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Figure 1. We introduce dual-exposure stereo, a method for extended dynamic range (DR) 3D imaging. (a) We control the dual exposures
synchronously set for the stereo camera to expand the effective DR of 3D imaging. From (b) the captured dual-exposure stereo images, we
estimate (e) a disparity map that preserves details in both the under- and over-exposed images of the dual-exposure pair, which cannot be

faithfully reconstructed in (c)&(d) one-exposure results.

Abstract

Achieving robust stereo 3D imaging under diverse illu-
mination conditions is an important however challenging
task, due to the limited dynamic ranges (DRs) of cameras,
which are significantly smaller than real world DR. As a re-
sult, the accuracy of existing stereo depth estimation meth-
ods is often compromised by under- or over-exposed im-
ages. Here, we introduce dual-exposure stereo for extended
dynamic range 3D imaging. We develop automatic dual-
exposure control method that adjusts the dual exposures,
diverging them when the scene DR exceeds the camera DR,
thereby providing information about broader DR. From the
captured dual-exposure stereo images, we estimate depth
using motion-aware dual-exposure stereo network. To vali-
date our method, we develop a robot-vision system, collect
stereo video datasets, and generate a synthetic dataset. Our
method outperforms other exposure control methods.

1. Introduction

Robust 3D imaging is critical for autonomous systems, such
as robots and self-driving vehicles, which depend on depth
perception to navigate and interact with their environments.
Stereo imaging is a popular 3D imaging technique that esti-
mates depth from disparity by matching corresponding pix-
els in images captured by two cameras. Recent advance-
ments in neural networks have significantly improved stereo
disparity estimation, making stereo imaging a practical and
cost-effective solution [27].

However, achieving robust 3D imaging with stereo cam-
eras remains challenging, especially in real-world scenes
that exhibit lighting conditions with ultra-wide dynamic
ranges (DRs). Conventional cameras have limited DR capa-
bilities [36], so in scenes with extremely wide DRs, bright
regions may become overexposed while dark regions are
underexposed, leading to suboptimal disparity estimation.
Existing auto exposure control (AEC) methods adjust cam-



era exposure to capture the scene DR, however they do not
expand the camera’s native DR, as each stereo frame is of-
ten processed individually [8]. Exposure bracketing tech-
niques capture multiple images with different exposures to
expand the effective DR through multi-exposure image pro-
cessing [9, 28], however these often rely on predefined ex-
posures that do not adapt to the scene DR, increasing cap-
ture time and computational overhead.

In this paper, we introduce dual-exposure stereo, a
method for extended dynamic range 3D imaging (Figure 1).
In alternating frames, we capture stereo images with dual
exposures, producing two pairs of stereo images where each
pair is captured at different exposure settings in successive
frames. By combining AEC and exposure bracketing, we
dynamically adjust the dual exposures: when the scene DR
exceeds the camera’s native DR, the dual exposures diverge
to capture bright and dark regions across two successive
frames. When the scene DR is within the camera’s DR,
the exposures converge to capture the full scene DR within
the camera’s native DR. Each stereo image captured under
dual exposures retains the same DR as the camera, how-
ever different exposure settings enable coverage of bright
and dark regions. To leverage these images, we develop
a dual-exposure depth estimation method that fuses dual-
exposure features in a motion-aware manner across alter-
nating frames. Our approach effectively extends the DR for
3D imaging, regardless of the original bit depth of the cam-
eras.

To validate our method, we design a robot-vision sys-
tem equipped with stereo cameras and a LiDAR sensor. Us-
ing this setup, we collect a dataset of stereo videos and Li-
DAR point clouds across indoor and outdoor environments
with various lighting conditions. We also generate synthetic
datasets with dense ground-truth depth maps. Our experi-
ments demonstrate that the proposed method outperforms
previous exposure control methods, enabling depth estima-
tion in scenes with a wide range of DRs. Code and datasets
will be made publicly available.

In this paper, we make the following contributions:

e We introduce dual-exposure stereo for extended dy-
namic range 3D imaging, developing an automatic dual-
exposure control method that combines conventional
AEC and exposure bracketing. Our dual-exposure dispar-
ity estimation method then utilizes dual-exposure stereo
images to increase effective camera DR for robust 3D
imaging.

* We develop a robot-vision system with stereo cameras
and a LiDAR sensor mounted on a wheeled robot, col-
lecting a real-world stereo video dataset and rendering a
synthetic dataset with dense ground truth.

* We validate our method on both synthetic and real-world
datasets, demonstrating improved performance over ex-
isting exposure control methods.

2. Related Work

HDR 3D Imaging Active imaging systems with engi-
neered illumination have enabled 3D imaging under high-
dynamic-range (HDR) environments. Examples are syn-
chronized projector-camera systems [33, 34] and time-of-
flight cameras [7, 41]. Without additional illumination
modules, passive 3D imaging systems exploit unconven-
tional sensors for HDR imaging, such as single-photon
avalanche diodes [17], quanta image sensors [11, 13], event
cameras [46, 54, 58], and modulo cameras [56, 57]. Using
conventional cameras, capturing scenes with multiple expo-
sures is a standard approach for HDR 3D imaging [4, 5, 23].
However, these methods rely on predetermined exposure
settings, which cannot adapt to changing lighting condi-
tions, leading to loss of detail in overexposed or under-
exposed regions and unnecessarily long acquisition times
when scene DR is low. Our method automatically adjusts
dual exposure for stereo cameras, improving performance
for varying-DR scenes by expanding effective camera DR
for 3D imaging.

AEC and Exposure Bracketing Single-camera AEC has
been extensively studied using histogram analysis [2, 39,
44], model-predictive correction [35, 42, 43, 45], entropy
analysis [25, 31, 53], and semantic analysis [32, 51, 52].
Extending AEC to stereo cameras, there are two common
approaches. The first is to control exposure for each camera
individually. However, this deteriorates stereo correspon-
dence due to stereoscopic intensity inconsistency [21, 55].
The second approach is to use a synchronized AEC for
stereo cameras, maintaining intensity consistency [21, 40].
However, existing methods in this category struggle when
scene DR is larger than camera DR, leading to overex-
posed or underexposed regions. Exposure bracketing alter-
nates multiple exposures and processes the multi-exposure
images to capture a broader DR than the original camera
DR [14, 15, 30, 32, 37, 47-49]. Most existing methods use
a single camera [ 16, 50] and rely on predetermined long and
short exposure settings [3, 6, 12, 18-20, 26], which limits
capture efficiency when scene DR fluctuates. Our method
combines the principles of AEC and exposure bracketing.
We control the dual exposures of stereo cameras, thus main-
taining intensity consistency between stereo images as well
as expanding effective DR for 3D imaging.

Stereo Depth Estimation Estimating depth from stereo
disparity has been studied for decades [38]. Recent
neural-network solutions have significantly improved stereo
matching by using deep feature extraction and cost volume
construction [22, 24]. These models iteratively refine dis-
parity maps using 3D convolutions or recurrent units. How-
ever, they fail when scene DR is wider than camera DR,
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Figure 2. Image Formation. For alternating frame ¢ = {1, 2},
scene radiance ®;, and exposure e;, we simulate the captured in-
tensity I; for the camera ¢ € {left,right}. We consider photon
collection, pre- and post-gain noise, clipping, and quantization.

because of under- and over-exposed regions. Our dispar-
ity estimation method addresses this problem by fusing the
dual-exposure images while compensating the motion be-
tween consecutive frames.

3. Image Formation

We introduce the dual-exposure image formation model
for stereo cameras. We denote the dual exposure as e;,
where ¢ € {1,2} is an alternating frame index. We ~~
vert the exposure e; to shutter time ¢t; = e;/g; and

gi = max(1l,e;/tmax ), wWhere ty,y is the maximum sh
time, allocating shutter time as long as possible cappe

the maximum value to reduce image noise by a high
Given the shutter time ¢;, gain g;, and the incident scen
diance ®;, we model the intensity I} captured by the s
camera c € {left, right} at the frame ¢ as:

pre

If (p§) = quant (clip(gz-(q)iti +nP) + nliaost)) ’

where p¢ is a camera pixel. pre

The noise terms n,
post . . .

n;  are the pre-gain and post-gain noise, sampled
zero-mean Gaussian distributions with standard devia
Opre and opos, Tespectively: nf' ~ N (0, 0pe), 1
N (0, 0post). The function clip(-) limits intensity valuc
the camera DR, and quant(-) quantizes the intensity t
teger values. The overall procedure of the image form.

is shown in Figure 2.

4. Auto Dual Exposure Control

Our ADEC method uses the left-camera images {11, I}
captured by the dual exposure {eg, e2} to estimate the next
dual exposure {é;, é>}. Pseudo code of our ADEC method
is shown in Algorithm 1. Figure 3 shows an example sce-
nario of applying the ADEC method.

Metric Our ADEC method uses statistical metrics to con-
trol next-frame dual exposures. Specifically, for each frame
i € {1,2}, we compute the intensity histogram h; of the im-
age Iief', and calculate the histogram skewness .S;, describ-
ing whether the histogram is skewed towards low intensity

Algorithm 1 Pseudocode for ADEC.

Require: Dual exposure values e;, es and corresponding
captured images 11, IJeft
Ensure: Next dual exposure €1, €5

1: // Compute metrics

2: for each frame 7 € {1, 2} do

3:  h; «<ExtractHistogram(I}")

4: S; < Skewness(h;)

5 L;, H; «+ExtremePixelRatios(h;)
6: end for
7
8

. // Adjust dual exposure
: if Scene DR > camera DR: L; > 7m,andH; > 7, for any ¢
then
9:  if Dual exposure gap is low: Ae = |e; — e2| < Ta. then

10: // Diverge dual exposure

11: é1, é2 < DivergeDualExposure(e1, ez, L1, L2, H1, H2)
12: end if

13: else

14: // Scene DR > camera DR or scene DR is uncertain
15:  for each frame i € {1,2} do

16: /I Adjust dual exposure towards zeroing the skewness
17: é; < MakeSkewnessZero(e;, S;)
18:  end for
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Figure 3. ADEC Method Exposure Selection. The initial dual
exposures are set to be the same in this example. If the scene DR is
estimated as wider than the camera DR, the dual exposures diverge
to capture both dark and bright regions in alternating frames.

(negative skewness) or high intensity (positive skewness) as

K . 3 .
_ J—=K/2\" hi(j)
&-—Z( % ) ~ ®)

Jj=0

where K is the maximum detectable intensity of the camera
depending on its bit depth, NV is the number of pixels, and
h;(7) is the frequency of intensity j.

We then compute the ratios of under- and over-exposed
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Figure 4. Dual Exposure Feature Fusion. For each camera ¢, we extract features F{ and Fy, optical flow f€, and weight maps W7 and
W3 of the dual-exposure images I7 and 5. The second-frame features and weight map are warped to the first-frame view, and fused to
the final feature F'° with the weighted summation, encoding dual-exposure information.

pixels, denoted as L; and H;, representing the proportions
of pixels near the minimum and maximum intensities

; N _ N
j=0 J

. K .
hz(])’ Hi: Z hz(.])’ (3)
=Thigh
where Tio, = [K x 0.05] and Ty, = [K x 0.95] are
clamping thresholds.
Below, we use the skewness .S;, extreme-valued pixel ra-
tios L;, H; to determine the next-frame dual exposures.

Diverging Dual Exposure For scenes whose DR exceeds
the camera native DR, we diverge the dual exposure to cap-
ture a broader DR across the alternating frames. Such cases
are identified with the conditions L; > 75, and H; > 73, for
at least one frame i, where 75, = 0.05. We diverge the dual
exposure with magnitudes proportional to L; and H; as

if e >eo

é1=e+aly, é;=ey—aHs,

é1=e —aHy, é;=-ey+ aly, otherwise, (4)
where o = 0.5 is a constant controlling the divergence step.

To prevent excessive divergence that could lead to un-
stable stereo imaging, we limit the exposure difference
Ae = |e; — ea|. If Ae exceeds a threshold 7o, = 2.5,

no further divergence is applied.

Towards Zeroing Skewness When the scene DR is un-
certain or lower than the camera DR, indicated by L; < 7y,
and H; < 3, for both frames ¢ € {1,2}, we adjust the ex-
posures towards zeroing the skewness .S;. This makes the
intensity histogram to be balanced, capturing the scene DR:

éi:ei—axSi. (5)

This process makes the dual exposure converge to a sim-
ilar value, to fully cover the scene DR in a balanced man-
ner, if the scene DR is lower than camera DR. For scenes
with uncertain DR compared to the camera DR, this method
moves the dual exposure to be with zero skewed, facilitating
better identification of the scene DR.

5. Dual-exposure Stereo Disparity Estimation

We introduce our disparity estimation method for dual-
exposure stereo images: Il [ {‘ghl of the first frame, and
It THEM of the second frame.

Motion Estimation Between alternating frames ¢ €
{1, 2}, the locations of corresponding pixels can move for
dynamic movements of objects or cameras, modeled as the
optical flow f¢:

P = p5 + fC(p3)- (6)

To account for such motion, we estimate the optical flow
F'ft between I and I, and fUE between 17" and
15" using a pretrained optical flow network robust to in-
tensity difference between images [29]. Note that the dual-
exposure images I{ and I§ have overlapped contents as we
do not allow for extremely-diverged dual exposures as de-
scribed in Section 4.

The estimated optical flow f allows us to define a warp-
ing function that transforms data X5 from the second frame
(¢ = 2) to the first frame (z = 1):

X§—>1 :W'a‘rp(X§7fC)7 (7)

where X5_,; is the warped data. The warping function en-
tails resizing the optical flow field to the corresponding res-
olution of the input data X§.
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Figure 5. Stereo Video Datasets. (a) Samples of our real-world dataset: sequence of stereo images and corresponding LiDAR point cloud.
(b)&(c) Our imaging setup (c) mounted on a mobile robot (b), equipped with a LiDAR sensor and stereo cameras. (d) Samples of our
synthetic dataset: stereo images and ground-truth disparity maps. (e) Statistics of the synthetic dataset about time, location, and scenarios.

Dual-exposure Feature Fusion To exploit dual-exposure
images {I{, IS} with potentially different exposures, we
develop a dual-exposure feature fusion method. Figure 4
shows the overview of our dual-exposure feature fusion. We
extract features F;° from images I using a pretrained fea-
ture extractor FE(-) [24]:

F¢ = FE(IY). (8)

We then warp the second-frame feature to the first frame
using the warping function based on the estimated optical
flow, ensuring that feature from the second frame becomes
spatially aligned with the first-frame feature:

Fy ., = warp(Fy, f€). 9)

As we now have the dual exposure features Fys ,; and
FY spatially aligned, we fuse the two features using the
weighted sum:

po_ WP FL+Ws,, - Ff (10)
ch+W26a1 +e

where F'€ is the fused feature, € is a small constant to avoid
division by zero.

We define the weight map W using an intensity-based
trapezoidal function [19] to exploit well-exposed pixel in-
tensity:

e if 15(p5) < @,
Wipi) = |1 ifa <If(pf) <5
1— 15 (I5w5) = B)  if I (pf) > B,
an
where @ = 0.02 and 8 = 0.98 are the thresholds. The
weight maps W and Wy_, | are computed for the first frame
and the second frame followed by being warped to the first-
frame using the estimated optical flow.
We apply the dual-exposure feature fusion of Equa-
tion (10), obtaining the fused feature maps F'* and F™ight,

Stereo Disparity Estimation Using the fused feature
maps, we construct correlation volumes C' as

C(z,y,d) = F*"(z,y)  F'®™(z +d,y), (12)

where x,y are the pixel coordinates and d is the dispar-
ity. Our dual-exposure feature fusion encodes both dark
and bright features of dual-exposure stereo images in the
correlation volume, allowing for effectively extended DR
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Figure 6. Extended-DR 3D imaging. Our ADEC controls the dual exposures for extended-DR depth estimation. The dual-exposure depth
estimation module obtains depth both for bright and dark regions which cannot be captured by only one image.

for 3D imaging. We also apply a multi-scale feature fu-
sion approach for robustness. We then estimate a disparity
map from the correlation volume using a disparity estima-
tion network [24]. We finetune the network on our synthetic
dataset (Section 6.2).

6. Stereo Video Datasets

To validate our method, we introduce two stereo video
datasets: one for real-world scenes and the other for syn-
thetic scenes. Figure 5 visualizes samples from our datasets.

6.1. Real-world Dataset

Prototype System We developed an imaging system con-
sisting of stereo RGB cameras (LUCID Triton 5.4MP) and
a LiDAR sensor (Ouster OS-1). The cameras capture linear
stereo images with 24-bit depth, which are then compressed
to simulate 8-bit images using Equation (1) to evaluate
whether our method can expand effective DR for 3D imag-
ing. Note that our method can be applied to cameras with
any bit depth. We performed intrinsic and extrinsic calibra-
tion of the stereo camera system using a chessboard-based
method. Subsequently, we estimated the extrinsic transfor-
mation between the LiDAR and the left camera through ICP
alignment process. LiDAR point clouds are projected onto
the left-camera view, providing pseudo ground-truth sparse
depth maps. The stereo images and LiDAR depth maps
are time-synchronized. We mount the imaging system on a

wheeled robot (AgileX Ranger-Mini 2.0), as shown in Fig-
ure 5(c), enabling both indoor and outdoor captures. We
configured a stereo camera system with a 110 mm baseline
to enable effective depth estimation in both indoor and out-
door environments. The depth measurement range of our
system extends up to 60 meters. For system details, we re-
fer to the Supplementary Document.

Captured Dataset Our real-world dataset encompasses a
broad range of environments and lighting conditions, thus
appropriate for evaluating our method. The dataset includes
33 scenes and 7432 frames, with a resolution of 1440x928
pixels. The dataset is balanced with 41% of frames cap-
tured in indoor scenes, 32% in outdoor scenes, 14% in in-
door low-light scenes, and 13% in outdoor low-light scenes.
Further details are provided in the supplementary material.

6.2. Synthetic Dataset

We use the CARLA simulator [10] to generate a synthetic
dataset for diverse automotive scenarios with varying light-
ing conditions. We render synchronized stereo images with
32 bit depth, which is used to simulate 8-bit images us-
ing Equation (1). We also render ground-truth dense dis-
parity maps. Our synthetic dataset comprises 1,000 train-
ing videos and 200 testing videos. Training videos consist
of 20 frames each, and testing videos contain 100 frames
each. We simulate various lighting conditions (day, dusk,
and night), as shown in Figure 5, which vary within each
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video, introducing abrupt changes in dynamic range due to
environmental effects such as high beams at night, intense
reflections, and sunlight emerging from tunnels Further de-
tails are provided in the Supplementary Material.

7. Experiments

Extended-DR 3D Imaging We leverage complementary
information of two-frame stereo images captured with dual
exposure, which is estimated by our ADEC module. By
fusing dual-exposure features, we obtain accurate disparity
map that preserves details across a wider DR than the native
camera DR. Figure 6 reports the estimated disparity maps
for input dual-exposure stereo images. Our method enables
expanding effective DR for disparity estimation with both
details of dark and bright regions, which cannot be solely
captured with the camera DR.

We assess the trade-off between the depth accuracy
and the DR expansion rate. Compared to the maximum
DRs of 42dB corresponding to 8-bit depth, we calculate
the effectively-enhanced DR covered by the dual-exposure
frames in our method. Figure 7 shows that our method
retains high depth accuracy for the DR expansion rate of
160%, which demonstrates the effectiveness of our method.
In contrast, depth estimation using other state-of-the-art
AEC methods [1, 32, 40] cannot expand the DR, resulting
in large error in depth reconstruction.

Comparison We compare our method with three state-of-
the-art AEC methods that control and process single expo-
sure [1, 32, 40]. We use the RAFT-Stereo model [24] for

NeuralAE GradientAE AverageAE

Ours

(a) Left stereo image (b) Disparity map
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Figure 8. Disparity accuracy using our ADEC compared with
other AEC methods. Our method outperforms the other AEC
methods: AverageAE [1], GradientAE [40], and NeuralAE [32].

their depth estimation. Note that ours is the only method
that combines the principles of AEC and exposure bracket-
ing, which is exploited by our dual-exposure disparity esti-
mation module. Figures 8 and 9 show the qualitative results
on a synthetic scene and a real-world scene, demonstrat-
ing that our method only recovers details in both dark and
bright regions by effectively expanding DR for 3D imaging.
Table 1 confirms that our method also quantitatively outper-
forms the other AEC methods for accurate 3D imaging on
both synthetic and real-world datasets. We also compare the
speeds of AEC methods and our ADEC method considering
its real-time use cases, which is an important factor for any
exposure control methods. Our ADEC can run at more than
120 FPS, supporting real-time applications, while the neural
AEC [32] fails to support real-time imaging.

Ablation Study We evaluate the importance of the three
core components: ADEC module, weighted feature fusion,
and motion compensation. Table 2 and Figure 10 show re-
sults. First, instead of using our ADEC method, we fix
the dual exposure to low and high values respectively us-
ing the average scene statistics. This results in the failure
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AverageAE GradientAE NeuralAE ADEC
[1] [40] [32] (ours)
Synthetic Data
Disp. MAE [px] | 2.823 2.948 2.778 1.355
Real Data
Depth MAE [m] | 2.7679 2.5847 1.9232 1.9142
FPS? 616.27 42.10 0.25 124.58

Table 1. 3D imaging accuracy and FPS comparison of our
ADEC against other methods. Our method outperforms the
other AEC methods in terms of disparity and depth MAE on syn-
thetic and real datasets, respectively. We also compare FPS. Best
numbers are in bold and the second best are in underline.

of adaptation to varying scene DR, leading to high disparity
error. Second, we exclude the weighted fusion in our dual-
exposure disparity estimation: we set the weight maps to be
one for all pixels: W7 = 1. The resulting fused features are
affected by unstable features from under- or over-exposed
features, leading to disparity error. Third, we omit the mo-
tion compensation: the optical flow is set to be zero in our
depth estimation process. This results in significant mis-
alignment errors in the fused feature, making the disparity
accuracy low. Our complete method enables highest accu-
racy.

Weighted Motion Disparity
ADEC fusion compensation | MAE [px]|
X v v 6.2775
v X v 3.3968
v v X 8.3657
v v v 2.9010

Table 2. Ablation study.
8. Conclusion

In this work, we introduce a dual exposure stereo for ex-
tended DR 3D imaging. We devise a ADEC module and
dual-exposure depth estimation method, expanding the ef-
fective DR for robust 3D imaging. To validate this method,
we report a stereo video dataset consisting of stereo videos
and LiDAR pointclouds, collected by our robot vision sys-
tem. We evaluate the effectiveness of our method, out-
performing conventional AEC methods across all experi-
mental settings we tested. As a method that can expand
the DR of any stereo camera for 3D imaging, we hope the
proposed approach can be a step to depth imaging in even
more extreme lighting and enviromental conditions, includ-
ing photon-starved captures in fog, rain, or snow.
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1. Details on Image Formation
1.1. Image Preprocessing

We develop a comprehensive image pre-processing pipeline. This section provides a detailed description of the pre-processing
steps, including data handling, Bayer to RGB conversion, bilateral filtering, and stereo rectification.

Conversion from Bayer to RGB The raw Bayer images are first converted into 32-bit Bayer patterns, packing three 8-bit
channels into a 32-bit representation. This representation is crucial for preserving the full dynamic range of the raw image
data. Since the camera stores RAW image data in a custom 24-bit format, standard OpenCV functions cannot be directly
applied for Debayering. To address this, we implemented a bilinear interpolation-based Debayering method. This approach
reconstructs the red, green, and blue channels by interpolating the Bayer pattern, ensuring minimal color distortion. After
interpolation, OpenCV’s cvt Color function is used to convert the interpolated Bayer image into a standard RGB format.

Bilateral Filtering To reduce grid-like artifacts introduced during Bayer to RGB conversion, bilateral filtering is applied
using the OpenCV’s bilateralFilter function. We used a spatial parameter sigmaSpace = 20 and color parameter
sigmaColor = 20 to maintain a balance between smoothing and edge retention.

Stereo Image Rectification Accurate stereo rectification is essential for consistent disparity calculation. Using calibra-
tion data, we rectified the left and right images to align their epipolar lines. The calibration data includes intrinsic ma-
trices, distortion coefficients, rotation, and translation parameters. Stereo rectification was performed using OpenCV’s
stereoRectify and initUndistortRectifyMap functions. During rectification, the alpha parameter was set
to 0, ensuring no blank regions were left in the rectified images by cropping areas outside the valid region. This approach
produces rectified images suitable for disparity estimation with minimized distortions and artifacts.

Pipeline Overview The pre-processing pipeline combines raw data loading, Bayer to RGB conversion, bilateral filtering,
stereo rectification, and tensor conversion. These steps collectively enhance image quality and geometric consistency, en-
abling accurate and robust disparity estimation in subsequent stages of the pipeline. A diagram summarizing the pipeline is
presented in Figure 1.
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Figure 1. Image Pre-Processing Pipeline. The pipeline includes (1) loading raw Bayer data, (2) converting 24-bit raw Bayer patterns to
32-bit Bayer format, (3) performing debayering with custom bilinear interpolation and OpenCV color conversion, (4) applying bilateral
filtering to reduce grid-like artifact, (5) rectifying stereo images using calibration parameters. This pipeline ensures high-quality and
geometrically consistent inputs for disparity estimation.

1.2. Image Formation

To simulate dual-exposure stereo image captures, we model the image formation process using exposure settings and the
incident scene radiance. This process is critical for accurately simulating the captured intensity values generated under
various exposures. The procedure is formalized in Equation (2) and implemented in our pipeline.

Exposure Modeling We denote the exposure for each frame as e;, where ¢ € {1, 2} alternates for consecutive frames. The

exposure is converted to shutter time ¢; and gain g; as follows:
€; €;

ti=—, g;=max(l,—), M

gi max

where ¢ 1s the maximum allowable shutter time. This formulation ensures the longest possible shutter time is used to
minimize noise, while higher gains compensate for cases where e; > #p,x.

Noise Modeling and Clipping Given the incident scene radiance ®;, the intensity captured by camera ¢ € {left, right} at

pixel p§ is modeled as:
pre

I£(p§) = quant (clip (g:(®it; +nl™) + ng‘m)) , )

pre
7

post

where n; ~ and n;

are pre-gain and post-gain noise terms, respectively, sampled from zero-mean Gaussian distributions:
pre post
ny . ~N(0,0pe), 15~ N(0, 0post)-

The clip(-) function limits the intensity values within the dynamic range of the camera, defined by the bounds [®iower, Pupper]s
and quant(-) quantizes the intensity values to discrete levels.



Dynamic Range Clipping The simulation pipeline begins by applying the exposure settings to the reference scene radiance

®,, followed by noise modeling and dynamic range clipping. This process ensures that the simulated captured intensity values

are consistent with the physical limitations of a camera’s dynamic range.

* Dynamic Range Initialization. Given the scene radiance ®;, the dynamic range bounds are computed based on its distri-
bution. The midpoint of the radiance, ®;qqie, is defined as:

max(q)i).

Didale = 5

To determine the span of the dynamic range, we calculate an interval:

) range — 1
interval = @ iqde - g77
range + 1

where range = 8 is a predefined parameter. The lower and upper bounds for the dynamic range are expressed as:
Piower = Priddle — interval, (I)upper = ®pigqie + interval.

* Dynamic Range Clipping. The radiance values after exposure modeling and noise addition are clipped within the defined
bounds:
(blower < gi(@iti + nfre) + nlimbt < (bupper-

Captured Intensity Simulation To normalize the captured intensity values to the camera’s range [0, 1], the clipped inten-
sity is processed as:
C ey L) —min(If ()
peapared P ma(17(p5)) — min(7¢ (7))

(3

Quantization Quantization is a critical step in the image formation model, simulating the limited bit depth of real-world
cameras by mapping scene radiance values to discrete intensity levels. This process involves scaling, clamping, and rounding
intensity values to match the resolution of the target camera system, typically 8 bits. To achieve this, we use a quantization
function defined as:

round (clip(z - (2% — 1)))
28 — 1 '
Here, the clip(-) operation restricts the intensity values to the valid dynamic range, and the round(-) operation maps the

scaled values to the nearest discrete level. This approach ensures that the simulated intensity values align with the physical
constraints of stereo cameras while maintaining compatibility with captured image formats.

quant(z) = (3)

Straight-Through Estimator (STE) for Backpropagation To preserve gradient flow during training, the Straight-Through
Estimator (STE) framework is employed for the quantization step. STE approximates the quantization operation as an iden-
tity function during the backward pass, effectively bypassing its non-differentiable nature. The gradient of the quantized
intensity ;""" with respect to the scaled intensity I{** is expressed as:

quant
I

o Iscaled ~ (4)

This approximation ensures that the quantization operation does not hinder the optimization process, allowing seamless end-
to-end training of the model. By combining quantization with STE, the image formation pipeline effectively replicates the
behavior of real-world cameras while remaining fully differentiable.

2. Experimental Prototype

2.1. Device Part List

Our imaging system consists of a stereo camera, a mobile robot platform, a PC and a 3D LiDAR sensor. The components are
selected and configured to ensure synchronized data capture and geometric consistency across diverse environments:



Item # | Part description | Quantity | Model name
1 RGB Camera 2 LUCID Triton TRI054S-CC

2 Objective lens 2 Edmund Optics #33-307
3 Mobile Platform 1 AgileX Ranger-Mini 2.0
4 LiDAR 1 Ouster OS-1 128

5 PC 1 ASUS Rog Zephyrus G14

Table 1. Part list of out imaging system.

* Stereo Cameras: Two LUCID Triton 5.4MP cameras (TRI054S-CC) capture 24-bit linear RAW Bayer color images. The
cameras are connected via Ethernet and synchronized using the Precise Time Protocol (PTP), achieving sub-millisecond
shutter synchronization. For exposure setting at 10 ms with a gain of 1.0, this configuration achieves up to 120 dB of
dynamic range in daytime scenes.

* Mobile Platform: To capture images in diverse real-world environments, we employed the AgileX Ranger-Mini 2.0,
a robust four-wheel robot capable of traversing challenging terrains, including urban streets, pedestrian walkways, and
indoor environments.

* LiDAR Sensor: The Ouster OS-1 3D LiDAR sensor provides geometric data with 128 vertical beams, a maximum detec-
tion range of 200 meters, and up to 2048 samples per rotation at 20 Hz. The LiDAR’s output resolution reaches 2048 x 128,
offering precise depth data. The LiDAR is aligned with the left stereo camera to generate sparse depth maps for the left
camera view.

2.2. Image Acquisition Pipeline

Our system is designed to capture synchronized stereo and LiDAR data in real-time. The acquisition process is split into two

parallel loops:

1. Stereo Image Capture: The stereo cameras operate at a fixed frame rate of 5 FPS, capturing synchronized frames as 24-
bit HDR images saved in . npy format. The cameras are triggered simultaneously at the start of each sequence, ensuring
precise temporal alignment.

2. LiDAR Data Capture: The LiDAR sensor scans the environment continuously, sending acknowledgments (ACKs) for
each frame. If a corresponding stereo frame is captured within 50 milliseconds of the LiDAR frame, the system associates
the two, creating a single synchronized data frame.

This pipeline ensures that stereo intensity data and LiDAR measurements are aligned, enabling robust integration for depth

estimation and scene analysis.

2.3. Calibration details

Geometric Calibration Geometric calibration is performed to align the stereo camera and LiDAR sensor. The calibration

parameters include:

 Stereo Cameras: Intrinsic matrices (focal length, principal point), distortion coefficients, and extrinsic parameters (rotation
and translation) are computed using a checkerboard pattern with OpenCV.

* LiDAR-Camera Alignment: The extrinsic transformation matrix between the LiDAR and the left camera is calculated to
project LIDAR points onto the left camera’s image plane, using the camera’s intrinsic matrix.

Radiometric Calibration To ensure consistent intensity measurements across stereo images, the camera settings (exposure
and gain) are fixed, and intensity normalization is applied to compensate for sensor sensitivity differences. This step is critical
for maintaining accurate depth alignment between the stereo cameras and LiDAR.

Calibration Dataset The calibration process uses 50 checkerboard images captured across various distances and angles to
optimize the stereo rectification and LiDAR alignment. Reprojection error analysis confirms the geometric accuracy of the
calibration parameters.



3. Datasets
3.1. Stereo Real Video Dataset

The dataset was captured using our stereo camera system described in main paper Section3, equipped with two LUCID Triton
5.4MP cameras for synchronized stereo imaging. Each stereo frame is accompanied by corresponding LiDAR ground truth
data captured using an Ouster OS-1 3D LiDAR sensor. Figure 2 illustrates sample stereo image pairs from the dataset, along
with their corresponding ground truth LiDAR points projected onto the left camera view. The stereo images showcase the
variety of environments and lighting conditions present in the dataset. The LiDAR ground truth highlights the sparse yet
accurate depth information used for evaluation.

Left images Right images

0 30[m]

Figure 2. Visualization of Real Dataset Samples. Examples of dual-exposure stereo images and their corresponding LiDAR ground-truth
depth maps from the captured real-world dataset. The top two rows represent indoor scenes, while the bottom two rows represent outdoor
scenes. The LiDAR GT depth maps demonstrate the variability in point density and accuracy across different environments.



CARLA simulator Synthetic stereo video dataset acquisition pipeline
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Figure 3. Overview of the synthetic stereo video dataset acquisition pipeline. With specific environmental settings on CARLA simulator
to generate adverse lighting conditions, the equipped RGB cameras capture images to reconstruct HDR scenes and the depth cameras create
corresponding ground truth disparity maps.

3.2. Stereo Synthetic Video Dataset

We use the CARLA driving simulator [2] to generate a synthetic video dataset that supports training and testing of dual-
exposure stereo depth estimation in diverse automotive scenarios. Our synthetic dataset is specifically configured to capture
extreme lighting scenes to simulate real-world dynamic range challenges. To simulate stereo imaging, we configured the
CARLA environment with virtual side-by-side mounted RGB-D cameras to capture synchronized stereo image pairs at
1280384 resolution. Each virtual RGB camera captures full 32-bit stereo images using multi-exposure imaging [8], while
the depth camera generates a dense ground truth depth map for each frame. Hereby, the setup generates ground-truth depth
maps, ground-truth disparity maps, and stereo calibration data alongside stereo images, enabling the creation of a compre-
hensive dataset with precise geometry and calibration details consistently across diverse driving scenarios.

Dataset Acquisition Pipeline Figure 3 shows an overview of our stereo synthetic video dataset acquisition pipeline. In
our CARLA simulator ego-vehicle’s capture setup, stereo RGB cameras and paired depth cameras—each with a resolution
of 1280x384 pixels, a horizontal field of view of 75 degrees, and a fixed frame rate of 10 FPS—are mounted side by side
on the bonnet of the test vehicle, with a baseline of 0.4 m. Refer to Table 2 for the sensor configuration details. Since
the CARLA itself does not offer real-time HDR rendering, a primary process is required to reconstruct HDR images from
the rendered RGB images. In each time frame, stereo RGB cameras capture images with eight different exposure times
t € {5 (sec) | n € {1,2,...,8}} while fixed ISO = 200 and aperture size f/1.4 in day time and dusk time. For night
time, on the other hand, exposure times are given as t € { =3 (sec) | n € {1,2,...,8}} with fixed ISO = 1,600 and aperture
size f/1.4. Here, daytime is defined as the period when the solar altitude satisfies o > 3°, and dusk is defined as the period
when the solar altitude satisfies —3° < o < 3°. Night time is the complement of these periods, corresponding to the range
where o < —3°. Then, with multi-exposure HDR reconstruction [8], we obtain 32-bit stereo images for each frame of
the scenario. Note that there are no motion artifacts between multi-exposure frames within a single time step of a dynamic
automotive scene, as all RGB images are synchronously captured by virtual RGB cameras in the CARLA simulator. This
eliminates the risk of failure in exposure bracketing-based HDR reconstruction for dynamic scenes, which would otherwise
require addressing using various de-ghosting approaches [5, 9, 10]. Meanwhile, the depth camera captures the ground truth
depth map up to 1,000m. As the CARLA provides depth information with 24-bit floating-point precision encoded across the
three channels of the RGB color space, it is decoded to reconstruct the plain depth map in meters. We also compute disparity
map from ground-truth depth map using stereo calibration parameters, here by acquiring the ground-truth value for disparity.
In specific, given a pair of rectified stereo depth maps with depth z,, focal length f and baseline B, the disparity d in the



Sensor Type | Sensor Count | Output Shape | Configuration

RGB camera 8 R3*384x1280 | 1 eft, [SO = 200(Day, Dusk) / 1600(Night), f/1.4, FOV = 75°
RGB camera 8 R3*384x1280 | Right, ISO = 200(Day, Dusk) / 1600(Night), f/1.4, FOV = 75°
Depth sensor 1 R1x384x1280 | [ eft, FOV = 75°

Depth sensor 1 R1x384x1280 | Rijght, FOV = 75°

Table 2. List of sensors used for CARLA simulator ego-vehicle’s capture setup. Here, ISO is configured based on the temporal
condition. Four categories of sensors are mounted at z = 2.5m, y = £0.2m, z = 1.4 m with respect to the ego-vehicle’s centroid. Note
that the given coordinates follow the left-handed coordinate system in Unreal Engine 4.

Modality ‘ Shape ‘ Description

HDR image R3x384x1280 | A pair of left and right, 32-bit float

Depth map R1X384x1280 | A pair of left and right, up to 1,000m

Disparity map R1x384x1280 | A pair of left and right, computed from depth map
Intrinsic camera parameters R3%3 Shared between the left and right views

Extrinsic camera parameters R4x4 A pair of left and right

Table 3. Dataset composition for a single frame in a stereo synthetic video dataset. Each modality, its dimensions, and additional
details are outlined.

(b) Dataset thumbnails with diverse driving
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Baseline Extended Baseline Extended Baseline Extended Baseline Extended

2]

o

[0

S

>

S

H
Test Urban Suburban Night Dusk :Efrezgc?: _Nrj::]r;l light
Training Rural Highway Day Complex

(b) Dataset scene label statistics

Figure 4. Synthetic stereo video datasets (a) Sample tone-mapped thumbnails with diverse driving environments. (b) Dataset scene label
statistics for two versions of datasets.

corresponding pixel is calculated using f > B As aresult, pairs of 32-bit stereo RGB images, depth maps, disparity maps, and
stereo calibration parameters (both intrinsic and extrinsic) compose a single frame of a video in the stereo synthetic video
dataset, see Table 3. Additionally, by leveraging CARLA’s support for simulating diverse driving environments, both training
and testing videos are selectively retrieved from the simulation, introducing abrupt changes in dynamic range and thereby
reflecting real-world dynamic range challenges.

Dataset Details and Statistics Our synthetic dataset comprises 1,000 training videos and 200 testing videos, each designed
to introduce dynamic range challenges across various driving conditions. Training scenarios comprise 20 consecutive stereo
frames, and test scenarios contain 100 consecutive stereo frames. Scenarios represent a wide range of lighting conditions
(day, dusk, and night), with distributions of approximately 50% at night, 30% during the day, and 20% at dusk. The driving
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Figure 5. Extended synthetic stereo video datasets. The bottom two rows depict LiDAR point clouds and 3D bounding boxes projected
onto the tone-mapped stereo HDR images. To ensure consistency across different modalities, both the depth and LiDAR maps share the
same color bar, while the disparity map is shown after normalization.

locations include urban and suburban areas, rural areas, and highways. Each video presents challenging lighting conditions
induced by various environmental factors, categorized into four major types: the vehicle’s headlights at night, intense reflec-
tions from highly reflective surfaces (such as ponds), intense natural lighting, and light passing through tunnels. Figure 4
shows the dataset thumbnails and scene statistics of the synthetic dataset, which includes diverse driving environments.

Extended Dataset for 3D Object Detection To extend the baseline dataset for the vision task of object detection, we
introduce an additional dataset that facilitates both 2D and 3D object detection. Extended dataset consists of 750 driving
videos for training and 150 videos for testing, both adhering to the same specifications and scene diversities as the baseline
dataset, with the addition of two new modalities: (1) LiDAR point clouds, (2) per-frame object detection data annotations.
The virtual LiDAR system is configured to replicate the characteristics of a Velodyne HDL-64E (64 channels, 10Hz revolution
frequency, from —24.8° to 4-2° vertical field of view and 120m maximum range) and mounted along the optical axis of the
left RGB-D camera. The cameras’ exposures are triggered only when the LiDAR has completed its rotation and is aligned
with the optical axis of the left camera, ensuring precise cross-modality alignment between the LiDAR and the stereo RGB-D
cameras. For each object within the left camera’s field of view, we automatically annotate it using 3D bounding boxes in
a format simplified from the KITTI [3] object detection labels. The annotations include fields for class names, truncation,
occlusion state, and bounding box coordinates, all represented in the reference camera’s coordinate system. Specifically, we
provide annotations for three object classes: ‘Vehicle’, ‘Pedestrian’, ‘Traffic Signal’. Figure 5 presents the composition of
the extended dataset, highlighting the time-varying lighting conditions that contribute to challenging lighting conditions for
both depth estimation and object detection.

4. Dual-Exposure Depth Estimation

4.1. Network Architecture

Our dual-exposure depth estimation model extends the RAFT-Stereo framework [4] by incorporating modules for dual-
exposure feature fusion and inter-frame motion compensation. These additions enable the network to effectively utilize
exposure-specific features from dual-exposure stereo inputs, enhancing disparity estimation under high dynamic range con-
ditions.



Network Overview The architecture consists of three primary stages: 1) Optical Flow Estimation, 2) Dual-Exposure Fea-

ture Fusion, and 3) Stereo Depth Estimation. These components are seamlessly integrated into the RAFT-Stereo backbone.

While the backbone’s original disparity estimation modules remain unchanged, modifications were made to handle dual-

exposure inputs and inter-frame alignment:

* Optical Flow Estimation: We introduce a pretrained optical flow network [6] to estimate motion between consecutive
frames for both left and right stereo views. The optical flow enables spatial alignment of the second-frame features to the
first-frame features, addressing temporal motion.

e Dual-Exposure Feature Fusion: A feature fusion module combines aligned features from dual-exposure stereo frames.
This module uses intensity-based weight maps to ensure that well-exposed details from both bright and dark regions are
effectively preserved. The fusion is applied at multiple scales to enhance robustness.

 Stereo Disparity Estimation: The fused features are passed through the RAFT-Stereo backbone to construct correlation
volumes and refine disparity predictions. While the correlation computation and update block follow the original RAFT-
Stereo design, they now operate on fused feature maps containing dual-exposure information.

Summary of Modified Layers Table 4 summarizes the layers and modules where significant modifications were made.
Components such as the correlation volume and update block are inherited directly from the RAFT-Stereo framework and
are not described in detail here.

Module ‘ Input Size ‘ Output Size ‘ Description
[B,3,H,W| [B,2,H,W|
[B,256, H/4,W/4] | [B,256, H/4, W /4]
(B,256, H/4,W/4] | [B,256,H/4, W /4]

Optical Flow Network
Warping Function
Dual-Exposure Fusion

Estimates motion for temporal alignment.
Aligns second-frame features using optical flow.
Combines features from dual-exposure frames using intensity-based weights.

Table 4. Modified Modules in the Proposed Network. The table summarizes the key components added to the RAFT-Stereo backbone
for dual-exposure depth estimation. Input and output sizes are for a batch size of B and image resolution H x W.

Integration with RAFT-Stereo Backbone The proposed modifications are integrated into the RAFT-Stereo backbone
while retaining its core functionality. Optical flow is computed between consecutive stereo frames and used to warp second-
frame features to the first frame. These warped features are then fused with first-frame features using the dual-exposure
feature fusion module. The fused features are passed through the correlation volume computation and update block to
estimate the disparity map. This integration ensures that dual-exposure information is effectively utilized while maintaining
the robustness of the original RAFT-Stereo design.

4.2. Training Details

Data Augmentation and Exposure Simulation To simulate dual-exposure stereo inputs, we generated random exposure
pairs for each training batch using controlled randomization. The exposure values e; and e, for the two frames were generated
as:

es = e; - rand(min_gap, max_gap),

where e1, ez € [272,22] and the gap rand(min_gap, max_gap) was sampled uniformly between 0.5 and 3.0. This exposure
simulation ensures the model is trained across diverse lighting conditions, reflecting real-world variations in dynamic range.

Loss Function For training, we employed the sequence loss function adopted from the original RAFT-Stereo frame-
work [4]. This loss progressively refines disparity predictions over N = 32 iterations, with a decay factor v = 0.9. The
sequence loss is defined as:

N
15 i ~
Eseq = E 7N71(N b Hdl - dgt“lv
=1

where d; represents the predicted disparity at iteration %, and dy is the ground truth disparity. A validity mask filters out invalid
regions and restricts the loss to valid pixels with a maximum disparity threshold of 700. This ensures effective training of
disparity refinement while avoiding the impact of large outliers.
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Training Configuration The training was conducted on four NVIDIA RTX 3090 GPUs with a batch size of 4. The CARLA
synthetic dataset was used to simulate extreme lighting scenarios, providing diverse and challenging conditions for training.
To preserve the robustness of the pretrained RAFT-Stereo model on real-world datasets, only the GRU update block was
fine-tuned during training. All other layers were frozen to retain their existing weights. This targeted fine-tuning strategy
ensured that the network specialized in feature fusion and disparity refinement for dual-exposure inputs, without degrading
its performance on real datasets.

5. Additional Results
5.1. Additional Evaluation on Real Dataset

To further validate our method, we conducted evaluations on real-world scenarios featuring dynamic lighting changes. These
scenarios include both indoor and outdoor environments, emphasizing the robustness of our approach under challenging il-
lumination conditions. The evaluation comprises four distinct scenarios, consisting of approximately 1000 frames in total.
Figure 6 visualizes the results of outdoor scenes, with each row representing a consecutive frame in temporal order, show-
casing the effectiveness of our method in handling dynamic lighting changes across time. Similarly, Figure 7 demonstrates
the results for indoor scenes, where the images also follow a temporal sequence.

Method | AverageAE [I] | GradientAE [|1] | NeuralAE [7] | ADEC (ours)
MAE [m]} | 26142 | 4.1859 | 22869 | @ 2.0251

Table 5. Comparison of MAE across methods. The table highlights the performance of different methods, showing that our approach
(ADEC) achieves the lowest MAE compared to other baselines.
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Figure 6. Disparity-estimation results using our ADEC compared with other AEC methods in outdoor scene Our ADEC method
outperforms the other AEC methods for subsequent extended-DR depth estimation : AverageAE [!], GradientAE [! 1], NeuralAE [7]
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Figure 7. Disparity-estimation results using our ADEC compared with other AEC methods in indoor scene Our ADEC method
outperforms the other AEC methods for subsequent extended-DR depth estimation : AverageAE [!], GradientAE [! 1], NeuralAE [7]

5.2. Additional Evaluation on Synthetic Dataset

We conducted a evaluation of our method on the CARLA synthetic dataset to further demonstrate its robustness under
various exposure and lighting conditions. The comparison includes other single exposure control methods : AverageAE [1],
GradientAE [!1], and NeuralAE [7] finetuned using the original RAFT-Stereo framework on the our CARLA synthetic
dataset. This ensures a fair comparison between our dual-exposure control approach and existing single-exposure control
methods. Figure 8 illustrates qualitative results comparing disparity maps generated by each method. The dataset includes
diverse scenarios, such as high-contrast outdoor environments and challenging low-light conditions. For each method, we
show the left image input, the predicted disparity map, and the corresponding ground-truth disparity.
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Figure 8. Disparity-estimation results using our ADEC compared with other AEC methods Our ADEC method outperforms the other
AEC methods for subsequent extended-DR depth estimation : AverageAE [1], GradientAE [11], Neural AE [7].

5.3. Additional Ablation Experiments

We conducted additional ablation studies focusing on the exposure control module to evaluate its impact on performance. The
results are presented both quantitatively and qualitatively through Table 6 and Figures 9, 10, and 11. Each figure visualizes
the ablation results by comparing the baseline and ablation models across time steps. For each time step, the visualizations
include dual-exposure stereo images, pixel intensity histograms, and disparity maps.
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Experiment | Exposure Gap ‘ Exposure Increase Rate | Initial Exposure Values | Disparity MAE [px]|

Baseline 2.5 Baseline Equal 2.7452
Ablation 1 1.5 Baseline Equal 2.8759
Ablation 2 2.5 Reduced Equal 2.7634
Ablation 3 2.5 Baseline Unequal 3.2522

Table 6. Ablation study on exposure control parameters. The table presents the disparity MAE for different ablation settings, focusing
on exposure gap, exposure increase rate, and initial exposure values. The baseline uses an exposure gap of 2.5, baseline increase rate, and
equal initial exposure values, achieving the lowest MAE.

Exposure Gap Configuration In Figure 9, we evaluate the effect of different exposure gap configurations. While the
baseline model gradually increases the exposure gap, the ablation model fails to widen the gap significantly after a certain
point. This results in difficulty capturing sufficient details, particularly in high-contrast regions, compared to the baseline
model.

Exposure Increase Rate In Figure 10 demonstrates the impact of modifying the scaling factor for determining the next
exposure value, referred to as the exposure increase rate. Compared to the baseline model, the ablation model does not
achieve a sufficiently large exposure gap in the initial time steps. As a result, the baseline model captures more details in
critical regions at earlier time steps, while the ablation model struggles to do so.

Initial Exposure Values In Figure 11, we analyze the effect of setting different initial exposure values for dual-exposure
frames. In the baseline model, both exposures start at the same value, while in the ablation model, one frame starts with a
higher exposure and the other with a lower one. Although the ablation model benefits from a pre-established exposure gap in
the first time step, the baseline model eventually outperforms it by securing more consistent details as the time steps progress.

These results illustrate how variations in exposure gap configuration, exposure increase rate, and initial exposure settings
influence the ability of the model to capture and preserve sufficient detail across dynamic scenes. The figures highlight the
importance of a well-balanced exposure control strategy for robust disparity estimation.

15
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Figure 9. Impact of exposure gap settings on disparity estimation. This figure illustrates the effect of varying the exposure gap during
dual-exposure control. The baseline model (exposure gap = 2.5) captures sufficient details over time, whereas the ablation model (exposure
gap = 1.5) struggles to widen the exposure gap further, resulting in insufficient detail capture in challenging lighting conditions. Each time
step showcases the dual-exposure stereo images, pixel intensity histograms, and disparity maps.
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Figure 10. Impact of exposure increase rate on disparity estimation. This figure demonstrates the effect of modifying the exposure
increase rate during dual-exposure control. The baseline model, with its default increase rate, quickly expands the exposure gap in the initial
time steps, enabling effective detail capture. In contrast, the ablation model, with a reduced increase rate, shows slower gap expansion,
leading to less effective detail capture in the early time steps. Each time step visualizes the dual-exposure stereo images, pixel intensity
histograms, and disparity maps.
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Figure 11. Impact of initial exposure settings on disparity estimation. This figure compares baseline and ablation models with different
initial exposures. The baseline model uses equal exposures, ensuring consistent detail capture over time. The ablation model starts with
unequal exposures, capturing more detail initially but losing balance in later time steps.
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6. Additional Discussion
6.1. Motion blur in dataset acquisition

While our method demonstrates significant improvements in disparity estimation under challenging lighting conditions, it
is not without limitations. One key challenge arises during dataset acquisition, particularly when the stereo cameras are
mounted on a mobile robot. Despite careful synchronization of the stereo cameras, as described in Section 2, motion blur
can occur in consecutive frames if the mobile robot experiences sharp rotations or vibrations during movement. This motion
blur, even in a single frame, can adversely affect our dual-exposure disparity estimation pipeline.

Figure 12 illustrates an example of this limitation. (a) shows a sample captured from our dataset, where one of the frames
exhibits motion blur due to the robot’s movement. (b) compares disparity maps generated by different methods for this scene.
The results indicate that our method is particularly sensitive to motion blur, as it relies on the effective fusion of details
from consecutive frames. The blurred frame reduces the accuracy of feature alignment and fusion, ultimately impacting the
disparity estimation.

To address the limitations posed by motion blur, several strategies can be explored. First, robust feature extraction tech-
niques could be employed to reduce the sensitivity to motion blur. This could include pre-processing steps such as deblurring
algorithms or using motion-compensated encoders to improve the quality of extracted features. Second, frames affected by
severe motion blur can be automatically detected and excluded from training or evaluation using motion blur detection al-
gorithms that analyze temporal or spatial gradients. Lastly, employing higher frame rate cameras during dataset acquisition
could significantly reduce motion blur by capturing images at shorter time intervals, thereby improving the alignment and
fusion of stereo features in our pipeline. These solutions offer promising directions to enhance the robustness of our method
against motion blur while maintaining its effectiveness in challenging scenarios. Future work will focus on implementing
these strategies to further enhance the robustness of our method in dynamic real-world scenarios.
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Figure 12. Impact of Motion Blur on Disparity Estimation. (a) An example of motion blur in one frame due to robot movement during
dataset acquisition. (b) Disparity maps generated by different methods for the same scene, showing the sensitivity of our method to motion

blur.

6.2. Challenges with LiDAR points in outdoor scenarios

Despite the benefits of using LiDAR data as ground-truth for disparity estimation, challenges arise when capturing outdoor
scenes, particularly under adverse weather conditions. Unlike indoor scenes where LiDAR points are densely distributed,
outdoor environments often result in sparser point measurements due to various factors. For instance, as shown in Figure 13,
outdoor scenes with wet ground caused by rain introduce significant inaccuracies in the LiDAR data. The reflective nature
of the wet surface can disrupt the LiDAR signal, leading to incomplete or noisy point measurements. This limitation inhibit
the generation of accurate ground-truth disparity maps, especially in regions where the surface is wet or reflective. Figure 13
illustrates this issue, where (a) depicts the dual-exposure stereo images of indoor and outdoor scenes, (b) visualizes the
disparity map generated by our method, and (c) shows the corresponding LiDAR points. The difference in point density
between indoor and outdoor scenes is particularly evident, highlighting the limitations of LiDAR under specific conditions.

20



Indoor

Qutdoor

(a) Dual-exposure stereo images (b) Disparity map (c) LIDAR (GT)

Figure 13. Challenges with LiDAR Points in Indoor and Outdoor Scenarios. (a) Dual-exposure stereo images for indoor and outdoor
scenes. (b) Disparity maps generated by our method, showing accurate reconstruction for indoor and outdoor scenes (c) LIDAR ground-
truth points, illustrating the variation in point density between indoor and outdoor scenes, particularly on wet ground in the outdoor
scenario.

6.3. Initial Exposure Setting

The initial exposure setting plays a critical role in the performance of dual-exposure disparity estimation. Our exposure
control mechanism increases the exposure gap when the scene is determined to have a wide dynamic range, up to a predefined
exposure gap. Once this gap is reached, the control mechanism maintains the exposure gap as long as the scene continues to
exhibit a wide dynamic range. However, the specific exposure values at which this gap is maintained can vary depending on
the initial exposure setting and scene characteristics.

As shown in Figure 11, when the initial exposures are set to unequal values, the ablation model captures more detail in the
first time step due to the larger exposure gap. However, as the exposure gap stabilizes, the model struggles to maintain optimal
detail capture, resulting in suboptimal performance compared to the baseline model, which starts with equal exposures. This
is particularly evident in scenarios where maintaining the exposure gap is insufficient to fully capture the details of both
bright and dark regions.

This observation highlights the importance of carefully selecting the initial exposure setting to balance detail capture
across the entire dynamic range of the scene. Future work could focus on adaptive initialization strategies tailored to the
scene’s characteristics to improve robustness and consistency.
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