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Fig. 1. We propose a snapshot hyperspectral imager with multi-aperture color-coded optics, illustrated in (a/e), providing customized independent spatial and
spectral encoding for different channels, as shown in (f/g). We achieve this by jointly optimizing a DOE array, aperture-wise color filters, and a reconstruction
network. This approach exploits the degrees of freedom in optical encoding across both spatial and spectral dimensions, outperforming existing single-lens
approaches by over 5 dB PSNR in reconstruction quality. We experimentally validate the proposed method in both indoor and outdoor settings, recovering up
to 31 spectral bands within the 429–700 nm range, closely matching the reference captured by a spectral-scan hyperspectral camera, as shown in (b-d).

Learned optics, which incorporate lightweight diffractive optics, coded-
aperture modulation, and specialized image-processing neural networks,
have recently garnered attention in the field of snapshot hyperspectral imag-
ing (HSI). While conventional methods typically rely on a single lens element
paired with an off-the-shelf color sensor, these setups, despite their wide-
spread availability, present inherent limitations. First, the Bayer sensor’s
spectral response curves are not optimized for HSI applications, limiting
spectral fidelity of the reconstruction. Second, single lens designs rely on
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a single diffractive optical element (DOE) to simultaneously encode spec-
tral information and maintain spatial resolution across all wavelengths,
which constrains spectral encoding capabilities. This work investigates a
multi-channel lens array combined with aperture-wise color filters, all co-
optimized alongside an image reconstruction network. This configuration
enables independent spatial encoding and spectral response for each chan-
nel, improving optical encoding across both spatial and spectral dimensions.
Specifically, we validate that the method achieves over a 5dB improvement in
PSNR for spectral reconstruction compared to existing single-diffractive lens
and coded-aperture techniques. Experimental validation further confirmed
that the method is capable of recovering up to 31 spectral bands within the
429–700 nm range in diverse indoor and outdoor environments.
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raphy.
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1 INTRODUCTION
Hyperspectral imaging (HSI) is a high-dimensional data acquisi-
tion process that yields a series of 2D images of a single scene
across finely resolved wavelength bands [Zhang et al. 2023b]. This
imaging modality holds promise across diverse domains, such as
medical imaging [Lu and Fei 2014], remote sensing [Hinderberger
et al. 2023], agriculture monitoring [Lu et al. 2020], pattern recog-
nition [Rao et al. 2022], and industrial assessment [Liu et al. 2017].
Existing methods rely on scanning-type acquisition systems, often
constrained by extended exposure time and/or intricate hardware
components [Cao et al. 2016], thereby prohibiting real-time imaging
and sensing applications.
Snapshot HSI methods, based on the principle of compressed

sensing (CS), significantly reduce the acquisition load of either spa-
tial or spectral information through coded modulation [Arguello
et al. 2021]. The past decade has witnessed a number of refractive
optics-based snapshot HSI devices, for example, the coded-aperture
spectral imager [Li et al. 2012], the spatial-spectral and/or diffuser
encoded compressive imaging [Monakhova et al. 2020], the mask-
guided spectral-wise image reconstruction [Cai et al. 2022a], the
optimized broadband filter encoding [Zhang et al. 2021], and the
single-pixel camera spectrometer [August et al. 2013].

Recent research increasingly focuses on utilizing compact diffrac-
tive optical elements (DOEs) as thin lenses, which offer unparalleled
design flexibility at the micro scale [Dun et al. 2020; Jeon et al. 2019;
Peng et al. 2016; Sitzmann et al. 2018; Xu et al. 2023]. Significant
advancements have also been made in end-to-end (E2E) designed
diffractive optical systems that leverage machine intelligence [Meng
et al. 2021; Tseng et al. 2021; Zhang et al. 2022, 2021]. However,
existing E2E-designed spectral imaging systems typically do not in-
clude customized color filters with single-diffractive lenses, largely
due to the complexities involved in manufacturing custom spectral
response curves. Such customization often requires extensive lithog-
raphy and coating processes [Dong et al. 2018; Yako et al. 2023],
which can be costly and time-consuming. Moreover, the encoding
capabilities of a single-aperture element, especially when paired
with a conventional Bayer-type color filter array (CFA), are signifi-
cantly constrained, further limiting their practicality in high-fidelity
applications.

To address these limitations, we further the E2E optimization par-
adigm by incorporating color filters into the optical design, and intro-
duce an alternative multi-aperture approach. We employ aperture-
wise color filters combined with a multi-aperture diffractive lens
element array, rather than traditional single DOE and pre-designed
Bayer CFAs combination. This configuration not only potentially
simplifies the manufacturing process but also significantly improves
spectral encoding capability by allowing for independent spatial and
spectral encoding across different color channels. This enhanced en-
coding capability captures a richer spectrum of information, which,
when processed by a co-optimized reconstruction network, leads
to more accurate spectral reconstructions. We assess the proposed
approach both in simulation and with an experimental prototype,
validating that our method can accurately recover up to 31 spec-
tral bands within the 429–700 nm range under various lighting
conditions.

Specifically, we make the following contributions:

• We introduce a multi-aperture snapshot hyperspectral imag-
ing system that provides independent spatial and spectral
encoding across individual channels. Our system features a
2×2 array configuration, integrating diffractive lenses and
aperture-wise customized color filters with a monochrome
sensor, all co-optimized with a reconstruction network to
enhance performance.

• We analyze the method and compare it with existing single-
diffractive lens and coded-aperture solutions, demonstrating
an improvement of over 5 dB in PSNR across 31 spectral bands
(429–700 nm) for snapshot hyperspectral reconstruction.

• We develop and experimentally validate a prototype system
against a Specim IQ scanning hyperspectral camera, con-
firming that the proposed method is capable of accurately
resolving 31 spectral bands in diverse indoor and outdoor
scenes.

Lens designs, color filter designs, network checkpoints, and all
code necessary to reproduce the results are available at the authors’
webpage.

Overview of Limitations. Our prototype system is constructed in
an academic facility, where the fabrication quality of optical ele-
ments is considerably lower than that achieved by state-of-the-art
processes. This discrepancy between fabrication and design leads
to noticeable diffraction efficiency loss and haze artifacts in the cap-
tured images. While our multi-aperture approach is not confined to
the 2×2 configuration, we have selected this setup based on a trade-
off where image resolution is compromised because the full sensor
measurement area is divided among multiple channels. Specifically,
our prototype sensor with a resolution of 2,048×2,048 enables a re-
construction resolution of 1,024×1,024. Utilizing a higher-resolution
image sensor could potentially enhance spectral reconstruction per-
formance without sacrificing spatial resolution.

2 RELATED WORK
Computational Cameras with Differentiable Diffractive Optics. Tra-

ditional imaging systems use compound refractive lenses engi-
neered for perceptual quality, focusing on color balance and sharp-
ness [Malacara et al. 2003]. However, these systems often struggle
with specialized vision tasks like seeing through occlusions [Shi
et al. 2022] or depth estimation [Li et al. 2022]. To address these gaps,
extensive research in computational photography has led to the de-
velopment of specialized lens systems employing diffractive optical
elements (DOEs). DOEs, with their micron-scale profiles, enable
precise modulation of light’s phase through diffraction [Levin et al.
2007]. Such systems can be optimized using back-propagation [Sitz-
mann et al. 2018; Wang et al. 2022], modeling the image formation
process with differentiable wave optics. When combined with learn-
able reconstruction algorithms, these diffractive optics not only
support high-quality color imaging [Peng et al. 2019] but also fa-
cilitate advancements in microscopy [Liu et al. 2022b; Nehme et al.
2020], hyperspectral imaging [Baek et al. 2021; Jeon et al. 2019; Li
et al. 2022], super-resolution and extended depth of field [Sun et al.
2021].
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Multi-Aperture Cameras. Researchers have long explored captur-
ing multiple images simultaneously with a single camera setup. For
example, Green et al. [2007] introduced a design that splits the aper-
ture into a central disc to capture 2×2 images on the sensor with
different aperture sizes. In another stream of research [Brückner
et al. 2010; Chakravarthula et al. 2023; Tanida et al. 2001], inspired by
the compound eyes of insects, has developed miniature cameras that
overcome the trade-offs between focal length and field of view using
arrays of thin lenses. In the realm of color imaging, Venkataraman
et al. [2013] addressed chromatic aberrations using an on-sensor
array of color-filtered single lens elements, transforming the de-
convolution challenge into a chromatic light field reconstruction
task. Building on these developments, our method integrates DOEs
with aperture-wise color filters to achieve customized, independent
spatial and spectral encoding for each cholor channel, enhancing
snapshot hyperspectral imaging capabilities.

Snapshot Hyperspectral Imaging. To circumvent the extended ex-
posure times required by traditional scanning-type hyperspectral
systems, researchers have explored alternative snapshot approaches.
Earlier methods relied on bulky setups involving multiple optical
components such as dispersive elements (prisms), coded apertures,
and several relay and imaging lenses, which made them imprac-
tical for many applications [Baek et al. 2017]. In pursuit of com-
pact snapshot spectral imaging systems, more recent approaches
have employed diffractive optical elements (DOEs) with spectrally
varying point spread functions to encode hyperspectral informa-
tion [Baek et al. 2021; Jeon et al. 2019; Li et al. 2022; Xu et al. 2023].
To simultaneously sample the angular and spectral dimensions,
Xiong et al. [2017] used beam splitters to integrate an off-the-shelf
light field camera with a coded-aperture snapshot spectral imager
(CASSI) into a single setup. Additionally, some studies have investi-
gated diffractive neural networks to resolve multi-spectral images
without spectral filters [Mengu et al. 2023], though these face chal-
lenges related to assembly complexity and light efficiency. There
is also ongoing research into nano-fabricated optics, such as meta
optics [Hua et al. 2022; Lin et al. 2023; Zhang et al. 2023a], but their
viability for consumer products and overall imaging quality is still
underdeveloped. In this work, we introduce a multi-aperture setup
that enhances the design flexibility and encoding capabilities of
diffractive optical systems, potentially overcoming the limitations
of previous designs and pushing the boundaries of spectral imaging
technology.

3 MULTI-APERTURE COLOR-CODED HYPERSPECTRAL
CAMERA

The proposed hyperspectral imaging (HSI) system is composed of
an optical and a computational module. The optical module includes
a diffractive multi-lens array, an array of aperture-wise color filters,
and a monochrome sensor that captures the scene through multi-
ple channels with separate encoding. Following this, a co-designed
deep neural network computationally reconstructs hyperspectral
images from the sensor measurements. Figure 2 provides an illus-
tration of the multi-aperture color-coded snapshot hyperspectral

camera. In this section, we describe the differentiable forward imag-
ing model, the reconstruction network, and the hybrid loss function
that enables the co-optimization of this computational camera.

3.1 Forward Imaging Model with Multi-aperture Optics
We start by outlining the multi-aperture image formation model
that facilitates the joint optimization of the lens array, aperture-
wise CFA, and the reconstruction network. While the proposed
multi-aperture approach can accommodate various array sizes, for
simplicity, we will focus on an optical setup composed of a 2×2
sub-aperture array in our examples.

The incident wave field of each sub-DOE unit is modulated by the
corresponding color filter placed on the sub-lens’ aperture. Given
that the transmission curve of the color filter is 𝑇𝑐 (𝜆), where foot-
notes 𝑐 = 1, 2, 3, 4 indicate the color channels, images 𝑌𝑐 (𝑥,𝑦) ac-
quired by the DOE, color filter, and sensor can be formulated as

𝑌𝑐 (𝑥,𝑦) =
∫ 𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

[𝑃𝑆𝐹𝑐 (𝑥,𝑦, 𝜆) ∗ 𝐼 (𝑥,𝑦, 𝜆)]𝑇𝑐 (𝜆)𝑇𝑠 (𝜆)𝑑𝜆, (1)

where [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥 ] indicates the spectrum range, and 𝑇𝑠 (𝜆) repre-
sents the monochromatic sensor’s native transmission curve. The
𝑃𝑆𝐹𝑐 for each sub-DOE is formulated with the rotational symmetric
diffractive lens representation [Dun et al. 2020] as

𝑃𝑆𝐹𝑐 (𝜌, 𝜆) =
��� 2𝜋
𝜆𝑓

𝑒
𝑖 𝑘
2𝑓 (𝜆𝑓 𝜌 )2

∞∑︁
𝑚=1

𝑃 (𝑟𝑚, 𝜆)𝑒
𝑖𝑘
2𝑓 𝑟

2
𝑚𝐻 (𝑟𝑚, 𝜌)

���2, (2)

where 𝑓 represents the distance between the DOE and the sen-
sor, equivalent to the focal length of all sub-lenses. The complex
transmittance function of the DOE is denoted as

𝑃 (𝑟𝑚, 𝜆) = 𝐴(𝑠, 𝑡)𝑒𝑖𝑘 (𝑛 (𝜆)−1)ℎ (𝑠,𝑡 ) ) . (3)

Additionally, 𝜌 is defined as 𝜌 =

√
𝑥2+𝑦2

𝜆𝑓
, 𝑘 is the wave number 𝑘 =

2𝜋/𝜆, and 𝑛(𝜆) is the refractive index of the substrate. The height
map and aperture of each sub-DOE unit are represented by ℎ(𝑠, 𝑡)
and a 𝑐𝑖𝑟𝑐 function 𝐴(𝑠, 𝑡), respectively, while spatial coordinates
at the DOE and sensor planes are denoted as (𝑠, 𝑡) and (𝑥,𝑦). The
function 𝐻 (𝑟𝑚, 𝜌) is defined as

𝐻 (𝑟𝑚, 𝜌) =
{ 1

2𝜋𝜌 [𝑟𝑚 𝐽1 (2𝜋𝜌𝑟1) − 𝑟𝑚−1 𝐽1 (2𝜋𝜌𝑟𝑚−1)], 𝑚 > 1
1

2𝜋𝜌 𝑟1 𝐽1 (2𝜋𝜌𝑟1), 𝑚 = 1 ,

(4)
where 𝐽1 is the 1𝑠𝑡 order Bessel function of the first kind.

By modeling the sensor noise as a pixel-wise Gaussian-Poisson
noise, the sensor output can be formulated as

𝑆𝑐 (𝑥,𝑦) = 𝜂𝑝 (𝑌𝑐 (𝑥,𝑦), 𝜎𝑝 ) + 𝜂𝑔 (𝑌𝑐 (𝑥,𝑦), 𝜎𝑔), (5)

where 𝜂𝑔 (𝑌𝑐 (𝑥,𝑦), 𝜎𝑔) ∼ 𝑁 (𝑌𝑐 (𝑥,𝑦), 𝜎2𝑔 ) is the Gaussian noise com-
ponent, and 𝜂𝑝 (𝑌𝑐 (𝑥,𝑦), 𝜎𝑝 ) ∼ 𝑃 (𝑌𝑐 (𝑥,𝑦)/𝜎𝑝 ) is the Poisson noise
component. Eventually, four encoded, grayscale images 𝑆𝑐 (𝑥,𝑦)s
are obtained and then input to the reconstruction network.

3.2 Image Reconstruction Neural Network
The proposed recovery network architecture comprises two sequen-
tial components: a feature-extraction block responsible for multi-
scale feature extraction from the sensor measurements, and a pair
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Fig. 2. Learning Multi-Aperture Color-Coded Optics for Snapshot Hyperspectral Imaging. We jointly optimize the multi-aperture DOE array,
aperture-wise color filters, and image reconstruction network using a hybrid loss function. During each forward pass, the ground truth spectral images are
first convolved with the PSFs of the DOE array and then multiplied by the response curves of the color filters. Noise is added to the simulated sensor image,
which is then integrated over the monochrome sensor’s response for each sub-lens channel: B, G1, G2, and R. These images are input into the multi-resolution
feature extractor of the image reconstruction network to recover the final hyperspectral (HS) and RGB images.

of reconstruction heads that individually resolve either RGB or HSI
output based on the extracted features.
Inspired by recent advancements in image classification net-

works [Wang et al. 2020], we incorporate parallel convolution streams
at three different resolution levels (1x, 2x, and 4x down-sampling)
within the entire feature-extraction block to preserve high-resolution
features. Additionally, concatenation layers are utilized to aggre-
gate features from different resolutions, enabling information flow
between streams; and skip connections are employed to retain all
texture details captured by sensor measurement. Our reconstruction
heads are convolution blocks with 5×5 kernels, which consume the
output of the feature-extraction block and are specialized in RGB or
HSI reconstruction. A detailed architecture spreadsheet is presented
in the supplemental document Tbl. S2.

3.3 Hybrid Loss with Fabrication-aware Regularization
The proposed pipeline, including both the optical component and
the reconstruction network, is trained by minimizing a hybrid loss
function

L = Lrecon + RPSF + RT . (6)
This loss function is comprised of three key components: an end-
to-end reconstruction loss, denoted as Lrecon, which evaluates the
quality of the reconstruction, as well as two regularization terms,
RPSF and RT, which account for encouraging fabrication-friendly
DOE and color filter designs, respectively.
The reconstruction loss Lrecon can be further broken down as

Lrecon = 𝑤1LRGB
ℓ1

+𝑤2LRGB
perc +𝑤3LSpectral

ℓ1
. (7)

Here, Lℓ1 represents a pixel-wise ℓ1 loss, quantifying the devia-
tion between the reconstructed RGB and spectral images and their
corresponding targets. Additionally, we incorporate Lperc, a percep-
tual loss based upon LPIPS [Zhang et al. 2018], which is applied to

the reconstructed RGB images to capture perceptual dissimilarities.
𝑤1,𝑤2,𝑤3 denote the weights for each loss term, empirically set at
100,1 and 100.

RPSF looks at the intensity at the center of the learned PSFs and
discourages overly blurry PSFs, that is

RPSF =

{
0, if 𝑃center ≥ 𝑃target
𝑃target − 𝑃center, if 𝑃center < 𝑃target .

(8)

Here, 𝑃center represents the total intensity of a 30 × 30 center crop
of the learned PSF, while 𝑃target, empirically set at 0.9, represents
the target total intensity.
Finally, RT is employed to induce a smooth color filter design

and discourage multi-modal curves, that is

RT =
𝑛−1max
𝑖=1

|𝑇𝑐 (𝜆𝑖+1) −𝑇𝑐 (𝜆𝑖 ) | +
𝑛−1∑︁
𝑖=1

|𝑇𝑐 (𝜆𝑖+1) −𝑇𝑐 (𝜆𝑖 ) |. (9)

This regularization term computes the 1st order derivatives of the
learned color filter 𝑇𝑐 . It encourages that the color filter design
maintains smoothness and helps prevent local maxima, both of
which facilitates fabrication.

As illustrated in Fig. 2, the proposed loss function is directly
applied to the reconstructed network output, so as to supervise both
optics optimization, including DOEs and color filters, and image
reconstruction network update in an end-to-end manner.

4 ANALYSIS
Before evaluating our method with experimental measurements, we
first validate the method on synthetic data. We begin by comparing
our method to existing snapshot HSI approaches in Section 4.2 to
verify its effectiveness. Next, we assess the benefit of our multi-
aperture setup in Section 4.3, followed by an ablation study of the
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chosen hybrid loss function and the architecture of the reconstruc-
tion network in Section 4.4.

4.1 Datasets and Training Details
To ensure the generalization ability of the proposed method, we
utilize two datasets: CZ_HSDB [Chakrabarti and Zickler 2011] and
ICVL [Arad and Ben-Shahar 2016] (278 images in total), for training
purposes, while evaluating the performance of the method on the
previously unseen CAVE [Yasuma et al. 2008] dataset (32 images)
and KAUST [Li et al. 2021] dataset (409 images, quantitative perfor-
mance reported in the supplemental document Sec. 4). To account
for variations in image sizes across these datasets, we randomly
extract 512 × 512 pixels’ crops of the images during training. In
addition, left-right flips and random channel shuffling are applied
to augment the data during the training process.

4.2 Synthetic Assessment
In the following, we assess the performance of our proposed method
by comparing it to existing snapshot HSI approaches. We consider
two categories of baseline methods: (1) Direct spectral reconstruc-
tion from RGB Images, represented by the HRNet method [Zhao
et al. 2020] and MST++ method [Cai et al. 2022b], both are NTIRE
Spectral Reconstruction Challenge Winners; and (2) Alternative
compressive snapshot spectral imaging systems, represented by
QDO [Li et al. 2022] and SCCD [Arguello et al. 2021], both of which
are state-of-the-art E2E optimized diffractive optics-based snapshot
imaging systems.
We provide qualitative and quantitative comparisons in Fig. 3

and Tab. 1, respectively. Additional comparisons are shown in Fig.
S6 (left, rows 2-4) in the supplemental document. For these com-
parisons, we feed the baseline model with either the ground-truth
RGB images with simulated noise, or simulated sensor measure-
ments using the optics design and specs provided by the competing
baseline methods. All inputs are of size 512 × 512 × 3. We follow
the forward model described in Section 3.1 when needed and use
the same RGB simulation curve for the HRNet method and MST++
method. Since both QEO and SCCD methods optimized the op-
tics design and reconstruction in an end-to-end manner, we utilize
pre-trained reconstruction models provided by the authors of these
works. Note, while SCCD can reconstruct a total of 49 spectral bands
spanning the 420 – 660nm range, only 25 bands within this range
have been configured in the provided network to recover, with in-
tervals of 10 nm between each. Consequently, this results in the
absence of certain spectral channels, as illustrated in Fig. 3. In addi-
tion to conventional image metrics SSIM and PSNR, we employ two
domain-specific metrics to more comprehensively evaluate spec-
tral reconstruction performance. In the RGB domain, we use Delta
E [Sharma et al. 2005], which quantifies the perceptual difference
between the ground truth and the reconstruction, with Delta E ≤ 1
being considered imperceptible to the human eye. In the hyperspec-
tral domain, we use the Spectral Angle Mapper (SAM) [Kuching
2007], which computes the spectral angle between the reconstructed
and ground truth spectra in an n-dimensional spectral space, where
n represents the number of spectral bands.

Table 1. Quantitative comparison over the 32 unseen images in CAVE
dataset.We compare our reconstruction network architecture with state-
of-the-arts, including RGB-to-Spectrum reconstruction represented by HR-
Net [Zhao et al. 2020] and MST++ [Cai et al. 2022b], and recent compressive
snapshot spectral imaging systems, represented by QDO [Li et al. 2022] and
SCCD [Arguello et al. 2021]. Note, that we do not report the RGB output
scores for HRNet and MST++ as it takes RGB as input, and the SCCD scores
are not punished for the missing channels.

RGB HS
SSIM PSNR Delta E SSIM PSNR SAM ↓

Proposed 0.96 38.01 1.30 0.92 32.82 0.21
HRNet [2020] - - - 0.88 26.76 0.40
MST++ [2022b] - - - 0.833 24.85 0.41
SCCD [2021] 0.84 32.27 2.53 0.74 27.43 0.59
QDO [2022] 0.74 26.19 4.32 0.67 23.60 0.45

As shown in Fig. 3 and Tab. 1, the QDO [Li et al. 2022] method
exhibits the poorest reconstruction performance, primarily due to
its reliance on a single-lens design and the use of heavy quantization
during the design phase. The quantization, intended to align the
DOE design with its actual fabrication, significantly limits design
flexibility. On the other hand, SCCD [Arguello et al. 2021], which
incorporates a jointly optimized color-coded aperture (CCA) for
spatial and spectral modulation, achieves a 3.8 dB improvement in
spectral reconstruction accuracy. However, its constrained spectral
filter coding and dependence on a pre-designed Bayer-patterned sen-
sor leads to a noticeable gap disparity between its reconstructions
and the ground truth. In contrast, our proposed method, leverag-
ing customized spectral coding and advanced coding capabilities
through an array design, achieves a substantial 5.4 dB improvement
in PSNR for HS images and a 5.7 dB enhancement for RGB images.

Diverging from these optical encoding techniques, HRNet [Zhao
et al. 2020] and MST++ [Cai et al. 2022b] are state-of-the-art RGB-
to-HS methods that directly reconstructs hyperspectral information
from conventional RGB captures. Although they circumvents the
inherent spatial resolution loss linked to DOE spectral coding and
provides high-quality plausible outputs, it is important to recog-
nize that RGB-to-HS approaches face the ill-posed challenge of the
inverse problem, and can only attempt to extrapolate the missing
spectral information based on the learned image prior from the
training dataset, making them susceptible to overfitting. As a result,
MST++ is here overfitting to the specific capture setup (e.g., JPEG
compression and camera calibration), leading to a 7.97 dB drop in
reconstruction quality (PSNR) compared to the proposed method.
While HRNet achieves better reconstruction quality, as it is designed
to perform well with unknown and uncalibrated cameras [Arad et al.
2020], it still shows a 6.04 dB (PSNR) reduction compared to the
proposed method.

4.3 Analysis of Multi-Aperture Configuration
Next, we validate the proposed multi-aperture setup by examining
the performance enhancements from spatial and spectral modula-
tion. We also assess the impact of supporting independent spatial
modulation across each channel versus shared modulation across
channels. To ensure a fair comparison and avoid influences from
other components such as training procedures and sensor settings,
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Fig. 3. Assessment in Simulation. We compare the ground truth spectra (GT, 1st row) to reconstructions from our proposed method (2nd row), the
RGB-to-Spectrum method HRNet [Zhao et al. 2020] (3rd row), and recent compressive snapshot spectral imaging systems, namely QDO [Li et al. 2022] (4th

row) and SCCD [Arguello et al. 2021] (5th row). For each subset, we show the RGB recovery results of full images on the left and the zoom-in version of both
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1st row RGB images, displayed at the bottom of the figure. Center-cropped designed PSFs for four channels at the target wavelengths are visualized at the top.
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Table 2. Validation of Multi-Aperture Configuration. We assess the
benefits of the proposed multi-aperture setup by analyzing the performance
enhancements from spatial and spectral modulation, as well as the effects
of independent versus shared spatial modulation across channels. To this
end, we compare the proposed approach to variants using a fixed Bayer
RGGB color filter and/or a single shared DOE across all color channels.

RGB HS
SSIM PSNR SSIM PSNR SAM ↓

Proposed 0.96 38.01 0.92 32.82 0.21
Thin Lens w/ Fixed Curve 0.99 46.29 0.88 30.67 0.36
Thin Lens w/ Learned Curve 0.97 44.01 0.90 30.91 0.33
Single DOE w/ Learned Curve 0.84 34.96 0.76 29.84 0.43
Single DOE w/ Fixed Curve 0.78 31.83 0.69 27.42 0.50
DOE Array w/ Fixed Curve 0.94 37.80 0.86 30.32 0.35

each setting produces 512 × 512 × 4 sensor outputs, which are then
passed through the same network architecture trained using identi-
cal configurations. Quantitative results are reported in Tab. 2, and
qualitative results are available in Fig. 4 , Fig. S4, and rows 2 to 5
(right) of Fig. S6 in the supplemental document.

We first simulate a baseline scenariowith nowavelength-dependent
spatial modulation, paired with a pre-designed fixed RGGB Bayer
color filter for spectral encoding, represented by the ’Thin Lens
w/ Fixed Curve’ configuration. This setup can be considered the
standard RGB-to-HS setting in an ideal case, where the scene is all-
in-focus and the sensor response curve is known to the algorithm.
As a result, the network is able to reconstruct a near-perfect RGB im-
age, since it is provided as an input, and achieves good performance
in the hyperspectral domain because the sensor’s response curve
is known to the model. However, in typical RGB-to-HS settings,
the algorithms are often required to provide reasonable predictions
regardless of the sensor’s response curve, resulting in less accurate
hyperspectral reconstruction.

By adding optimized spectral modulation via a customized color
filter 𝑇𝑐 (𝜆), ’Thin lens w/ Learned Curve’ configuration improves
hyperspectral performance by providing different spectral encod-
ing for the two otherwise identical G channels in a Bayer filter.
However, while bypassing the spatial resolution loss typically in-
duced by DOE modulation, both configurations must interpolate
the data from a 4-channel measurement into 31 channels in the
absence of spatial modulation, leading to diminished hyperspectral
performance compared to the proposed method.

We next assess the impact of utilizing an array setup where each
color channel has its own independent spatial modulation, compared
to utilizing a single DOE that shares modulation for all four channels.
To accomplish this, we optimize a single DOE with either a fixed
RGGB Bayer filter or a customizable 4-channel color filter, reporting
performance under the ‘Single DOE w/ Fixed Curve’ and ‘Single
DOE w/ Learned Curve’ configurations. This shared modulation
significantly limits design flexibility, as a single DOE must encode
additional spectral information while simultaneously maintaining
reasonable spatial resolution for all wavelengths. Due to the nature
of diffraction, the DOE tends to focus on a narrow wavelength band,
making it challenging to reconstruct high-frequency spatial details
across other wavelengths. Consequently, we observe a noticeable
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Fig. 4. Qualitative Analysis of the Multi-Aperture Configuration. We
evaluate the benefits of the proposed multi-aperture setup by analyzing
performance enhancements from spatial and spectral modulation, as well as
the effects of independent versus shared spatial modulation across channels.
The columns compare a fixed Bayer color filter (left) with a learned color filter
(right), while the rows compare no spatial encoding (first row), shared spatial
encoding (single DOE, second row), and independent spatial encoding (multi-
aperture setup, third row). The ground truth scene is displayed at the bottom
left, and the spatial response curve from all configurations of a sampled
point is shown at the bottom right. Refer to the Fig. S4 in supplemental
document for a higher-resolution error map.

decline in both RGB and hyperspectral reconstruction quality when
compared to the proposed multi-aperture configuration.
To further evaluate the performance enhancement from spec-

tral modulation provided by the customized color filter 𝑇𝑐 (𝜆), we
conduct an additional experiment, ‘DOE Array w/ Fixed Curve,’
where a multi-aperture DOE array is paired with a fixed RGGB
Bayer filter. We confirm that Bayer filters, designed to mimic human
visual perception, are not tailored to HSI applications, leading to a
performance decline compared to our proposed method.

4.4 Reconstruction Ablation Experiments
Next, we validate the chosen regularization terms and reconstruc-
tion network architecture with an ablation study, with results re-
ported in Fig. 5, Tab. 3 , and Fig. S6 in the supplemental document.
We also include analysis on the effect of varying color filter initial-
izations in the supplemental document Sec. 4.

Regularization Terms. We first assess the impact of the regular-
ization terms outlined in Sec. 3.3, presenting qualitative findings
in Fig. 5. Without regularization, although the optimization yields
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Fig. 5. Impact of the fabrication-aware regularization terms RPSF
and RT. In contrast to non-regularized designs (left), the proposed designs
(right) effectively eliminate the multiple ’secondary peaks’ highlighted in
color filter response curves (a) and avoid excessive defocus, see the bottom
left corner of aggregated per-channel PSFs (b) and simulated per-channel
sensor measurements(c). Thus, RPSF and RT successfully improve the man-
ufacturability of the optical system.

promising reconstruction results during simulations, it often con-
verges towards designs that are challenging to fabricate or are highly
susceptible to fabrication errors.
For instance, when omitting the regularization term RT, the

learned color filters—particularly 𝐺1 and 𝐺2, both initialized with
green Bayer filters—opted to incorporate various local maxima to
capture additional spectral information, as highlighted in Fig. 5 (a).
This results in designs that are difficult to fabricate. With regulariza-
tion, the learned color filter response curves remain predominantly
single-mode but shift their primary peak locations. Furthermore,
the regularization term RPSF prevents excessively blurry and defo-
cusing designs, as shown in Fig. 5(b) and (c). While such designs
offer enhanced spectral information in simulations, they are prone to
fabrication inaccuracies and exhibit limited real-world performance.

Reconstruction Network Architecture. The assessment extends to
the proposed reconstruction network architecture, wherein we eval-
uate the impact of different architectural components, including
the multi-resolution feature extraction, skip connections, and sep-
arate reconstruction heads. As we quantitatively report in Tab. 3,

Table 3. Quantitative Reconstruction Network Analysis. We evaluate
different reconstruction network architectures in simulation, including the
proposed one, its variants w/o RGB recovery head and w/o skip connection,
as well as the counterpart UNet.

RGB HS
SSIM PSNR SSIM PSNR SAM ↓

Proposed 0.96 38.01 0.92 32.82 0.21
Proposed w/o RGB head 0.95 37.42 0.86 29.90 0.32
Proposed w/o skip 0.95 36.53 0.84 29.35 0.33
Counterpart UNet 0.93 36.62 0.84 29.86 0.39

the combination of the skip connection from UNet and the multi-
resolution feature extraction architecture from HRNet has resulted
in an improvement in both SSIM and PSNR over the vanilla UNet
and HRNet-like architecture, regarding recovering both the RGB
image and the hyperspectral (HS) images. Moreover, the use of
separate reconstruction heads for RGB and HS images forces the
network to extract HS information from wavelength-dependent de-
focus cues, without relying on the RGB-to-HS hallucination, which
is an easier task for the network. This architectural choice has led
to a significant enhancement in the quality of HS images. For qual-
itative comparisons, please refer to Fig. S6 (bottom 2 rows) in the
supplemental document.

5 EXPERIMENTAL ASSESSMENT
To experimentally evaluate the proposed method with real-world
captures, we fabricate the learned diffractive optical element and
aperture-wise CFA described in Sec. 3. We first describe the experi-
mental setup and validate that the measured PSFs and spectral curve
feature the desired property, before confirming the effectiveness of
the method with experimental reconstructions from our prototype
camera system.

5.1 Experimental Prototype
As illustrated in Fig. 1 (a), our prototype incorporates the pro-
posed customized DOE and color filter array, and we employ a FLIR
515M USB 3.0 monochrome sensor that offers a sensor resolution
at 2,480×2,480 and a pixel pitch of 3.45 𝜇m. The DOE array is fab-
ricated using grayscale lithography and a molding process [Ikoma
et al. 2021]. The multilayer-type color filters are designed using com-
modity TFCale software given the learned spectral response curves,
and then fabricated through an iterative coating process [Dong et al.
2018]. For additional details on the fabrication procedures, please
refer to Sec. 1 in the supplementary document .
To validate the fabrication, we measure the PSFs of each sub-

lens and the spectral response of the corresponding aperture-wise
CFA across all targeted wavelengths using an iHR 320 monochro-
mator paired with a white light point source. The measured PSFs
undergo pre-processing to approximate their design ring diameters
and eliminate residual acquisition artifacts. For visualizations of the
measured PSFs and spectral response curves, please refer to Fig. S2
in the supplementary document.
5.2 Experimental Results
To compensate for fabrication inaccuracies of the customize optical
element, we finetune our image reconstruction neural network using
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Fig. 6. Experimental Assessment.We evaluate the proposed method in both outdoor (Scene 1 and 2) and indoor (Scene 3) environments, comparing it to
the commercial Specim IQ hyperspectral camera. For each scene, we include: (a) sensor captures comprising four sub-channel images (R, G1, G2, B); (b/e) RGB
reconstructions compared to Specim IQ references; (c/f) close-up views of a cropped region across all 31 channels; and (d) spectral validation plots for four
sampled points on the captured scene.
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the measured PSFs and spectral response curve. We validate the
proposed system under both outdoor and indoor environments and
compare the reconstruction with reference captures obtained from
the commercially available Specim IQ hyperspectral camera.

Each scene is first captured using the Specim IQ camera as a refer-
ence for qualitative evaluation. We then capture the scene with our
prototype. We apply a homography-based calibration method [Peng
et al. 2019; Sukthankar et al. 2001] to register the images from the
four sensor channels and adjust the white balance based on the
white checker in the scene. These pre-processed quad-channel im-
ages serve as input to our neural network for reconstructing HS
images across 31 channels as well as a high-fidelity RGB image.

Reconstructions with both RGB and hyperspectral visualizations,
along with spectral validation plots, are presented in Fig. 6, Fig. S7
and Fig. S8 in the supplemental document. To account for resolution
and view angle discrepancies between the Specim IQ hyperspectral
camera and our prototype, we manually selected patches of uni-
form color from the scene for spectral profile validation. Spectral
curves reconstructed by our method closely align with those from
the Specim IQ camera, demonstrating exceptional fidelity across 31
channels, further validating our methodology in diverse environ-
ments.

The integration times for outdoor and indoor acquisitions are 5.6
ms and 400 ms, respectively, highlighting the practical usability of
our system. Note that the indoor scene reconstructions (Fig. 6 Scene
3) may appear slightly hazy due to stray light from overhead lighting,
as the prototype setup lacks a closed lens barrel. Additionally, a small
area of the sensor was stained during the capture process, resulting
in a dark patch in some scenes’ captures and reconstructions.

6 CONCLUSION
We introduce a multi-aperture color-coded snapshot hyperspec-
tral imaging system that leverages learned array diffractive lenses,
aperture-wise color filters, and a reconstruction network. This multi-
aperture design encodes spatial and spectral information indepen-
dently across color channels, enabling accurate compressive hyper-
spectral recovery. As a result, we achieve higher fidelity spectral
and RGB reconstructions than existing single-diffractive lens and
coded-aperture solutions in diverse indoor and outdoor scenes.

Looking ahead, the adaptability of our system to support various
array sizes and the simplicity of its underlying design suggest a
broad potential for future research. Incorporating non-rotationally
symmetric lens representations, as discussed by Liu et al. [2022a],
into the design of DOEs could further increase the design space of op-
tical encoding options. Furthermore, incorporating off-axis diffrac-
tive propagation, in conjunction with concepts from compound-eye
imaging, could enhance wide field-of-view capabilities – unlocking
HSI imaging with applications across domains.
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