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Supplementary Note 1. Details on meta-optic design 44 
 45 
For all meta-optics designed in this work we used a square SiN post scatterer of ~ 800 nm height 46 
with a period of 350 nm. Phase delay and transmission as function of scatterer size were 47 
calculated using rigorous coupled wave analysis (RCWA), using S4.(1) The phase and 48 
transmission response of the scatterer is shown in Figure S1. For the meta-optics we considered 49 
only scatterer which achieved high transmission of > 90 % over a larger spectral range, while 50 
avoiding resonances. 51 

 52 
Supplementary Figure 1. Phase and Transmission response of scatterers for the wavelength 53 
range 400 nm – 700 nm.  54 
 55 
 56 
 57 
EDOF design  58 
 59 
The metalens design of the main text was first based on an optimization of a symmetric phase 60 
profile using a dense sampling of wavelengths. In restricting the 1 centimeter diameter to a radially 61 
symmetric function, we dramatically reduce the memory requirements to simulate the design. 62 
Additionally, instead of computing the full point spread function for every iteration, we instead only 63 
compute the intensity at the focal spot, which acts as a useful proxy to concentrate power within 64 
a confined spatial location, and which we find is sufficient for enhancing MTF while mitigating 65 
computational requirements for the optimization. Our implementation uses the Rayleigh-66 
Sommerfeld diffraction integral, exploiting the radial symmetry of the lens and the fact that the 67 
observation points in the integral are located only at the desired focal spot. This enables us to 68 
optimize for a dense sampling of 2000 wavelengths simultaneously without exceeding the 69 
memory requirements of our workstation, which used a V100 GPU. 70 
 71 
To perform the optimization, we implemented the Rayleigh-Sommerfeld diffraction integral below 72 
in TensorFlow 73 
 74 
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where the primed variables denote the source field coordinates (i.e., positions within the 76 
metasurface aperture), and the unprimed variables represent the positions of the observation 77 
points or on the destination plane. 𝑟 is defined in the typical manner as below 78 
 79 

𝑟 = ඥ(𝑥 − 𝑥ᇱ)ଶ + (𝑦 − 𝑦ᇱ)ଶ + 𝑧ଶ 80 
 81 
In our case, as 𝑥 = 0 and 𝑦 = 0 for the on axis focal spot, and as the source field is radially 82 
symmetric, we can simplify 𝑟 as below: 83 
 84 

𝑟 = ඥ𝑟ᇱଶ + 𝑧ଶ 85 
and rewrite the integral as 86 
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 88 

where 𝐸௭ denotes the electric field on axis at a distance 𝑧 from the origin along the z axis. Here, 89 
the integral becomes computationally far simpler as the 2-D integral is now a 1-D integral. We 90 
implement this in TensorFlow to enable gradient calculation via automatic differentiation, 91 
employing the Adam algorithm with a learning rate of 0.005. Our loss function is specified as 92 
 93 

𝐿𝑜𝑠𝑠 =  − min
୧

|𝐸|ଶ 94 

where 𝐸 denotes the electric field at the focal point for the ith wavelength in the simulation. In our 95 
case, we optimized over 2000 wavelengths sampled between 450 nm and 650 nm. The loss 96 
function here serves to enhance the focal intensity of the least intense wavelength, having the 97 
effect of reducing the worst case performance across the wavelength band. The focal intensity in 98 
arbitrary intensity units after optimization of the 1 centimeter lens is shown in the Figure below. 99 
 100 

Supplementary Figure 2: The optimized focal intensity as a function of wavelength is shown. 101 
While there are several intensity peaks scattered across the 450-650 nm band, all the 102 



wavelengths in that range achieve a minimum threshold intensity as a result of the defined loss 103 
function.  104 



End-to-end designs  105 
 106 
We require the end-to-end designed meta-optic to achieve the desired phase modulation at all 107 
visible wavelengths to design a broadband imaging lens. To this end, we build on the radially 108 
symmetric EDOF model described earlier and model the light propagation through metalenses 109 
with silicon nitride rectangular nanopillars and optimize the duty cycle (i.e., the width) of the nano-110 
antennas. In a local neighborhood of these nano-antennas, we simulate the phase for a given 111 
duty cycle using rigorous-coupled wave analysis (RCWA), which is a Fourier-domain method that 112 
solves Maxwell's equations efficiently for periodic dielectric structures. We characterize 113 
metalenses with their local phase, which we tie to the structure parameters, i.e., the duty cycle, 114 
via a differentiable proxy model mapping the nanopillar structures to the resultant phase 115 
modulation. Since the phase is defined only for a single nominal design wavelength, we apply two 116 
operations in sequence at each scatterer position in our metasurface: 1) a phase-to-structure 117 
inverse mapping to compute the scatterer geometry at the design wavelength for a given phase 118 
and 2) a structure-to-phase forward mapping to calculate the phase at other target wavelengths 119 
given a scatterer geometry. To allow for direct optimization of the metasurface phase, we model 120 
both the above operators as polynomials to ensure differentiability, which we describe below. The 121 
end-to-end design pipeline is illustrated in Figure S3. 122 
 123 

 124 
Supplementary Figure 3. End-to-end design pipeline.  125 
 126 
RCWA proxy for mapping phase and nano-scatterers 127 
We first describe the scatterer geometry with the duty cycle of nano-antennas and analyze its 128 
modulation properties using rigorous coupled-wave analysis (RCWA). To achieve a differentiable 129 
mapping from phase to duty cycle, the phase as a function of duty cycle of the nano-antennas 130 
must be injective. Therefore, we fit the phase data of the metalens at a nominal design wavelength 131 
of 452nm to a polynomial proxy function of the form: 132 
 133 
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 135 
where d(r) is the required duty cycle at a position r from the optical axis on the metasurface, 𝜙(𝑟) 136 
is the desired phase for the nominal wavelength and the parameters 𝑎 are fitted based on the 137 
RCWA analysis.  138 
 139 
During the iterative optimization, we first apply the above phase-to-scatterer inverse mapping to 140 
determine the required duty cycle of the physical structure. Once the scatterer geometry is 141 
determined at the nominal wavelength, we then compute the resulting phase from the given 142 
scatterer geometry for other wavelengths using a second proxy function that maps scatterer 143 
geometry to phase. This forward mapping function maps a combination of the nano-antenna duty 144 
cycle and incident wavelength to an imparted phase delay. We model this proxy function by fitting 145 
the pre-computed transmission coefficient of scatterers under an effective index approximation to 146 
a radially symmetric second-order polynomial function of the form: 147 
 148 

ϕ෩(𝑟, λ) =   𝑏𝑑(𝑟)λ
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where 𝜆 is a non-nominal wavelength. Specifically, we compute the transmission coefficient data 150 
using RCWA and then fit the polynomial to the underlying RCWA-computed transmission 151 
coefficient data using linear least squares. 152 
 153 
With the metalens phase and the inverse (phase to duty cycle) and forward (duty cycle to phase) 154 
mapping operators, we compute the phase modulation for broadband incident light. Using a fast 155 
Fourier transform (FFT) based band-limited angular spectrum method (ASM), we calculate the 156 
PSFs produced by the metalens as a function of wavelength to model full-color image formation. 157 
The PSF produced by the metalens for an incident beam of wavelength 𝜆 is computed as  158 
 159 

PSFλ = 𝑓ௌெ(ϕ(𝑟), λ, 𝐶௧) 160 
 161 
where 𝜙(𝑟) is the optimizable radially symmetric metasurface phase and 𝐶௧ are the set of fixed 162 
parameters such as aperture and focal length of the metalens, and mapping proxy function 163 
coefficients, and 𝑓ௌெ(. ) is the angular spectrum method implemented as a differentiable 164 
propagation function that generates the PSF for a given metasurface phase. Finally, the RGB 165 
image on the sensor plane is computed as  166 
 167 

𝑆 = 𝐼 ⊗ 𝑃𝑆𝐹 + ηୱୣ୬ୱ୭୰ 168 
 169 
where ⊗ is a convolution operator, 𝑰 is the groundtruth RGB image, and 𝜂௦௦ is the sensor 170 
noise modeled as a per-pixel Gaussian-Poisson noise. Note that, for an input image 𝑥 ∈ [0,1] at 171 
a sensor pixel location, the measured noisy image on the sensor 𝑓௦௦(𝑥) is given by: 172 
 173 

𝑓௦௦(𝑥) = η൫0, σ൯ + η൫𝑥, 𝑎൯ 174 

 175 



where η൫0, σ൯ ∼ 𝒩൫0, σ
ଶ൯ is the Gaussian noise component and η൫𝑥, 𝑎൯ ∼ 𝒫൫𝑥/𝑎൯ is the 176 

Poisson noise component. 177 
 178 
With a measurement 𝑆 as input, we recover the underlying image as 179 
 180 

𝐼ሚ = 𝑓ௗ௩(𝑆, 𝑃𝑆𝐹, 𝐶ௗ௩) 181 
 182 
where 𝐶ௗ௩ are the fixed parameters of our deconvolution method. To make the lens design 183 
process efficient both in terms of memory and compute, we employ a Wiener inverse filtering 184 
method in the design phase which is computed in one step and does not require any training like 185 
in neural network based methods.(2) However, note that after the meta-optic is designed and 186 
housed in the camera, we employ a computational image recovery backend for reconstructing 187 
high-fidelity images from the sensor measurements. 188 
 189 
With the above synthetic metalens image formation model, we apply first-order stochastic gradient 190 
optimization to optimize for the metalens phases that minimize the error between the ground truth 191 
and recovered images. Specifically, we minimize the per-pixel mean squared error and maximize 192 
the perceptual image quality between the target image 𝐼 and the recovered image 𝐼ሚ as follows: 193 
 194 
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 196 
where 𝑇 is the total number of training image samples used for the metalens phase optimization 197 
and ℒ is the loss function used for the optimization given by 198 
 199 

ℒ = ℒெௌா + ℒூௌ 200 
 201 
which is a combination of per-pixel mean-squared error and learned perceptual image patch 202 
similarity (PIPS) metric(3).  203 
 204 
We used the Adam optimizer with a learning rate of 0.001 running for 2 days to optimize for the 205 
meta-optic phase. Our optimizer was initialized with the EDOF metalens phase described in the 206 
previous section. Given the large compute overhead for simulating the meta-optic of 1cm 207 
diameter, instead of simulating the responses for the entire broadband spectrum at once for every 208 
iteration similar to the EDOF design approach, we sampled three wavelengths randomly from a 209 
pre-computed set of wavelengths discretized in intervals of 50 nm over the visible range for every 210 
100 iterations.  211 
 212 
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Supplementary Note 2. Meta-optic fabrication 232 
 233 
The fabrication process is schematically illustrated in Figure S4. All fabrications were completed 234 
in a clean room environment (Washington Nanofabrication Facility, ISO Class 5-7). (1) Quartz 235 
carrier wafers (with thickness of ~ 300 um) were purchased from University Wafer and cleaned in 236 
Acetone and IPA, as well as a short oxygen etching treatment in an Oxygen Barrel Etcher. (2) 237 
Then a ~ 800 nm thick SiN film was deposited on top of the wafer using plasma enhanced 238 
chemical vapor deposition (PECVD) in a SPTS PECVD chamber, with a mixture of Silane and 239 
Ammonia as the deposition precursors. After deposition the wafer was diced into 1.5 cm square 240 
pieces using a Disco Saw Dicer DAD123. (3) After brief cleaning (in Acetone and IPA in an 241 
ultrasonicating bath) and barrel etch step (O2, 100 W, 15s), a positive resist (ZEP 520 A) was 242 
spun onto the sample (4k rpm, thickness of ~ 400 nm), followed by baking at 180 °C for 3 min on 243 
a hot plate. A conductive polymer layer (DisCharge H2O) was subsequently spun on top at 4k 244 
rpm. (4) The resist layer was then patterned using a 8 nA, 100 keV electron beam (JEOL 245 
JBX6300FS) at a dose of ~ 300 µC cm−2. The writing time was about 4 1/2 hours. (5) After EBL, 246 
the conductive polymer layer was removed in a short IPA bath and subsequently the resist was 247 
developed at room temperature in Amyl Acetate for 2 min. Subsequently, the sample was 248 
descummed in a short barrel etch step (100 W, 15s). (6) Then using electron beam evaporation, 249 
a layer of ~ 75 nm AlOx was deposited. The mask was then lifted off overnight in an NMP bath at 250 
~ 100 C on a hot plate. (7) Subsequently, the SiN layer was etched using a mixture of C4F8/SF6 251 
in an inductively coupled reactive ion etcher (Oxford PlasmaLab System 100). We note that most 252 
of the AlOx layer is consumed during the process and only a negligible amount is left on the pillar. 253 
The remaining AlOx layer was not removed after etching. (8) Finally, the chip was integrated in a 254 
3D printed holder and mounted with the sensor. For SEM imaging a thin conductive Au/Pd layer 255 
was deposited. 256 

 257 
Supplementary Figure 4. Fabrication flow of the meta-optics.  258 
 259 
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Supplementary Note 3. Morphological characterization of meta-optics 261 
 262 
To characterize the meta-optics on the micro/nano scale we used a JEOL-JSM7400F Scanning 263 
Electron Microscope. To mitigate charging the sample was coated with a Au/Pd film. An image of 264 
the meta-optic compared to the intended GDS layout (Figure S5) highlights the accurate 265 
fabrication of the device on the nanometer scale with only minor deviations from the intended 266 
design. 267 

 268 
Supplementary Figure 5. SEM image of the fabricated device, compared to the designed 269 
structure outline (overlayed in green). 270 
 271 
Further images (Fig. S6) from an oblique view show that the scatterer maintain a close to uniform 272 
footprint throughout their height with vertical sidewalls. We note that due to the processing 273 
conditions a certain edge roughness on the top remains, which however can only be seen at 274 
closer inspection. 275 

 276 
Supplementary Figure 6. SEM images at oblique view from the edge of the meta-optic aperture. 277 
A zoomed in image on the right, show some edge roughness close to the top, and otherwise 278 
smooth sidewalls of the individual scatterer. 279 
  280 



We further verified the height of the meta-optic using a profilometer (Fig. S7), which shows an 281 
approximate height of the structure of ~ 815 nm, measured at a reference marker. This value is 282 
close to the design height, the difference of ~15 nm is attributed to the residual AlOx mask. 283 

 284 
Supplementary Figure 7. Height profile of the device after etching on a reference marker area.  285 
 286 
 287 
 288 
 289 
 290 
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Supplementary Note 4. Fabrication errors and tolerance of end-to-end designed meta-292 
optics   293 
 294 
The fabrication accuracy of the 1cm large meta-optic is evident by several indicators. First, 295 
comparative SEM images overlayed with the intended structure outline show a very close 296 
overlap (Figure S5). Second, in microscope images we observed a uniform structural color 297 
across the same radial sectors for the entire aperture, illustrated in Figure S8. Third, the PSFs 298 
are radially uniform as shown in Figure S9, where the PSF intensity for RGB is plotted as 299 
function of radius with the mean square error overlayed.  300 
 301 

 302 
Supplementary Figure 8: Stitched image of the entire aperture, showing uniform structural 303 
color. 304 
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Supplementary Note 5. Meta-optic point spread function characterization 319 
 320 
We characterized the point spread function as described in the Methods section. All PSF captures 321 
of the various meta-optic types are summarized in Figure S9, as function of wavelength and angle 322 
of incidence. It can be clearly seen that the hyperboloid only produces a narrow PSF for a small 323 
spectral range around the design wavelength of ~ 550 nm. The EDOF meta-optic exhibits a PSF 324 
which is more confined, yet certain wavelengths, such as ~ 620 nm or 540 nm, extend more. The 325 
poly chromatic end-to-end design is characterized by a very confined PSF for specific 326 
wavelengths (500 nm, 550nm, 580 nm, 650 nm), with a larger extends for in between 327 
wavelengths. The broadband design clearly shows the most balanced PSF, achieving a 328 
performance closest to the refractive lens in comparison. 329 

 330 



Supplementary Figure 9. PSF captures on sensor for different optics, as described in Figure 331 
2a. 332 
 333 
To better compare the broadband performance of all lenses, we plotted the peak value of the 334 
center pixel normalized with respect to the total counts within a circular region of ~ 5 mm diameter 335 
around the center on the sensor. This allows us to qualitatively compare the focusing efficiency, 336 
as it considers the spatial extension of the PSF. Light that passes through the meta-optic directly 337 
without modification (i.e., unscattered light), decreases the contribution to the center pixel, and a 338 
tail appears or additional haze. As shown in Figure S10, we observe that overall, the refractive 339 
lens clearly performs best for small aoi, while it significantly degrades with increasing aoi. As is 340 
well known, a hyperboloid metalens achieves on-par performance with the refractive lens only for 341 
a narrow band of about ~ 10 nm. In contrast, meta-optics that are designed for broad wavelength 342 
range, show lower maximum peak intensity values, which however do not degrade as fast as the 343 
hyperboloid metalens. Even more, for larger aoi, we observe that the end-to-end designed meta-344 
optics outperform the refractive lens.  345 
 346 
To further compare the developed meta-optics, we used the modular transfer function (MTF), 347 
obtained as the absolute value of the Fourier transform of the PSF. The MTF curve depicts the 348 
achievable contrast value for a particular spatial frequency. However, from a system level 349 
perspective the MTF curve of the optic does not directly consider the capability of a computational 350 
backend to recover the image quality. Specifically, through applying a deconvolution step or more 351 
complex computational reconstruction methods, the image quality is significantly enhanced, thus 352 
augmenting the shortcomings of the optics and allowing one to circumvent the physical limitations 353 
in actual applications. To assess the suitability of the optics for a computational backend we 354 
therefore consider the line-pair value as the MTF decreases below a specific threshold value of 355 
0.01. 356 
 357 
This value as a function of the wavelength and angle of incidence is plotted in Figure S10c for all 358 
considered optics. The refractive lens yields the highest performance throughout the spectral 359 
range for small aoi of 0° and 5°, however degrades quickly towards larger aoi of 10° and 15°. The 360 
hyperboloid lens exhibits excellent performance for a small spectral range but degrades outside 361 
that specific range. In comparison the computationally optimized EDOF design, provides good 362 
performance for a limited spectral range from 480 nm – 600 nm. The polychromatic end-to-end 363 
design achieves high performance for specific wavelengths but degrades outside. In comparison, 364 
the broadband end-to-end meta-optic provides mostly uniform performance across the broadband 365 
range, and further does not degrade as strongly for larger aoi. As shown later, this ensures 366 
uniform imaging capability across the entire field of view and color range. 367 
 368 



 369 
 370 
Supplementary Figure 10. a) Peak Intensity to integrated signal ratio, extracted for a wavelength 371 
range 480 nm – 680 nm. From top to bottom, we compare the refractive lens, the Hyperboloid 372 
metalens, the EDOF meta-optic, the polychromatic meta-optic, and the broadband meta-optic. b) 373 
example of finding the line-pair threshold for computational reconstruction. c) Plot of the Line-Pair 374 
value threshold for the different optics, listed in the same order as (a).  375 
 376 
 377 
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Supplementary Note 6. System MTF measurement 379 
 380 
As described, we directly determined the MTF line pair contrast by measuring the USAF 1951 381 
target, using a broadband supercontinuum source (NKT FIR20) and tunable filter (NKT SUPERK 382 
SELECT) to select a specific wavelength for illumination of the target. For this measurement, we 383 
synchronized the wavelength filter sweep with the frame capture to obtain images of the target, 384 
and then extracted different line pair sections from the captures via an automated script. As shown 385 
in the Figure S11, different sections of the target were selected and averaged over the horizontal 386 
or vertical direction to obtain a mean intensity value along the line pair. The contrast was then 387 
calculated as the relative value of difference to sum of the max and min values. We note that the 388 
values plotted in Figure 2 of the manuscript were calculated as the mean value of horizontal and 389 
vertical line pairs. We captured the color image, while the white balance was set to zero, no AWB, 390 
no gain applied, and no sharpening.  391 
 392 
 393 

 394 
Supplementary Figure 11. Example line pair value extraction from a captured frame of the USAF 395 
target. Areas that were used for the line pair contrast calculation are highlighted by red boxes. 396 
Also shown are the extracted average intensity across the line pair.  397 
 398 
 399 
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Supplementary Note 7. Focusing profile of the meta-optics 401 
 402 
As described in the main text, the broadband capability of the meta-optics arises from the 403 
extended depth of focus. To underpin this aspect, we measured the PSF of the broadband end-404 
to-end design using a translational microscope setup, which enabled us to reconstruct the 405 
intensity profile along the optical axis for wavelengths of 450 nm to 700 nm in steps of 50 nm. 406 
Specifically, we used a 20 X Nikon Objective, mounted together with a Tube lens (Thorlabs TTL 407 
180A) and a Sensor (Allied Vision ProSilica 1930 GT) on a programmable translation stage 408 
(Newport ILS100CC, Newport ESP301) with micrometer resolution.  409 
 410 
The meta-optic was placed on an independent 3D translation stage, allowing alignment with 411 
respect to the optical axis. A collimated laser was transmitted through the meta-optic and the 412 
resulting image was captured with the microscope setup. After identifying the sample surface of 413 
the meta-optic, an automated script was used to move the stage by 7.5 µm at a time and then 414 
capture an image of the microscope setup. 415 
 416 
After measurement, a further script was used to evaluate the data, cropping the image to a width 417 
of ~ 200 µm x 200 µm and setting the maximum as the center.  418 
 419 

 420 
Supplementary Figure 12 Focusing profile of the broad band meta-optic along the optical axis 421 
for different wavelengths (as given in the subplot titles).  422 
 423 
 424 
 425 
   426 



Supplementary Note 8. Further images of display captures 427 
We have collated further image comparisons from the different optics in this section. Figure S13 428 
shows images before and after Wiener Filtering for the different optics, including the refractive 429 
lens, the hyperboloid metalens, the EDOF meta-optic, the polychromatic end-to-end design, and 430 
the broadband end-to-end design. Specifically, we observe that in the captured images the 431 
refractive lens exhibits the clearest image. In comparison all images captured by different meta-432 
optic types exhibit some degree of haze, due to an extended PSF. However, the broadband meta-433 
optic is closest to the refractive lens with the clearest image, after image capture. Stemming from 434 
the more confined PSF across the spectral range, all wavelengths are equally focused on the 435 
sensor. In comparison images captured by the EDOF design and the polychromatic meta-optic 436 
retain a stronger haze in their respective images, due to the broader extension and unbalanced 437 
PSFs. Especially, as for the Wiener deconvolution, only one general PSF for each color channel 438 
can be considered, a more balanced PSF will ultimately yield more accurate computational 439 
reconstruction. Although this could be alleviated using some color filters, the total power on the 440 
sensor would then decrease.  441 
 442 
Moreover, we can observe that some images captured via hyperboloid metalens appear to yield 443 
reconstructions close to the ground truth. However, the comparison in this Figure also shows that 444 
this is very scene specific and limited. For instance, images shown in the first two columns of 445 
different isolated colors clearly show that the color information is lost. Due to the limited dynamic 446 
range of the sensor, the more spread out and unfocused color information contained in the 447 
unfocused color channels, i.e., red and green channels are lost. In comparison the broadband 448 
meta-optic ensures that all colors are focused in a balanced manner.  449 



 450 
Supplementary Figure 13. Images captured from an OLED monitor for different types of optics. 451 
Shown are images before and after computation.  452 
  453 



 454 
 455 
Supplementary Note 9. Probabilistic Diffusion Image Reconstruction 456 
 457 
In this section, we describe how we recover the images from the metalens camera 458 
measurements using learned reconstruction. We formulate the image recovery as a model-459 
based inverse optimization problem with a probabilistic sampling stage that samples a learned 460 
image prior. For learning the image prior, we use a probabilistic diffusion model that samples a 461 
distribution of plausible latent images for a given sensor measurement. Finally, the image 462 
reconstruction optimization problem is solved via splitting and unrolling the objective into a 463 
differentiable truncated solver.  464 
 465 
To recover a latent image 𝐼 from the sensor measurement 𝑆 that relies on the physical forward 466 
model described above, we pose the deconvolution problem as a Bayesian estimation problem. 467 
In specific, we solve the following maximum-a-posteriori estimation problem with an abstract 468 
natural image prior Γ(𝐼): 469 
 470 

𝐼ሚ = 𝑎𝑟𝑔𝑚𝑖𝑛ூ 

1

2
||𝐼 ⊗ 𝑘 − 𝑆||ଶ

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
Data Fidelity

+ ρΓ(𝐼)ᇣᇤᇥ
Prior Regularization

, 471 

 472 
where ρ >  0 is a prior hyperparameter. The probabilistic natural image prior, in our case, allows 473 
for sampling the posterior of all plausible natural image priors instead of solving for a singular 474 
maximum of the posterior as a point estimate.  475 
 476 
To solve the above equation, we split the non-linear and non-convex prior term from the linear 477 
data fidelity term via half-quadratic splitting to result in two simpler subproblems. To this end, we 478 
introduce an auxiliary variable z and pose the above minimization problem as  479 

𝑎𝑟𝑔𝑚𝑖𝑛ூ  
1

2
||𝐼 ⊗ 𝑘 − 𝑆||ଶ + ρΓ(𝑧),     𝑠. 𝑡.  𝑧 = 𝐼. 480 

 481 
which can be further reformulated as  482 
 483 

𝑎𝑟𝑔𝑚𝑖𝑛ூ,௭

1

2
ቤቚ𝐼 ⊗ 𝑘 − 𝑆||ଶ + ρΓ(𝑧) +

μ

2
ቚቤ 𝑧 − 𝐼||ଶ, μ → ∞ 484 

 485 
where μ >  0 is a penalty parameter, that μ → ∞ mandates equality 𝐼 = 𝑧. We then relax μ and 486 
solve the problem iteratively by alternating between the following two steps, 487 

𝐼௧ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛ூ  
1

2
||𝐼 ⊗ 𝑘 − 𝑆||ଶ +

μ௧

2
||𝐼 − 𝑧௧||ଶ, 488 

𝑧௧ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛௭

μ௧

2
||𝑧 − 𝐼௧ାଵ||ଶ + ρΓ(𝑧). 489 

 490 



where 𝑡 is the iteration index and μ௧ is the updated weight in each iteration. We initialize our 491 
method with μ = 0.1 and exponentially increase its value for every iteration. Note that we solve 492 
for 𝐼 given fixed values of 𝑧 from the previous iteration and vice-versa.   493 
 494 
Note that the first update from the above equations is a quadratic term that corresponds to the 495 
data fidelity term of the original objective. Assuming a circular convolution, this update can be 496 
solved in closed form with the following inverse filter update 497 
 498 

𝐼௧ାଵ = ℱற ቆ
ℱ∗(𝑘)ℱ(𝑆) + 𝜇௧ℱ(𝐼௧)

ℱ∗(𝑘)ℱ(𝑘) + 𝜇௧ ቇ 499 

 500 
where ℱ ( ) is the Fourier transform, ℱ∗ is the complex conjugate of the Fourier transform, and 501 
ℱற is the inverse Fourier transform. The second update, however, includes the abstract image 502 
prior regularizer, which in general is non-linear and non-convex. The solution to this update is 503 
learned via a diffusion model that allows us to probabilistically sample the solution from a 504 
distribution Ω that is conditioned on the iterate 𝐼௧ାଵ and the optimization penalty weights ρ, μ as 505 
inputs, the details of which we describe next.  506 
 507 
 508 
Probabilistic Image Prior 509 
 510 
We learn a diffusion model-based probabilistic image prior over a distribution Ω to handle the 511 
ambiguity in the deconvolution, wherein multiple clear latent images can be projected to the 512 
same noisy sensor measurement. Diffusion provided a probabilistic sampling approach to 513 
generate multiple samples, from which we can select the most suitable one. The forward 514 
process of diffusion entails progressively adding noise to a clean image, and learning to recover 515 
the underlying clean image from the noisy images. Our input 𝑥 to the diffusion model is a clean 516 
ground truth image 𝐼௧ with condition 𝑐 defined as  517 
 518 

𝑐 = 𝐼௧ ⊕ 𝑆 ⊕ 𝑧௧ ⊕ μ௧ ⊕ γ(𝑇), 519 
 520 
where 𝐼௧ is the ground truth latent image, 𝑆 is the sensor measurement, 𝑧௧ is the auxiliary 521 
image coupling term and μ௧ is the update weight term used for half-quadratic splitting (HQS), 522 
and γ(𝑇) is a positional encoding of 𝑇 where 𝑇 ∈ [1,1000] is randomly sampled for each training 523 
iteration of the diffusion model. The symbol ⊕ denotes concatenation, as we condition the 524 
inputs by concatenating them along the channel dimension and employ self-attention to learn 525 
corresponding features.  526 
 527 
The underlying neural network architecture of our diffusion model is a U-Net, and in each 528 
iteration while training our diffusion model, we add Gaussian noise to the clean image 𝐼௧ of the 529 
input 𝑥, proportional to 𝑇, to obtain 𝑥௧. The diffusion model is trained to recover a plausible 530 
image from the noisy 𝑥௧. We employ a least squares error metric for training the neural network. 531 
During the test time, our diffusion model recovers a plausible clean image iteratively from an 532 
input noisy image. In a traditional diffusion model, image generation is performed as  533 



 534 
𝑧ᇱ = (𝑓 ∘ … ∘ 𝑓)(𝑧் , 𝑇),   𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥௧ , 𝑡) = Ω(𝑥௧) + σ௧ϵ, 535 

 536 
where 𝑧் ∼ 𝒩(0, 𝐼), σ௧ is the fixed standard deviation at the given step 𝑇, and ϵ ∼ 𝒩(0, 𝐼). This 537 
approach, however, results in long sampling times. To reduce the number of sampling steps, we 538 
adopt a non-Markovian diffusion process with the initial latent variable manipulated to guide the 539 
generated output as 540 
 541 

𝑓(𝑥௧ , 𝑡) = ඥα௧ିଵ ቆ
𝑥௧ − ඥ1 − α௧Ω(𝑥௧)

ඥα௧

ቇ + ට1 − α௧ିଵ − σ௧
ଶ ⋅ Ω(𝑥௧) + σ௧ϵ. 542 

 543 
In practice, we find that generation steps of 20 is sufficient for our experiments to conditionally 544 
recover the images from the noisy sensor measurements.  545 
 546 
 547 
  548 



Supplementary Note 10. Further image comparisons for paired captures and neural 549 
backend 550 
 551 
We present further images of the paired image capture system in Figure S14. We note that this 552 
set was not used to train the learned reconstruction method, but is unseen to assess the image 553 
quality. The left column are images captured with the compound refractive lens. The second 554 
column are captures with the broad band meta-optic without computational processing, the third 555 
column are images reconstructed with a Wiener deconvolution and block filtering, and the fourth 556 
column are images reconstructed with the neural backend. Throughout the various scenarios, 557 
the learned computational backend yields the highest image quality in all tested scenarios.  558 
 559 

 560 
 561 
Supplementary Figure 14. Additional examples and comparison of ground truth (compound 562 
optic capture), physics-based inverse filter, and learned reconstruction method. Captures of the 563 
compound camera are in the first column, raw broadband MO captures are in the second 564 
column, images reconstructed with the physics based inverse filter are in the third column, and 565 
images reconstructed with the learned reconstruction method are reported in the fourth column.  566 
 567 
 568 
 569 


