health, and scientific imaging.
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Large optics generally result in large weight; for example, the weight
of the lenses in the Hubble space telescope (aperture of ~ 2m) is
on the order of ~ 1000 kg. Enabled by modern nanofabrication tech-
niques, metaoptics [Khorasaninejad and Capasso 2017] have been
proposed as a potential alternative to refractive surfaces. Metaoptics
consist of quasi-periodic arrays of sub-wavelength scatterers that
offer access to a design space that is six orders of magnitude larger
than conventional spherical optics. These degrees of freedom offer
unprecedented control over the modulation of the incoming wave-
front, with the potential to drastically reduce the size and weight of
conventional large-aperture optics.

However, traversing this larger design space to find large-aperture
optics that offer substantially smaller footprint without compro-
mising image quality has proven challenging, even with recent
learned [Chakravarthula et al. 2023; Froch et al. 2025; Tseng et al.
2021a] design approaches. This is because diffractive optical ele-
ments (DOEs) and metasurfaces are fundamentally wavelength-
dependent chromatic optics, which makes it challenging to min-
imize chromatic aberration while achieving high resolution and
large field of view (FOV). Although techniques like dispersion engi-
neering have been explored to address chromatic aberrations [Chen
et al. 2018; Wang et al. 2018], the limited optical bandwidth and the
aperture size lead to poor imaging performance under broadband
illumination [Presutti and Monticone 2020]. A recent line of work
has explored learning methods for optimizing metalenses or arrays
of metasurfaces using proxy forward models [Chakravarthula et al.
2023; Tseng et al. 2021a]. To date, the most successful meta-optics im-
ager for broadband imaging is inverse designed via a differentiable
broadband image formation model [Chakravarthula et al. 2023]. De-
spite the improvements in image quality, the design limitations of
the heuristic wedge phase superimposition results in compromised
color fidelity and severe distortions in spatial frequencies, requiring
a generative model for image recovery with the risk of hallucina-
tions. As a direct result of the large size of the parameter space, only
the center lens profile could be learned while the peripheral lenses
were directly made by superimposing the center lens profile with
a certain wedge phase to heuristically expand FOV. Consequently,
measurements from this existing camera (especially the peripheral
lenses) suffer from severe degradations in spatial frequencies and
color fidelity. Although significant strides in meta-optics imaging
have been made in both optics and computational imaging commu-
nities, the image quality of ultra-thin metalens cameras is still far
from being competitive with traditional refractive optics.

In this work, we propose a flat camera composed of an array
of metalenses which are jointly and collaboratively designed for
broadband imaging. To achieve this, we learn a nanophotonic array
with 100-million-nanoposts that is end-to-end optimized over the
full visible spectrum — a design task existing inverse design methods
or learning approaches cannot support due to memory and compute
limitations. Our design is motivated by the observations that 1) a
single metalens can possess favorable focusing properties within a
narrow band, and 2) a sequence of measurements that are optically
encoded in distinct ways can be collaboratively merged to generate
high-quality results. We find that the collaborative array features
per-lens optical encodings, each of which is tailored to distinct yet
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complementary segments of the color spectrum. To design the ar-
ray we develop a distributed, large-scale meta-optics optimization
framework. We learn the array optics with a novel learned nano-
structure-to-broadband-phase neural proxy. To recover images, we
introduce a collaborative parallax-aware joint reconstruction model
that does not rely on generative priors. We fabricate the designed
metasurface array and build a prototype camera system to exper-
imentally validate the proposed design method. We confirm that
the collaborative metalens array camera consistently outperforms
the existing meta-optics in terms of image quality across the entire
visible spectrum, while maintaining a flat optical system on the
sensor cover glass.

Our contributions are as follows:

e We introduce a collaborative on-sensor array camera, where
each lens learns to capture complementary portions of the
spectrum. When combined, these measurements enable high-
fidelity reconstruction across the full visible spectrum range.

e We propose a learned nano-structure-to-broadband-phase
neural proxy for accurate forward simulation, and a dis-
tributed large-scale meta-optics optimization method.

e We devise a parallax-aware, spatially-variant reconstruction
algorithm tailored to our jointly designed lens array, deliber-
ately avoiding reliance on generative priors.

e We evaluate our approach in simulations and in real indoor
and outdoor scenes with a camera prototype, confirming
favorable broadband imaging performance.

Limitations. Compared to conventional cameras that employ larger
refractive lens assemblies to record high-quality images without
computationally heavy reconstruction, the proposed flat-camera
does require computational recovery to produce an image. More-
over, as a research prototype rather than a commercial product,
the current camera prototype retains the thick sensor cover glass
that limits inner-baffle height, precludes further focal-length reduc-
tion, and mandates a non-contiguous sublens arrangement to avoid
crosstalk. These compromises enlarge the required sensor size and
limit the overall light-collection efficiency.

2 RELATED WORK

Flat Computational Cameras. Designing a flat camera system with
high imaging quality and low cost has been an open challenge that a
large body of work in computational imaging addresses. As optical
aberrations inherently limit the quality of flat optical systems, exist-
ing approaches share the same philosophy that trades off camera
form factor with image quality and computational complexity [An-
tipa et al. 2018; Asif et al. 2016; Boominathan et al. 2016, 2020;
Heide et al. 2016, 2013; Khan et al. 2020; Peng et al. 2015, 2016, 2019;
Venkataraman et al. 2013]. Early attempts at flat computational cam-
era designs compress the compound camera optics into a single
refractive element (e.g., plano-convex or biconvex lenses [Kingslake
and Johnson 2009]), and they correct the geometric and chromatic
aberrations post-capture using variational optimization [Heide et al.
2013; Schuler et al. 2011]. To further shrink the form factor, re-
searchers have explored DOEs building atop diffraction manipu-
lation of light beyond refraction, including single DOE elements



(e.g., Fresnel lens [Heide et al. 2016; Peng et al. 2015, 2016]), lens-
less coded apertures [Asif et al. 2016; Boominathan et al. 2020],
diffusers [Kuo et al. 2017; Monakhova et al. 2020], and Fresnel zone
apertures [Wu et al. 2020]. The compound cameras can achieve
aberration-corrected high-quality imaging under broadband illu-
mination, but still entails a long back-focal distance of more than
10 mm which has made truly compact camera design challenging.
The DOE cameras, albeit allowing for ultra-thin cameras of a few
millimeters in height, achieve moderate imaging quality due to the
highly ill-posed nature of image reconstruction from coded mea-
surements with global support. As such, unfortunately, no existing
methods achieve flat form factors with high imaging quality.

Flat Metasurface Optics. Unlike conventional optical elements
that rely on gradual phase shifts accumulated during light propaga-
tion to shape light beams, metasurfaces — imparting abrupt phase
changes with subwavelength nanostructures — have recently been
investigated for imaging [Arbabi and Faraon 2023; Dorrah and Ca-
passo 2022; Khorasaninejad et al. 2016; Kildishev et al. 2013; Lin et al.
2014; Yu and Capasso 2014; Yu et al. 2011]. Existing metasurfaces
offer flat optics, however, but suffer from severe monochromatic and
chromatic aberrations when acting as imagers (i.e., metalens) [Kho-
rasaninejad and Capasso 2017]. Although dispersion-engineered
achromatic metalenses have been reported [Khorasaninejad et al.
2017; Shrestha et al. 2018; Wang et al. 2018], they are fundamentally
limited to aperture sizes of tens of microns [Presutti and Monticone
2020]. To enable larger aperture size while suppressing aberrations,
researchers have designed meta-optic systems together with con-
ventional deconvolution methods [Colburn et al. 2018] and learned
recovery methods [Tseng et al. 2021a] for multi-wavelength color
imaging. Recent metalens camera designs have explored deep neural
network reconstruction for analytical hyperbolic metalenses [Dong
et al. 2024], aperture-stop optimization for three discrete wave-
lengths [Park et al. 2025], and folded metalens to reduce system
thickness [Kim et al. 2024]. While achieving high-quality imaging
results, these metasurface cameras are not collaborative designs for
broadband imaging, and the number of optimized spectral bands is
two orders of magnitude smaller than ours. The work most related
to ours is [Chakravarthula et al. 2023], which utilizes an inverse-
designed on-sensor metasurface array camera with a learned opti-
mization algorithm for large FOV broadband imaging. While previ-
ous work used metalens arrays to expand the field of view at the
cost of image quality, our approach jointly designs six complemen-
tary metalenses that collaborate for high-fidelity imaging, with a
compact 3.6 mm height.

Differentiable Optics. While conventional camera design hand-
engineers the optics in isolation for compartmentalized metrics
(e.g., root-mean-square spot size), a body of work in computational
imaging leverages the modern differentiable framework to jointly
optimize optics and reconstruction algorithms for downstream tasks.
Successful methods that follow this paradigm learn optics and/or
sensors for color imaging [Chakrabarti 2016; Na et al. 2024; Sun et al.
2021; Wang et al. 2022; Yang et al. 2024a,b], microscopy [Horstmeyer
et al. 2017; Kellman et al. 2019; Nehme et al. 2020; Shechtman et al.
2016], depth imaging [Chang and Wetzstein 2019; Ghanekar et al.
2024; Haim et al. 2018; Wu et al. 2019], super-resolution and extended
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depth of field [Sitzmann et al. 2018; Tan et al. 2021], time-of-flight
imaging [Chugunov et al. 2021; Marco et al. 2017; Su et al. 2018],
high-dynamic range imaging [Martel et al. 2020; Metzler et al. 2020;
Shi et al. 2024a; Sun et al. 2020], compressive sensing [Iliadis et al.
2020; Yoshida et al. 2018], active-stereo imaging [Baek and Heide
2021], hyperspectral imaging [Baek et al. 2021; Fu et al. 2020; Shi
et al. 2024b], and computer vision tasks [Souza et al. 2024; Tseng
et al. 2021b; Wei et al. 2024]. Our approach models differentiable
optics for metasurfaces and jointly optimizes the metasurface design
and the reconstruction algorithm end-to-end for general broadband
imaging.

3 COLLABORATIVE NANOPHOTONIC ARRAY IMAGING

Our collaborative metalens camera is described in design and re-
construction phase. We first describe the design hinging on a dif-
ferentiable spatially-varying image formation model with neural
metasurface proxy (Section 3.1), and a joint optimization of metalens
array phase profiles and PSFs for multi-image deconvolution (Sec-
tion 3.2) through distributed metasurface learning (Section 3.4). For
experimental reconstruction, we devise an array image alignment
approach, followed by the same multi-image deconvolution method
combined with a learned denoiser (Section 3.3). Implementation and
training details are provided in Section 3.5. Figure 2 illustrates our
collaborative nanophotonic imaging system design and reconstruc-
tion architecture.

In what follows, continuous variables (such as wavelength 1) are
denoted in subscript, while discrete (categorical) variables (such as
the metalens index k and color channel c) are denoted in superscript.

3.1 Spatially-varying Image Formation Model

Overview of Image Formation Model. We start by deriving the
formation model of an image by a single meta-optical element. We
target broadband imaging in the visible range with wavelength A
from 400 nm to 700 nm. The optical imaging process at a certain
wavelength can be generally modeled as the locally-varying con-
volution of the focal scene image u) with a point spread function
(PSF) p,. This PSF kernel is a function of the wavelength-dependent
phase profiles @, in the lens plane!

pa: @u = pa(Py), 1
which can be derived by a free-space wave propagation of a wave-
front (plane wave modulated by the optical phase delay) propagated
to the sensor plane [Goodman 2005]. Our design leverages a 2 X 3
array of K = 6 metalenses, and thus has as many PSFs pl/{ and related

phases <I>§ . We chose the number of lenses to align with the sensor
aspect ratio; however, the method itself is agnostic to lens number
and can accommodate any array configuration.

The k-th image 0(%€) at a certain color channel ¢ € {R G, B}
focused by the optics onto the sensor plane is formed by integrating
PSFs over the visible spectrum weighted by the spectral sensitivities
of the on-sensor color filters

(k) _ / c k (ki)
v = K5 (uy ® dA+e¢ , (2)
AEA /1( A pA)

!Note we omit the spatial/angle dependency of the PSF in the formula here for simplicity.
The spatial/angle-dependent PSF computation will be detailed later.
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Fig. 2. Collaborative Nanophotonic Imaging. We propose a 2 X 3 collaborative metalens array camera wherein individual metalenses in the array capture
a part of the whole visible spectrum (the spectrum under each sublens image here is for illustration). After two-step alignment to compensate for parallax, we
reconstruct the full visible spectrum at the resolution of the input sub-images, with a multi-image variant of Wiener deconvolution collaboratively combining
wavelength spectra across the six collaborative measurements. The whole pipeline is fully differentiable, thereby enabling end-to-end optimization of the

collaborative nanophotonic imaging system.

where ® denotes a locally-varying convolution as the PSF kernel
varies across the FOV. Here, Kﬁ is the camera spectral response
function (a.k.a. camera sensitivity [Jiang et al. 2013; Solomatov and
Akkaynak 2023]) for each color filter ¢ atop sensor. As such, £5¢ de-
notes the random (shot and read) noise in the sensor measurements,
which is modeled as a heteroscedastic Gaussian distribution [Foi
et al. 2008].

Due to the nonlinear phase responses of the nano-pillars across
different wavelengths, the associated PSFs can vary substantially
among spectral bands [Chen et al. 2018]. Consequently, Eq. (2) can-
not be approximated by a simple convolution in the RGB image
space (see Supplementary Material for details). To accurately capture
the underlying physics, we therefore optimize our optics model in
the hyperspectral domain.

Given the smooth variation of the PSFs across different incident
angles [Lohmann and Paris 1965], the locally-varying convolution ®
can be approximated as spatially-uniform convolutions * of M X N
image patches localized in u), with the corresponding PSFs p(k om.n)
computed at specific incident angles [Eboli et al. 2022; H1rsch et al.
2010; Schuler et al. 2011]. The image u) ® p]; is then formed by
blending these patches with a fusion windowing function w (e.g.,
a Hann window [Blackman and Tukey 1958]) to suppress border
artifacts. This can be formulated as

(uA ®p§) Z Zw(m 1) (u *p(km")) 3)

m=1n=

where (m, n) indicates the (m, n)-th entry of an array of varying
incident angles. The window w("™") is non-zero only for the in-
terval of the corresponding patch (m, n) in u;. In what follows, we
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elucidate Eq. (1) in detail, which includes the metalens model and
the angle-dependent PSF computation.

Metalens Model Parameterization. Each individual metalens is
composed of silicon nitride nanoposts with a height of 1000 nm
atop a fused silica substrate. These nanostructures with optimizable
width D between 100-300 nm are distributed on a regular grid with
P = 350nm distance, resulting in a grid of pillars with tunable
width (which determines the “duty cycle” d = % between 0 to
1) [Chakravarthula et al. 2023; Tseng et al. 2021a]. Instead of working
on this low-level representation that entails the computationally
demanding full-wave solver, we parameterize each metalens as a
radially symmetric phase profile

Dy (e y) =0 (), r=qx*+y? 4)

where (x, y) represents the spatial coordinates in the lens plane, and
(pk is a 1D radial vector of size L (i.e., the radius of the metalens),
which serves as the optimization variable in our design. Note the
above phase function is only defined for a specific nominal wave-
length 9. We select g = 658 nm as the nominal wavelength for
our fabricated structure, as we empirically found that, there exists a
one-to-one (instead of one-to-many) mapping relationship between
the structure and the phase response, within a tolerance for the
wavelength.

To fully characterize the broadband behavior of the metalens
while maintaining the differentiability of the pipeline, we utilize
two proxy functions in sequence to determine the phase profiles of
the metalens across the entire visible spectrum of interest in lieu
of the rigorous yet computationally expensive full-wave methods,
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such as the finite-difference-time domain method (FDTD) [Kunz
and Luebbers 1993; Taflove et al. 2005].

The first proxy is a precomputed polynomial that computes the
metasurface geometry (duty cycle d for each nanopost) from the
phase at nominal wavelength Ao as d(¢,,) = Z?:o ao (¢2,/(2m))°,
where we find that a fifth-order polynomial O = 5 is sufficient to fit
the phase-to-structure mapping data in experiments.

Due to the complex, nonlinear relationship among the nano-
structure duty cycle, target wavelength, and the broadband phase
delay—together with the high-precision requirements of broadband
phase mapping—polynomial based proxy functions used in previous
literature [Chakravarthula et al. 2023; Tseng et al. 2021a] fail to con-
verge within a 1% error threshold, see Fig. 3. Therefore, we utilize
a neural network proxy Nproxy as the second structure-to-phase
mapping proxy to compute the phases at other target wavelengths
¢ given the metasurface duty cycle d.

q)/l, (d) = Nproxy(da At) mod 27. (5)

The neural network comprises three fully connected layers with
ReLU activation. Its training dataset is generated by FDTD simula-
tions at 2 nm increments for structure sizes ranging from 80 nm to
280 nm, and at 1 nm increments across the visible spectrum. With
the two proxy functions introduced, we now build a differentiable
computational graph @, > @, from the phase profile at nomi-
nal wavelength A to other target visible wavelengths A;. See the
Supplementary Material for full details of the FDTD simulation.

Angular-dependent PSF Model. With the metalens model, we can
now derive the angle-dependent PSFs of the whole optical system.

Given an incident wave direction (altitude « and azimuth y angles),

89

the incident plane wave phase gzﬁ/(la at wavelength 1 is given by

2r  xtana+ytan
B ) = LEr ©
tan? o + tan? y + 1

As explained before, the PSF smoothly varies across the FOV and
thus we split the whole FOV into M X N patches, each of which
corresponds to a certain angular position (a[m, n], y[m, n]). In prac-
tice, we discretize the FOV into a 7 X 7 array, with angles spanning
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equally from —30° to 30°. As such, the modulated phase function

Cng’m’n) (with a little abuse of notations) in the lens plane is

" (x,) = o (e ) + g ey (0)

Finally, the destination field (also its intensity, i.e., PSFs) in the sensor
plane can be computed by Rayleigh-Sommerfeld scalar diffraction
integral [Goodman 2005] of the source field e/® in the lens plane, nu-
merically implemented by a (band-limited) shifted angular spectrum
method (ASM) [Matsushima 2010]2.

Our image formation model is fully differentiable since all opera-
tions in Eq. (2) are differentiable. We implement this in an automatic-
differentiation framework, enabling backpropagation [LeCun et al.
2015] and gradient-based optimization for the inverse design of the
nanophotonic array camera.

3.2 Learning Collaborative Metalens Arrays

Broadband Achromatic Initialization. With the image formation
model described in Section 3.1, we propose a broadband metalens
phase initialization for the later joint optimization process. To this
end, we optimize a rotationally symmetric metalens phase to max-
imize the center energy of the PSFs under all sampled incident
wavelengths Agisc and angles agisc, Ydise- Formally, we solve the
following optimization

;5/10 (r) = arg max Z Z Z P/({:’Y) (Axp(a-Y) > Ayp((l»)/) )’

¢A0 A € Agise XEAdisc Y € Vdise
®

where
Adise = {4 | 1 = 400 + 0.5k, k € Z, 400 < A < 700},
Qgisc ={a | a=0+5k, k€Z 0 < a <30}
Ydise ={y |y =0+5k, k€ Z 0 <y <30},

and (Axp@,,y), Ay p(w)) denote the offsets of the PSFs center under
incident wave direction (@, y) on axis X and axis Y. By geometry,
the offsets are proportional to focal length f and the incident angles

((Axp@y), AYpay) = (=ftana, —ftany). 9

This starting phase ensures high initial focusing performance across
the entire visible spectrum (sampled every 0.5nm) and for both
on-axis and off-axis incident angles ranging from 0° to 30° (sampled
every 5°).

Joint Optimization with Multi-image Deconvolution. Following
the broadband phase initialization, we jointly optimize six metal-
enses in tandem with a multi-image joint deconvolution algorithm.
As in Eq. (8), we employ the stochastic sampling technique from
Section 3.4 to discretize the continuous visible spectrum A into
the set Agise. This effectively approximates the continuous image
formation model for the color channel ¢ in Eq. (2) via

k, _ k K,
U(ac,y) - Z 51 (”/1®PA,(a,y))+f( ), (10)

€ Adisc

2Note the shifted ASM kernel also depends on the incident angles. The details are
deferred to the Supplementary Material.
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where the hyperspectral latent images u) are convolved with the
corresponding hyperspectral PSFs plj (@y)’ under the incident di-

rection (a, y), plus camera noise £(K¢).

During lens array training, we initially disregard potential paral-
lax effects stemming from the array design to focus on improving
the optical properties. Consequently, the reconstruction problem
reduces to a multi-measurement, single-object scenario. In order to
design an ultra-compact camera with minimal computational over-
head, we adopt a multi-frame deconvolution approach [Yaroslavsky
and Caulfield 1994], which jointly deconvolves the K frames and
returns a single sharp result by solving for a given wavelength A

K
. 1 k k 2 5
T K kz_; 197 (ay) = 42 ® P (e ll2 + Blluallz, (11)
with the following closed-form solution in the Fourier domain

—k

Pi(ay) k

Uy = — V , 12
A Z ZKzl |P/t{ )|2 +Kp A(ayy) (12)

k=1 S(ay

where uppercase letters denote the Fourier transforms of the cor-
responding lowercase variables, and P is the complex conjugate of
P. Multiplication (®) and division are applied element-wise. We set
the regularization weight f to 0.001.

Equation (12) averages the K measurements processed with indi-
vidual filters akin to the original Wiener filter [Wiener 1964] but
where the denominator features the sum of the moduli of the K
PSFs instead of a single one as in the original formulation. The in-
dividual filters are consequently aware of the other measurements
during joint deconvolution into a single sharp result. We call joint
Wiener filter this global filter applied to the K images vi (@y) See
the Supplementary Material for detailed derivation and explanations.

The joint Wiener filter enforces collaborative behavior across
the lens array at each target wavelength A;. Rather than constrain-
ing each individual lens to perform uniformly well over the entire
spectrum, as in Eq. (8), the contribution of each lens in the Fourier
domain is weighted by its individual signal-to-noise ratio (SNR).
This design relaxes the broadband capabilities of each lens and pro-
motes mutual compensation, resulting in an improved broadband
reconstruction when all lenses work collaboratively as a group.

However, the hyperspectral measurements V/{f (@) required in

Eq. (12) are challenging to acquire in commodity RGB color filter
array (CFA) sensors. As such, we instead approximate the previous
equation with the following color-channel broadband deconvolution
method

Uc _ i P‘(:’ak,)/) o Vc,k (13)
RGB — K c,t (a,y) :
k=1 Zg:] |P(a,y) |2 +Kﬁ

We employ here instead the camera spectral response function
(CSRF) weighted broadband average PSF and RGB image as

ck c pk ok _ cy/k
Pory = D KiPlay and VEE = D kVE . (19)
A€Adise A€ Agise

The CSRF weights K; from Egs. (2) and (10) combine all the wave-
lengths A in Agjs. within a single joint Wiener filter.
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Spectrally Agnostic Training. Instead of trying to estimate the
spectrum from the measurements, we aim to learn a spectrally
agnostic optical design with consistently good broadband perfor-
mance. A way to simulate challenging spectral conditions is to
sample a subset of bands during training randomly. Specifically,
we randomly select ny wavelengths from Agjsc (denoted as Sy, ) for

the image formation process V(co’tky) ,

as Sp,) for constructing the simulated deconvolution PSFs P

and n, wavelengths (denoted

c.k
(ay)’
where |Sp,| > [Sp, |. In our experiments, we set |Sp,| = 108 and

|Sn, | = 3. We then construct a simulated measurement

ok _ cy7k
Ween = 24 KiVh(a (15)
A+€P,
which we recover with the approximate joint Wiener filter of Eq. (13)
. ck . c,k
applied to W(a’y) in place of V(a’y)
The loss function for optical training reads:

2
-Loptics = ”UI?\’GB - Z ’CitUA,”z (16)
A+€S,

as synthetic input measurement.

Equation (16) implicitly aligns the narrow-band RGB PSFs with their
broadband counterparts while promoting the broadband collabo-
rative PSFs that provide high reconstruction quality. This training
will also make the lens robust to various illumination sources in the
real world, owing to the random sampling policy.

Optimizing PSFs for a 100-million nano-post metasurface at 108
wavelengths demands significant GPU memory (around 2.1 TB in-
termediate tensors). To address this challenge, we leverage the
distributed training framework detailed in Section 3.4. Each lo-
cal device independently samples S, ~ Agisc and then utilizes
an all-gather operation to obtain the narrow-band PSFs from
other devices, thereby forming the global broadband PSF Pf’oiy).
Section 3.4 provides additional details on our distributed implemen-
tation.

3.3 Image Reconstruction Pipeline

Alignment under Parallax. Our metalens array captures K subim-
ages o (k = 1,.. ., K) of the same scene from slightly different view-
ing angles, thereby inducing parallax between the subimages. We
propose a two-stage strategy to align these subimages to a common
reference image v, which we choose to be the top middle subimage.
We first coarsely align the v%’s to a common system of coordinates
with global homographies. We obtain the 3 X 3 homography matrices
HF by calibrating the K apertures with a ChArUco broad pattern.
Each subimage ok is warped to the reference system as

vtl:coarse (q) = Uk (Hk q)’ (17)
where g denotes pixel coordinates. Local misalignments may remain
between the v , . and the reference due to depth variations or lens-
specific distortions that a single homography cannot capture. Hence,
we refine the previous coarse displacement with dense optical flows
D*(u) € R? with a pretrained RAFT model [Teed and Deng 2020],
denoted by “W. Since the coarsely-aligned images are aberrated,
‘W trained on sharp natural images predicts inaccurate flow maps.
We thus opt to first deconvolving the images v§0arse with individual
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Fig. 4. Distributed large meta-optics model optimization pipeline with Full Sharded Data Parallel (FSDP) illustration. In the forward model, the
incident wavefield is distributed across multiple GPUs. Each GPU has a complete metalens array model and computes the PSF for its assigned wavelengths,
then contributes to the global PSF array through an all-gather operation. When computing loss, the image dataset is also distributed across GPUs. Depending
on the size of the deconvolution model, we can also distribute the model weights. Each GPU calculates its local loss, and these losses are combined through an
all-reduce operation to compute the global loss for optimization. The right figure provides a detailed illustration of data and model distribution, where the
blocks represent a 4 x 4 GPU cluster and each color block represents either a complete dataset or model weights. The different colors in the left bottom figure

represent different image datasets.

Wiener filters reusing the Fourier transforms of the broadband PSFs
in Eq. (14). Let s& _ . (resp. ) be the deconvolved version of 0% <.
(resp. ), the estimation of the flow maps DF thus reads

D* = (W(Stlzcoarse’ E) (18)
Lastly, we warp the blurry subimages to the reference following

U\lfvarp (q) = U(]:(oarse (Dk (Q)) (19)

Joint Wiener Filtering. After having aligned the frames, we re-
cover a single sharp image with a joint Wiener filter. To account for
the spatially-varying formation model in Eq. (10), we first fragment
the images v\lf,arp into overlapping patches centered at locations
(m, n). We apply Eq. (13) to combine the K patches into a single one
at each patch location (m, n) in the Fourier domain. Lastly, we merge
the patches into a single restored sharp image uf5eq. To prevent
edge artifacts during patch merge, we apply a Hann window wlmn)
to the deconvolved patches before the fusion.

Noise-Aware Image Denoising. The joint Wiener module is a high-
pass filter that removes blur, but that also boosts the noise from the
measurements resulting in correlated noise in Ufgeq. Furthermore,
because of the wavelength-dependent PSFs of metalens, the boosted
noise level also varies with the scene spectrum distribution.

Consequently, we develop a noise-aware post-fusion reconstruc-
tion module that integrates noise estimation and conditional denois-
ing to further enhance image quality.

We employ a residual denoising neural network ¥ that denoises
the fused image Ufygeq. First, a noise-estimation subnetwork N pre-
dicts an estimation of the variance map o as:

o= N(afused)' (20)
Subsequently, this noise estimate serves as guidance to a conditional
denoising subnetwork D as:

u = D(afuseds 6:)’ (21)
where u represents the final reconstructed and denoised estimate of
the scene. By providing explicit noise information, 9 becomes a non-
blind denoiser that is adaptive to the input image, thus preserving

fine structures in low-noise regions and suppressing artifacts in
high-noise areas.

We first derive a closed-form solution to estimate the noise vari-
ance after joint Wiener deconvolution, leveraging the hyperspectral
PSFs of the lens array to train our noise estimator subnetwork N.
(See Supplementary Material for details of the derivation.) Subse-
quently, we train our noise-aware reconstruction model D using a
combination of supervision and regularization terms:

L = Lysg + a Ly, (22)

where L)sg is the mean-square error between the prediction of the
network and a ground-truth image, and L1v denotes the total varia-
tion [Rudin et al. 1992] loss, @ is a weighting parameter. Specifically,
we adopt & = 0.001 to trade off fidelity and local smoothness.

3.4 Distributed Large Meta-Optics Optimization

Training a meta-optics array with 100 million parameters under
one-hundred distinct wavefield conditions can easily require up to
2 TB of GPU memory—an order of magnitude exceeding the ca-
pacity of a single GPU. As a result, existing broadband meta-optics
designs [Chakravarthula et al. 2023; Froch et al. 2025; Tseng et al.
2021a] have been constrained to smaller aperture sizes, fewer spec-
tral bands, and on-axis PSFs, largely due to limited GPU memory.

To relieve this constraint, we develop a distributed large meta-
optics model optimization pipeline with Full Sharded Data Parallel
(FSDP) [Zhao et al. 2023], as illustrated in Fig. 4. We distribute the
incident wavefields, specified by the wavelength A and incident an-
gles (a, y) across multiple GPUs, akin to the concept of data in the
machine learning context. We adopt a stochastic sampling scheme
analogous to mini-batch training in deep learning. Rather than fix-
ing a discrete set of wavelengths as in prior work [Chakravarthula
et al. 2023], each optimization iteration draws a subset of wavefields
randomly sampled across various A and («, y) values. This random-
ization ensures broad coverage of the underlying high-dimensional
design space over the course of training, providing more robust
optimization outcomes and less susceptibility to overfitting any
particular set of wavefields.
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Although a single GPU can generally manage the total number of
trainable parameters for a single meta-optics model, the intermedi-
ate tensors generated during PSF computations for each wavefield
are often two orders of magnitude larger than the model param-
eters themselves. To mitigate this overhead, we shard the model
across multiple GPU ranks and split the wavefield inputs accord-
ingly. Leveraging FSDP in PyTorch, we effectively partition both
the model and wavefield data, ensuring that each GPU processes
only a fraction of the intermediate tensors.

While FSDP manages parameter and gradient synchronization
across GPUs, large-scale broadband meta-optics training introduces
additional global synchronization demands. For example, broadband
PSF calculation during training with Egs. (13) and (16) necessitates
an all-gather operation to share each rank’s PSF results with all
other ranks. Similarly, when computing a broadband loss term (e.g.,
Eq. (8)), an all-reduce operation is required to accumulate partial
losses from individual ranks into a global loss value. Our proposed
training pipeline incorporates a suite of meta-optics-specific util-
ities—built on top of PyTorch distributed collectives—to address
these synchronization requirements (details in Supplementary Ma-
terial). These utilities cleanly integrate with distributed optimizers,
ensuring that gradient information remains consistent with model
parameters throughout the entire training process. The result is
a fully end-to-end differentiable framework for large-scale meta-
optics design.

3.5 Implementation and Training Details

Meta-Optics Optimization. We utilize the proposed distributed
large-scale meta-optics framework in conjunction with a hyper-
spectral dataset [Jeon et al. 2024] to conduct optics optimization.
Specifically, we deploy the framework by distributing metalens ar-
ray model instances across 36 Nvidia H100 GPUs (each with 80 GB
of memory) on 9 nodes (4 GPUs per node), using a data-parallel
training scheme. Each rank (i.e., each GPU) receives distinct inci-
dent wavefields—characterized by unique wavelengths and incident
angles—sampled via the distributed sampler. Due to the considerable
volume of intermediate results generated during wave propagation,
each rank can only process three incident fields at a time. Conse-
quently, a total of 108 field conditions (36 ranks X 3 incident fields
per rank) are evaluated during each training iteration.

By leveraging the hyperspectral dataset, each rank performs a
shift-invariant convolution weighted by the hyperspectral illumi-
nation to generate the hyperspectral array measurement, which
is then converted into RGB space using the camera’s spectral re-
sponse function. Noise is subsequently introduced, and the resulting
hyperspectral array measurements are passed to the joint Wiener
deconvolution module to compute the loss. This loss signal is then
backpropagated to update the metalens parameters, while an all-
reduce operation ensures that the optimized parameters remain
consistent across all ranks.

Reconstruction Pipeline Training. Given a jointly optimized array
design, we train the reconstruction pipeline in a sequential training
stage. Specifically, we aim to learn an inverse reconstruction model
that jointly tackles parallax alignment, large off-axis astigmatism
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Fig. 5. lllustration of synthetic dataset generation. The scene catalog
shows representative examples of our dataset. For each scene in the dataset,
we set up a 2 X 3 camera array to capture scene parallax and apply hyper-
spectral lifting to get images under wavelengths from 400 nm to 700 nm.

correction, and denoising on our proposed hyperspectral parallax
dataset introduced in Section 4.1.

We begin by dividing the target scene into 9 X 9 patches, cor-
responding to the sensor dimensions and the spatial arrangement
of the metalens array. For each sub-aperture lens, we infer a full-
spectrum (400 nm to 700 nm in 2 nm increments) PSF tensor based
on the incident angle at the center of each patch. We then convolve
each hyperspectral patch with the appropriate spectral PSF tensor,
apply window-based blending between adjacent patches, and sub-
sequently convert the resulting measurements back to sensor RGB
space with CSRF. This process yields a realistic sensor measurement
that accurately simulates parallax and angular aberrations across
the entire FOV.

After alignment, see Section 3.3, we apply the patch-wise joint
Wiener deconvolution followed by residual denoising (initialized
with a pretrained image denoiser [Guo et al. 2019]) to warped sub-
aperture images, jointly reconstructing the scene in an end-to-end
manner. The overall training loss is backpropagated through the
denoising, deconvolution modules, and parallax alignment, allowing
the entire pipeline to be optimized for reconstruction fidelity.

4 DATASETS AND EXPERIMENTAL PROTOTYPE
4.1 Synthetic Hyperspectral Parallax Dataset

To circumvent the difficulty of capturing large amount of meta-optic
array sensor measurements with corresponding high-quality ground
truth, we develop a physics-based realistic rendering pipeline that
can accurately synthesize realistic metalens array measurements
that resemble the real-world observations. Our rendering pipeline
here is inspired by today’s photorealistic spectral rendering tech-
nology developed in the computer graphics community [Jakob and
Hanika 2019; Mallett and Yuksel 2019; Meng et al. 2015; Otsu et al.



2018; Van De Ruit and Eisemann 2023], yet we inject an additional
rendering layer that imposes spatial-spectral-dependent PSFs to gen-
erate highly color-aberrated sensor measurements from otherwise
clean images (see Fig. 2). Specifically, we use the 3-D scenes from
Poly Haven [Haven 2025], a curated public 3-D asset library that
contains complete Blender [Community 2025a] 3-D render-ready
scenes. We set up camera positions to capture objects with different
sizes, textures, colors, and distances from the camera. The sensor
size and focal length of the camera are set to match the design of
one single metalens camera. We offset the position of the camera
according to the distance between metalenses in the array to capture
the parallax in different scenes. A total of 480 sets of photorealistic
linear sSRGB images in an array are thus rendered using the Cycles
engine [Community 2025b] under the CIE standard illuminant D65,
which covers diverse indoor and outdoor scenes in cities and nature;
see Fig. 5 for some representative scenes in our dataset. These linear
sRGB images are then fed into a spectral uplifting method [Jakob
and Hanika 2019] to synthesize hyperspectral reflectance data. Next,
a spectral illuminant, randomly sampled from a spectral illumina-
tion dataset [Li et al. 2021], is blended with the spectral reflectance
to synthesize realistic hyperspectral irradiance images. Finally, these
hyperspectral irradiance images can be optionally convolved with
the wavelength- and angle-dependent PSFs (computed from our
meta-optic model)® before the spectral integration weighted by a
sensor spectral response function [Jiang et al. 2013], specifically for
the Sony IMX 174 sensor in our prototype, to synthesize realistic
color sensor observations.

4.2 Experimental Setup and Datasets Capture

For real-world experimental assessment, we built a prototype to
validate our collaborative metalens-based camera design in indoor
and outdoor settings (Fig. 6). The setup consists of two cameras:
a metalens array camera and a reference camera for comparison.
The metalens camera used a CMOS sensor (Allied Vision, Prosilica
GT1930C) with 5.86 um pixel pitch and a metalens array of 2 X 3
lenses with 3.6 mm focal length, 3.57 mm lens pitch and 1.5 mm lens
diameter. The fabrication details of our metasurface optic can be
found in Supplementary Material. We aligned the metalens array
parallel to the sensor using a three-axis translation stage and a
two-axis rotatable mount. Each metalens produces a subimage of
approximately 3.5 mm X 3.5 mm, covering a FOV of 50° x 50°. We
used a custom optical baffle to prevent crosstalk and added a UV/IR
cut-off filter (Edmund Optics, 54-749) to block the invisible spec-
trum. For reference comparison, we used a separate camera using
a FLIR GS3-U3-3254C-C sensor with a 3.5 mm C-series fixed focal
length camera that has a physical length of ~50 mm from front to
back. A 60T/40R beamsplitter (Edmund Optics, 72-502) enabled si-
multaneous capture through both cameras. We developed a custom
graphical user interface for visualization and synchronized camera
control with adjustable exposure time and white balance. We cap-
tured 653 indoor and outdoor scenes, aligning the reference and
metalens images through homography calibration using a ChArUco
board pattern. See Supplementary Material for more details. Notably,
our proposed reconstruction method does not rely on large-scale

3PSF-based aberration rendering is disabled for the ground truth.
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Fig. 6. Data acquisition and experimental comparisons. Our setup uses
a 40R/60T plate beamsplitter to capture scenes with two cameras at once: a
metalens array camera that receives 60 % of the light passing through the
beamsplitter, and a conventional camera (reference camera) that receives
40 % of the light reflected by the beamsplitter. The cameras are aligned and
calibrated to ensure their images match correctly. See the Supplementary
Material for additional details.

training using experimentally captured datasets. Instead, it lever-
ages a much larger amount of synthetic data generated from the
rendered hyperspectral parallax dataset described earlier.

5 SYNTHETIC ASSESSMENT
5.1 Broadband PSF Analysis

We start the proposed metalens array evaluation by spectrally re-
solved PSF analysis. Specifically, we sample every 1 nm between
400 nm and 700 nm as the incident plane-wave wavelength, Agjsc.
For each sampled wavelength and each of the K lenses, we com-
pute the field energy distribution on the image plane using the
angular-dependent PSF model from Section 3.1, with spatial sam-
pling matching the camera sensor model in Section 4. The result
is a 4D PSF tensor Py of shape (K, |Agiscl, Nx, Ny), where Ny and
Ny represent the sensor pixel dimensions behind each individual
lens. To visualize this high-dimensional PSF tensor, we take a radial
slice Pgjjce, that is
Pglice [ 5 %» d|

and display each sublens PSF slice at the bottom of Fig. 7 after
a global normalization (preserving their relative energy). For an
ideal lens, this response for the full visible spectrum is a continu-
ous centered line. We observe that the proposed joint optimization
promotes a lens array in which the collective output, combined
through the proposed joint reconstruction, approximates an ideal
broadband lens. The sub-lenses collaborate to capture the entire
broadband spectrum. The top-center “synthetic effective lens” is the
weighted sum of each sublens contribution, based on their signal-
to-noise ratio (SNR) as described in Eq. (12). This plot confirms the
collaborative nature of the learned array elements.

We compare to existing broadband metalens imaging techniques
[Chakravarthula et al. 2023; Tseng et al. 2021a] with the same analy-
sis as described above. Figure 7 confirms that these imagers produce
only small-footprint PSFs at the discrete wavelengths for which they
were optimized (462 nm, 511 nm, and 606 nm in [Tseng et al. 2021a],
and 400 nm to 700 nm in 10 nm increments for [Chakravarthula et al.
2023]). In contrast, our proposed design—with collaboratively opti-
mized sublenses—maintains continuously sharp PSFs across the full

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Fig. 7. Analysis of PSFs for existing metalens array imagers. We plot
here X-Z projection of 3D stacked PSFs spanning 400 nm to 700 nm in 1nm
intervals. This visualization highlights the discretely sharp PSFs produced
by [Chakravarthula et al. 2023; Tseng et al. 2021a] under broadband illu-
mination, whereas our proposed design, with collaboratively optimized
sublenses, maintains a continuously sharp PSF across the entire visible
range. We note that the individual sublenses collaborate here to focus over
the entire spectrum.

visible spectrum. This outcome further highlights the importance
of continuous wavelength sampling and collaborative optimization
for achieving high-quality broadband metalens imaging.

5.2 Synthetic Evaluation

Evaluation of Broadband Performance. We confirm the trend from
the broadband PSF analysis above for image reconstruction. To this
end, we simulate measurements using a real-world hyperspectral
dataset [Jeon et al. 2024] as input. Specifically, the sensor measure-
ment is generated by following the noise model in Section 3.1 with
a Poissonian-Gaussian noise model. To handle any spectral mis-
match between the sampled wavelength and dataset wavelength,
we interpolate the input hyperspectral images. We then convert
the hyperspectral ground truth image, metalens measurement, and
PSF back into the RGB domain according to the camera’s spectral
response function. The same joint deconvolution algorithm from
Section 3.3 is applied for reconstruction except for the parallax
alignment module.

First, we evaluate performance at the discrete design wavelengths
for which other respective optics are optimized for: (462 nm, 511 nm,
and 606 nm in [Tseng et al. 2021a], and 400 nm to 700 nm in 10 nm
increments for [Chakravarthula et al. 2023]). To maintain consis-
tency, we test our proposed array using the same sampling grid
of [400nm : 10nm : 700 nm], even though it was not explicitly
optimized for this discrete wavelength set. As reported in Fig. 8, all
three imagers yield comparable reconstruction quality, apart from
minor color deviations in [Tseng et al. 2021a], which uses fewer
sampling wavelengths. This result validates the effectiveness of the
alternate designs for their intended discrete-wavelength range.

Next, we test each imager under continuous broadband illumina-
tion, for which we approximate with discrete 400 to 700 nm wave-
length sampling with 1 nm spacing. In agreement with the broad-
band PSF analysis, the two baseline methods experience a notable
drop in performance, owing to the poor SNR at the unoptimized
bands. In contrast, our collaborative design performs robustly across
the continuous broadband illumination, where the other methods
severely degrade. Notably, our design even performs better under
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Table 1. Quantitative evaluation of broadband image reconstruction
with flat metasurface imagers. We report here quantitative measure-
ments corresponding to the experiments visualized in Fig. 8. The evaluations
confirm the qualitative trends. While existing metalens imaging methods
suffer from lower SNR across unoptimized bands, our collaborative design
remains robust for broadband imaging, see text.

Tseng Chakravarthula
et al. [2021a] et al. [2023] Proposed
SSIM T 0.72 0.80 0.95
PSNR [dB] T 25.92 27.34 34.03
1-LPIPS 7 0.55 0.62 0.87

broadband conditions than under discrete-wavelength illumination,
because the PSFs used for deconvolution align more closely with
the physical system, and the overall quality is higher when more
spectral bands contribute to the measurement.

Validation of Collaboration. In addition to the broadband PSF
results shown in Fig. 7, which indicate that individual sublenses
collaboratively exhibit small-footprint PSFs, we also optimized a
single broadband metalens using the same methodology described
in Section 3.2 to compare with the proposed design for validating
the effectiveness of the collaborative array design.

To simulate realistic real-world captures under challenging illumi-
nation conditions, we utilize the hyperspectral illuminator dataset
from [Li et al. 2021] in combination with the hyperspectral imaging
dataset mentioned in [Jeon et al. 2024]. Specifically, we select 10
illuminators with tilted or discrete spectral characteristics and uni-
formly sample wavelengths in the range [400 nm : 10 nm : 700 nm].
Sensor measurements are then generated by computing a hyperspec-
tral illumination weighted sum of the hyperspectral measurements,
which are obtained via hyperspectral domain convolution between
the hyperspectral data and the PSFs. Representative reconstruction
outputs are shown in Fig. 9.

Although both imagers face substantial challenges due to the
extreme illumination conditions, the single broadband-optimized
lens shows noticeably more variation in SNR across different illumi-
nators. In contrast, the proposed lens array design remains robust,
producing consistently high-fidelity reconstructions. This under-
scores the spectral bandwidth limitations [Presutti and Monticone
2020] of a single metalens in maintaining strong broadband perfor-
mance while highlighting the robustness of our collaborative array
approach.

Ablation Experiments. To validate the effectiveness and all design
choices of our proposed reconstruction method, we conduct abla-
tion experiments on the synthetic hyperspectral parallax dataset
introduced in Section 4.1. We compare five variants of our method:
(i) the pipeline without shift-variant deconvolution, (ii) the pipeline
without the parallax aligner, (iii) the pipeline without the joint de-
convolution module, (iv) the pipeline without the noise estimator,
and (v) the full pipeline (proposed). Qualitative and quantitative
results are reported in Fig. 10 and Table 2.

All ablated methods operate with the same array measurements
and PSFs. Specifically, we randomly sample 10 distinct wavelengths



Ground Truth

:

Tseng et al. 2021

from the visible spectrum and generate the corresponding hyper-
spectral ground-truth image using the hyperspectral lifting method
provided by our rendered dataset. We then compute the hyper-
spectral PSFs of the metalens array for each sampled wavelength.
The RGB lens-array measurement with parallax is synthesized by
convolving the ground-truth image patches with the wavelength-
specific PSFs that correspond to the incident angle of the patches,
integrating the results according to the CSRF, and finally adding
Poissonian-Gaussian noise [Foi et al. 2008] with parameters (a, b) =
(4x1075,1 x 107°) estimated from experimental raw captures.

Without Shift-Variant Deconvolution. In our short focus de-
sign, the large incident angles at the periphery of the FOV induce
astigmatism. When the system’s shift-variance is ignored - using
only the on-axis PSF for deconvolution - resolution degrades and
color artifacts appear, as shown in Fig. 10. By contrast, applying
patch-wise shift-variant deconvolution accounts for off-axis aberra-
tions and effectively corrects the degradation, resulting in improved
image quality.

Optimized Discrete Wavelengths
Chakravarthula et al. 2023
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Fig. 8. Synthetic broadband image reconstruction with flat metasurface cameras. Due to computational and memory complexity, existing flat metalens
optics [Chakravarthula et al. 2023; Tseng et al. 2021a] have been optimized for discrete wavelength sets. As such, these methods perform comparably to our
proposed design at the discrete spectral bands for which they were optimized for (462 nm, 511 nm, and 606 nm for [Tseng et al. 2021a], and 400 nm:10 nm:700 nm
for [Chakravarthula et al. 2023]). However, their quality deteriorates significantly under real-world continuous broadband illumination (400 nm:1nm:700 nm).

In contrast, the proposed design method, along with the array design, lifts wavelength sampling limitations, and the full-spectrum collaborative array
consistently delivers superior image quality across the full spectrum.

Table 2. Quantitative ablation study. We simulate RGB shift-variant
array measurements using a hyperspectral parallax dataset and correspond-
ing PSFs to assess our proposed reconstruction method. Each sub-module
(spatial-variant deconvolution, parallax aligner, joint deconvolution, and
SNR estimator) is removed in turn, and the resulting models are evaluated
on SSIM, PSNR, and LPIPS [2018]. Our findings indicate that each sub-
module serves a distinct yet essential function in the final reconstruction.
By combining all sub-modules, the full reconstruction method yields the
best overall performance.

W/OSV  W/O Parallax  W/O Joint ~ W/O SNR

Deconv Aligner Deconv Estimator Proposed
SSIM T 0.53 0.62 0.37 0.61 0.67
PSNR [dB] T 18.32 19.74 18.90 20.18 21.14
1-LPIPS T 0.41 0.49 0.35 0.46 0.52

Without Parallax Aligner. Removing the neural warping opera-
tions for parallax correction degrades reconstruction quality, espe-
cially for objects closer to the camera where misalignment becomes
more pronounced. Although the baseline distance between the in-
dividual metalenses is relatively small, reconstruction on our 3D
rendered parallax dataset shows a noticeable drop in reconstruction
quality for objects located within one meter of the camera.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Single Broadband Lens  Collaborative Lens Array Ground Truth

Fig. 9. Comparison between a single broadband-optimized lens and
the proposed collaborative array under challenging illumination
spectra. Although a single metalens can be continuously optimized for
broadband illumination within our framework (left), a single lens strug-
gles to focus the entire visible spectrum. In contrast, our method employs

multiple collaboratively optimized lenses to overcome these limitations.
We confirm this here qualitatively with reconstructions under challenging
illumination scenarios—such as heavily tilted spectra or discrete illumi-
nation [Li et al. 2021]—demonstrating that our collaborative array design
consistently outperforms the single broadband lens across a variety of illu-
mination conditions, see text.

Without Joint Deconvolution. Next, we investigate replacing the
joint deconvolution module with six independent deconvolution
branches. The resulting per-metalens reconstructions are then aver-
aged to form the input to the remaining pipeline. Since individual
metalenses cannot maintain a consistently high SNR across a broad
range of wavelengths, this independent approach produces chro-
matic artifacts. Furthermore, averaging these color-degraded images
only compounds the blur and color inaccuracies.

Without Noise Estimator. Finally, we remove the neural noise
estimator and retrain the network while keeping the parallax aligner

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

and joint deconvolution module weights fixed. Due to the wavelength-
dependent SNR response of the metalens, the output from the decon-
volution module exhibits varying degrees of colored noise amplifi-
cation based on the MTF under different sampled wavelengths. As a
result, the network without noise estimator struggles to disentangle
the signal from the various noise level measurements, leading to
degraded reconstructions [Guo et al. 2019].

Overall, the ablation experiments from above confirm the effec-
tiveness of each component in the proposed reconstruction method.

6 EXPERIMENTAL ASSESSMENT

To validate the proposed design experimentally across diverse and
challenging conditions—including variations in illumination, depth
parallax, and the presence of novel objects—we conducted real-world
experiments using our fabricated metasurface. Using the prototype
camera design described in Section 4.2, we captured scenes fea-
turing small text, human faces, significant depth variations, and
low-contrast textures. These scenes were recorded under a wide
range of illumination conditions such as low-light, artificial light,
direct sunlight, and intense localized light sources. Typical expo-
sure times were 100 ms for indoor and 30 ms for outdoor scenes,
and could be reduced by removing the 60T/40R beam-splitter. Rep-
resentative measurement and reconstruction results are shown in
Fig. 11, alongside aligned comparison measurements from a refer-
ence 3.5 mm C-series fixed focal length camera that has a physical
length of ~50 mm. Each metalens in the array captures broadband
scene measurements of objects in both indoor and outdoor scenes
at the center of each metalens. The dark bands separating adjacent
sub-images arise from the integrated optical baffle, which prevents
stray light and suppresses crosstalk between neighboring apertures.
Our reconstruction method mitigates the spatially-varying optical
aberrations, improving the image contrast in the center and the
periphery with finer details. See Supplementary Material for more
results, and the Supplementary Video for dynamic scenes.

Qualitative Comparison to Existing Array Cameras. Next, in Fig. 12,
we compare our camera prototype with the metalens array camera
proposed in [Chakravarthula et al. 2023], whose image reconstruc-
tion technique is based on a diffusion prior. The proposed method
achieves improved detail and substantially less scattering in the raw
measurement: for instance, detail on the human face, the building
entrance or the traffic sign in Fig. 12. These raw measurements
validate densely sampling of the wavelengths and incident angles
during optical optimization, as well as the accuracy of the proposed
neural proxy modeling in Section 3.1.

We surpass the diffusion-based approach of [Chakravarthula et al.
2023] both in terms of accuracy and absence of ‘hallucinated content’
in the reconstructed results. We correctly recover details such as
the face of the person and the polka dots on the book, the windows
on the building entrance, or even the text ‘stop’ on the traffic sign,
whereas the compared method instead smooths the face and mangles
the dots on the book, and introduces visual artifacts on the entrance
and the stop sign that is hardly readable. This is due to the generative
prior of [Chakravarthula et al. 2023] trained to lift a single low-
contrast measurement to a sharper full-color result. In contrast to
the proposed method, hallucination appears in the prediction of
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Fig. 10. Qualitative ablation experiments. We evaluate our reconstruction pipeline by comparing three ablated variants on the hyperspectral parallax-aware
metalens array dataset: (i) replacement of the spatial-variant deconvolution with spatial-invariant deconvolution using on-axis PSF, (ii) removal of the
parallax-aligner, (iii) replacement of the joint deconvolution step with independent Wiener deconvolution, and (iv) removal of the noise neural estimator.
Using spatial-invariant deconvolution instead of spatial-variant deconvolution results in astigmatism at the periphery of the FOV. Methods without the
parallax aligner exhibit blurry reconstructions in regions with closer object distance due to misalignments. Replacing the joint deconvolution with independent
deconvolution leads to pronounced color aberrations, as individual metalenses are not broadband. Finally, omitting the noise neural estimator hampers noise
removal under the metalens array’s broadband varying SNR for each scene wavelength, compromising detail preservation.

details where there is an ambiguity about the underlying sharp
image. This is illustrated in Fig. 1 where the generative model has
restored ‘65’ whereas the original number is ‘86’.

Runtime Performance. Our reconstruction runs at real-time rates.
Compared to the diffusion module of [Chakravarthula et al. 2023]
that takes more than a minute to process a single image, our tech-
nique is 2000 faster and runs at 35 FPS on the same test platform.
Both approaches are implemented in PyTorch and do not lever-
age further optimizations. We rely on fast FFT-based inverse filter-
ing with a subsequent denoising network that is lightweight since
fusing six images already reduces noise*. The runtime bottleneck
stems from the dense optical flow prediction with the optical flow
model [Teed and Deng 2020] (which takes up about 60% of the time
for reconstructing a frame with our technique).

7 DISCUSSION

Our collaborative metalens-array prototype delivers high-fidelity,
broadband imaging under diverse illumination but it remains a re-
search demonstrator rather than a product-grade camera due to its
form factor. To facilitate prototyping, we retained the Sony IMX174

4If we assume the noise to be purely Gaussian, merging 6 images corresponds to a
V6 ~ 2.45 noise reduction factor.

sensor cover glass and mounted a 7 mm x 10.5 mm metalens array
just 1 mm above it. The array dimensions match the sensor 7.1 mm
x 11 mm active area, and the resulting optics yield a 3.6 mm focal
length. In an industrialized, smartphone-style implementation—with
integrated inner baffles and f/2 optics on a 12 MP sensor—the array
could shrink to a 2 x 2 layout of 1.5 mm elements, occupying only a 5
mm x 5 mm footprint at a 3 mm standoff while delivering a 60° field
of view. This ultra-thin configuration aligns with smartphone pack-
aging constraints—minimizing optical thickness while efficiently
utilizing the PCB footprint, whereas comparable refractive solu-
tions would either degrade into a low-quality fisheye or require an
impractical, multi-element assembly. Despite the throughput trade-
offs inherent to high-NA metaoptics, our prototype still supports
real-time, video-rate capture.

Our reconstruction pipeline runs at 35 FPS on laptop-class GPUs
and stands to gain further image-quality improvements from ring
deconvolution [Kohli et al. 2022] and sub-aperture super-resolution
[Eboli et al. 2022]. Pruning and fine-tuning a lightweight optical-
flow network, denoiser distillation, and dedicated ISP hardware
could further accelerate processing for potential on-edge deploy-
ment. The array’s angular multiplexing also enables direct depth
estimation from raw captures [Venkataraman et al. 2013]. At the
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Fig. 12. Experimental comparison to [Chakravarthula et al. 2023]. For similar scenes and illumination conditions, the proposed collaborative metalens
array provides more accurate measurements and image reconstructions than [Chakravarthula et al. 2023]. The image zoom-ins show the proposed collaborative
metalens array can capture a more broadband focused raw measurement, and a more plausible reconstruction of the scene, revealing details such as the
portrait, building door windows, and a stop sign.
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design level, our optimization framework supports full-angle, multi-
spectral phase-response simulations for arbitrary metalens array
geometries free from radial-symmetry constraints at the cost of
memory overhead. By restricting the phase profile to radial symme-
try under on-axis illumination, one can instead take advantage of
a one-dimensional Rayleigh-Sommerfeld diffraction model to cut
memory requirements [Froch et al. 2025], trading off large-angle per-
formance. Finally, extending our neural surrogate to capture angle-
and wavelength-dependent transmission [Hazineh et al. 2022; Wirth-
Singh et al. 2025] could further enhance design fidelity and unlock
new high-NA meta-optic applications.

8 CONCLUSION

We have introduced a novel computational imager using collabo-
rative metasurface arrays that enables broadband imaging in an
ultra-thin form factor. Through the integration of a learned neural
proxy for nanostructure-to-phase mapping, jointly designed col-
laborative reconstruction, and large-scale distributed optimization
of 100 million nanoposts, our design framework achieves signif-
icant improvements to prior metalens array designs in both raw
and reconstruction image quality. We validate the method with an
experimental prototype that successfully captures and reconstructs
broadband images in both indoor and outdoor scenes under varying
illumination spectra.

In the future, one exciting avenue for research is to correct spatially-
varying aberrations, which are an intrinsic difficulty of single-layer
optics, through multiple metasurface elements in a thin stack, with
the expanded parameter space being manageable by our frame-
work. Looking forward, we hope that our method for ultra-thin
metasurface imagers serves as a systematic tool for exploring new
large-area optics applications, including large-scale manufacturing
of on-chip metasurface imaging sensors, collaborative optimization
for polarization-sensitive and hyperspectral metasurface imaging,
and specialized meta-imaging systems. With the broadband capabil-
ities enabled by this work, we hope that on-chip imaging sensors
realize the potential to enable broad applications across the domains
— from tiny camera arrays in micro-robotics to wearable flat cameras
in healthcare.
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