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Spatially varying nanophotonic neural networks
Kaixuan Wei1†, Xiao Li2†, Johannes Froech3†, Praneeth Chakravarthula2, James Whitehead3,  
Ethan Tseng2, Arka Majumdar3, Felix Heide2*

The explosive growth in computation and energy cost of artificial intelligence has spurred interest in alterna-
tive computing modalities to conventional electronic processors. Photonic processors, which use photons 
instead of electrons, promise optical neural networks with ultralow latency and power consumption. However, 
existing optical neural networks, limited by their designs, have not achieved the recognition accuracy of 
modern electronic neural networks. In this work, we bridge this gap by embedding parallelized optical com-
putation into flat camera optics that perform neural network computations during capture, before recording 
on the sensor. We leverage large kernels and propose a spatially varying convolutional network learned 
through a low-dimensional reparameterization. We instantiate this network inside the camera lens with a nano-
photonic array with angle-dependent responses. Combined with a lightweight electronic back-end of about 2K 
parameters, our reconfigurable nanophotonic neural network achieves 72.76% accuracy on CIFAR-10, surpass-
ing AlexNet (72.64%), and advancing optical neural networks into the deep learning era.

INTRODUCTION
Increasing demands for high-performance artificial intelligence (AI) 
in the last decade have levied immense pressure on computing ar-
chitectures across domains, including robotics, transportation, per-
sonal devices, medical imaging and scientific imaging. Although 
electronic microprocessors have undergone drastic evolution over 
the past 50 years (1), providing us with general-purpose central pro-
cessing units and custom accelerator platforms (e.g., graphical pro-
cessing unit and Digital Signal Processor (DSP) ASICs), this growth 
rate is far outpaced by the explosive growth of AI models. Spe-
cifically, the Moore’s law delivers a doubling in transistor counts 
every 2 years (2), whereas deep neural networks (DNNs) (3), ar-
guably the most influential algorithms in AI, have doubled in size 
every 6 months (4). However, the end of voltage scaling has made 
the power consumption, and not the number of transistors, the 
principal factor limiting further improvements in computing per-
formance (5). Overcoming this limitation and radically reducing 
compute latency and power consumption could drive unprecedented 
applications from low-power edge computation in the camera, po-
tentially enabling computation in thin eyeglasses or microrobots 
and reducing power consumption in data centers used for training 
of neural network architectures.

Optical computing has been proposed as a potential avenue to 
alleviate several inherent limitations of digital electronics, e.g., com-
pute speed, heat dissipation, and power, and could potentially boost 
computational throughput, processing speed, and energy efficiency 
by orders of magnitude (6–10). Such optical computers leverage several 
advantages of photonics to achieve high throughput, low latency, 
and low power consumption (11). These performance improve-
ments are achieved by sacrificing reconfigurability. Thus, although 
general-purpose optical computing has yet to be practically realized 
due to obstacles such as larger physical footprints and inefficient op-
tical switches (12, 13), several notable advances have already been 

made toward optical/photonic processors tailored specifically for AI 
(14, 15). Representative examples include optical computers that 
perform widely used signal processing operators (16–22), e.g., spa-
tial/temporal differentiation, integration, and convolution with per-
formance far beyond those of contemporary electronic processors. 
Most notably, optical neural networks (ONNs) (6, 23–38) can per-
form AI inference tasks such as image recognition when imple-
mented as fully optical or hybrid opto-electronical computers.

Existing ONNs can be broadly classified into two categories 
based on either integrated photonics (24–30) [e.g., Mach-Zehnder 
interferometers (23, 26), phase change materials (24), microring 
resonators (29), multimode fibers (30)] for physically realizing 
multiply-adds floating point operations (FLOPs), or with free-
space optics (6, 31–37) that implement convolutional layers with 
light propagation through diffractive elements [e.g., 3D-printed sur-
faces (6), 4F optical correlators (37), optical masks (35), and meta-
surfaces (36)]. The design of these ONN architectures has been 
fundamentally restricted by the underlying network design, includ-
ing the challenge of scaling to large numbers of neurons (within 
integrated photonic circuits) and the lack of scalable energy-efficient 
nonlinear optical operators. As a result, even the most successful 
ensemble ONNs (31) that use dozens of ONNs in parallel, have 
only achieved LeNet (39)–level accuracy on image classification, 
which was achieved by their electronic counterparts over 30 years 
ago. Moreover, most high-performance ONNs can only operate 
under coherent illumination, prohibiting the integration into the 
camera optics under natural lighting conditions. Although hybrid 
opto-electronic networks (35, 36, 40) working on incoherent light 
do exist, most of them do not yield favorable results as their optical 
front-end is designed for small-kernel spatially uniform convolu-
tional layers, which this work finds does not fully exploit the design 
space available for optical convolution.

In this work, we report a novel nanophotonic neural network 
that lifts the aforementioned limitations, allowing us to close the gap 
to the first modern DNN architectures (41) with optical compute in 
a flat form factor of only 4 mm length, akin to performing computation 
on the sensor cover glass, in lieu of the bulky compound 4-f system–
based Fourier filter setup (40). We leverage the ability of a lens sys-
tem to perform large-kernel spatially varying (LKSV) convolutions 
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tailored specifically for image recognition and semantic segmenta-
tion. These operations are performed during the capture be-
fore the sensor makes a measurement. We learn large kernels via 
low-dimensional reparameterization techniques, which circumvent 
spurious local extremum caused by direct optimization. To physi-
cally realize the ONN, we develop a differentiable spatially varying 
inverse design framework that solves for metasurfaces (42–46) that 
can produce the desired angle-dependent responses under spatially 
incoherent illumination. Because of the compact footprint and 
complementary metal-oxide semiconductor (CMOS) sensor com-
patibility, the resulting optical system is not only a photonic accel-
erator but also an ultracompact computational camera that directly 
operates on the ambient light from the environment before the ana-
log to digital conversion. We find that this approach facilitates 
generalization and transfer learning to other tasks, such as semantic 
segmentation, reaching performance comparable to AlexNet (41) in 
1000-category ImageNet (47) classification and PASCAL VOC (48) 
semantic segmentation.

Recent work (49) concurrent to ours reported a novel metasur-
face doublet that implements a multichannel optical convolution via 
angular and polarization multiplexing under spatially incoherent 
illuminance, and extensions (50, 51) leverage large convolutional 
kernels for image classification and semantic segmentation. While 
this work shares advantages with ours, such as multichannel opera-
tion, high performance, and the use of incoherent light, our method 
uses a single metasurface and relies on LKSV convolution instead 
of uniform convolutions increasing the parameter space by an order 
of magnitude.

Hence, by on-chip integration of the flat-optics front-end (>99% 
FLOPs) with an extremely lightweight electronic back-end (<1% 
FLOPs), we achieve higher classification performance than modern 
fully electronic classifiers [73.80% in simulation and 72.76% in ex-
periment, compared to 72.64% by AlexNet (41) on CIFAR-10 (52) 
test set] while simultaneously reducing the number of electronic pa-
rameters by four orders of magnitude, thus bringing ONNs into the 
modern deep learning era.

RESULTS
LKSV parameterization
The working principle and optoelectronic implementation of the 
proposed spatially varying nanophotonic neural network (SVN3) 
are illustrated in Fig. 1A. The SVN3 is an optoelectronic neuromor-
phic computer that comprises a metalens array nanophotonic front-
end and a lightweight electronic back-end (embedded in a low-cost 
microcontroller unit) for image classification or semantic segmenta-
tion. The metalens array front-end consists of 50 metalens elements 
that are made of 390-nm pitch nano-antennas and are optimized for 
incoherent light in a band around 525 nm. The wavefront modula-
tion induced by each metalens can be represented by the optical 
convolution of the incident field and the point spread functions 
(PSFs) of the individual device. Therefore, the nanophotonic front-
end performs parallel multichannel convolutions, at the speed of 
light, without any power consumption. We also refer to texts S1 and 
S3 for additional details on the physical forward model and the neu-
ral network design, respectively.

Unlike existing ONNs (35–37, 53) that engineer the optical 
response to mimic a convolutional layer that consists of spatially 
invariant small-sized kernels, the SVN3 uses large-sized angularly 

varying PSFs (Fig. 1B) as the convolution kernels to construct a 
LKSV convolutional layer.

Such an LKSV convolutional layer is not used in conventional 
DNNs due to immense computation costs and challenges in train-
ing. Nevertheless, we demonstrate that with low-dimensional repa-
rameterization techniques, namely, large kernel factorization, and 
low-rank spatially varying reparameterization, this computing layer 
can be effectively learned in silicon, circumventing spurious local 
minima that can arise from naïve overparameterization (text S3).

We reparameterize a large (15 × 15) convolutional kernel into a 
stack of (seven) small 3 × 3 kernels, which are convolved sequen-
tially to the large kernel (Fig. 1C). The spatially varying structure is 
reparameterized through a spatially variant weighted linear combi-
nation of a (large) kernel basis, which resembles the low-rank 
approximation of a general spatially varying kernel. Hence, we con-
struct a three-layer convolutional neural network (CNN) composed 
of an LKSV convolutional stem, a depth-wise separable convolu-
tional layer, and a fully connected classification head, for CIFAR-10 
image classification. This CNN is trained in silicon by minimizing 
the standard cross-entropy loss with tailored regularizations (an 
isotropic total variation regularization and a specialized spectrum 
regularization) on the spatially varying kernels (text S4). Validated 
by the spatial combining weights and the Fourier spectrum profiles 
of learned kernels in fig. S2, these regularizations enforce smooth 
transitions of spatially varying kernels (Fig. 1E) and penalize high-
pass and ill-conditioned kernels, which are challenging to imple-
ment in an optical system.

After in-silicon training, our LKSV design performs favorably 
compared to the conventional small-kernel spatially invariant coun-
terpart by a sizable margin, lifting from the LeNet-level accuracy 
(65.45%) to the AlexNet-level accuracy (73.80%); see also Fig. 1D 
and tables S1 and S2.

The high computational cost of LKSV convolution in silicon 
can be entirely eliminated by designing a passive optical system 
with metalenses whose PSFs are inverse designed to mimic the 
designated target kernels. While the target kernels may contain 
both positive and negative values, optical PSFs contain only non-
negative values. Thus, to generate each target kernel, we use a 
pair of metalenses and we take the subtraction of their image 
features postconvolution to achieve positive and negative values 
(54–57).

To optically realize a 25-channel LKSV convolutional layer, we 
instantiate an on-chip metalens array that consists of 50 metalenses 
with the device layout shown in Figs. 1A and 2A. To engineer spa-
tially varying PSFs, we simulate the optical system and use a differ-
entiable spatially varying inverse design framework to compute the 
phase profiles of the metalenses via stochastic gradient–based opti-
mization. The angularly varying PSFs are optimized by minimizing 
the mean square error loss with respect to the target electronic ker-
nels and using an energy regularization to maximize the localized 
energy in the region of interest on the sensor plane. By using energy 
regularization, we improve the light efficiency of the designed met-
alenses from 39.37 to 93.88% without affecting the PSF accuracy and 
make the ONNs more robust to unwanted scattering light and other 
noise in real-world measurement (text S5).

Experimental validation
The inverse design–optimized metalens array was fabricated on a 
single chip in a silicon nitride on quartz film (text S6). We used a 
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nanopatterning approach using electron beam lithography (EBL) to 
define the outline of the design in a resist, deposited a hard mask, 
and subsequently transferred the pattern into the underlying silicon 
nitride using reactive ion etching. To exclude transmission of light 
through nonpatterned sections, we further deposited a metal aper-
ture around the ONN metalens kernels.

The close-up of the resulting metalens array camera and a met-
alens array device before mounting are shown in Fig. 2A. The PSFs 
(over 3 × 3 varied sampling incident angles) of three randomly 
selected kernels are illustrated in Fig. 2C, which illustrates the spa-
tially varying features of the designed optical kernels. To experi-
mentally realize the optical system and measure the image features 
of the metalenses, we devise the setup shown in Fig. 2B. The green 
channel of a smartphone organic light-emitting diode (OLED) 
display, which is placed at the designed object distance, is used as 
the incoherent light source, and a large-area CMOS sensor is 
placed at the focal plane of the metalens array device. When the 

dataset images are displayed on the display, the sensor captures 
the corresponding image features of all the metalens elements in a 
single shot.

The captured positive, negative, and real-valued features through 
subtraction closely resemble the electronic ground truth from both 
qualitative and quantitative comparisons, which verifies the effec-
tiveness of the implemented inverse design framework (Figs. 2D 
and 3A). Interested readers are also referred to movie S1 for proto-
type demonstration of SVN3 for dynamic content.

To extensively assess the performance of our opto-electronic 
neural network SVN3, we captured the entire grayscale CIFAR-10 
dataset, including 50,000 training images and 10,000 test images, 
with the setup described above and shown in Fig. 2B. The image 
features in each frame are equally spaced in a regular 6 × 9 array 
with the four corners being traditional hyperbolic metalenses used 
for device alignment (fig. S6). After cropping the image features of 
all the metalenses and computing the real-valued target features 

Flower 0.82
Ball
Cake
…

A

B
C

E

Spa�ally varying kernel standard devia�on

x

y

x

y

C
D

CI
FA
R-
10

Im
ageN

et
#
ofParam

s

FL
O
Ps

AlexNet SVN3

Ac
cu
ra
cy

accuracy
(top

5)

Fig. 1. Spatially varying nanophotonic neural networks. (A) Illustration of the proposed opto-electronic network, which comprises a nanophotonic array front-end 
that optically encodes the scene into multichannel image features and a lightweight electronic back-end that performs the final prediction, in a programmable manner, 
for image classification or semantic segmentation. (B) Each metalens is designed for specific learned large and angularly varying PSFs that comprise the feature kernels 
of the early network layers, which vary over the sensor. These kernels are learned electronically using a spatially varying reparameterization. (C) Large kernels of size 15 × 
15 (for digital 32 × 32 image classification) are reparameterized by factorizing them into a cascade of smaller ones. (D) Assessment of purely electronic AlexNet (41) com-
pared to SVN3: classification accuracies on CIFAR-10 and ImageNet datasets (top barplot), digital multiply-adds floating point operations (FLOPs), and digital parameters 
(bottom barplot) for CIFAR-10 image recognition. The proposed method outperforms a network with multiple orders of magnitude more electronic parameters with 
multiple orders of magnitude fewer FLOPs, see table S2 for details. (E) Illustration of kernel SD that varies smoothly across space.
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through paired subtraction, the resulting multichannel optical fea-
tures are fed into the pretrained lightweight electronic back-end 
to obtain the final predictions. We finetune the electronic back-
end using the cross-entropy loss on the experimentally captured 
CIFAR-10 training dataset. The finetuning procedure is identical 
to the prior in-silicon training of the target electronic neural net-
work, except no extra regularization losses are applied (text S4). 
SVN3 reaches to 72.76% on the CIFAR-10 test dataset, which is 
comparable to 73.80% of the corresponding electronic mod-
el. Similar observations are also drawn in the confusion matri-
ces in Fig. 3B, which reveals the similar recognition behavior of 
the SVN3 in real experiment and simulation. Figure 4 reports pre-
dictions on random samples from CIFAR-10 testset. The method 
consistently assigns a high probability to the true class (top 2). 
These experimental results collectively validate the effectiveness of 
SVN3 in classifying common objects, extending beyond the realm 
of handwritten digit recognition investigated in existing work. 
Furthermore, we emphasize that almost all computations (>99% 

of FLOPs) of SVN3 are executed on the optical side with zero en-
ergy consumption (table S2). This AlexNet-level classification ac-
curacy is thus achieved with an ultralow power device.

Versatile reconfigurable computational camera
Our approach is generic, which we validate by instantiating SVN3 
for other datasets and tasks. Next, we describe such an instance for 
ImageNet classification with 1000 object categories. ImageNet is 
the first large-scale image classification dataset with 1.28 million 
labeled training data, serving as a major driver to advance modern 
AI. To the best of our knowledge, no existing ONN has reported 
results on 1000-class ImageNet classification so far. To tackle 
this challenging 1000-class recognition task, we use an enlarged 
electronic back-end with four depth-wise separable convolutional 
layers and one fully connected classifier. We inverse design and fab-
ricate an on-chip metasurface array to optically encode features for 
64 × 64 low-resolution ImageNet classification. Akin to the CIFAR-10 
experiment, the entire training and validation datasets of ImageNet 

A B
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D Scene Ground truthExperimental measurements

Real-valued

Fig. 2. Experimental validation of SVN3. (A) Flat camera prototype (left) and a metalens array device before mounting (right). (B) Illustration of the experimental setup, 
consisting of an OLED display placed at the designated object distance, metalens array, and CMOS sensor. Note that no additional optics are used. Camera and display are 
synchronized for data capture. (C) Spatially varying PSF visualization on a 3 × 3 sampling grid of incident angles. Here, we show four representative kernels. (D) Side-by-
side comparison of the experimental measurements that match the corresponding ground truth feature channels. “Real-valued” denotes the target feature channel, the 
negative image feature subtracted from positive image features postconvolution.
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are encoded into optical features by the imaging system for fine-
tuning and evaluation. The experimentally captured features 
consistently align with their electronic ground truth (Fig. 5A), 
validating the scalability and effectiveness of SVN3 to process 
large-sized image features. After finetuning the electronic back-
end on the ImageNet training set, SVN3 achieves 48.64% top 
5 classification accuracy in ImageNet validation set, outperform-
ing AlexNet (47.60%) by 1.03%. Note that the SVN3 for 64 × 
64 ImageNet classification has 1.67 million digital multiply-
accumulate operations (FLOPs), which is only 0.9% of AlexNet 
(180.26 million).

Although the optical front-end (encoder) in SVN3 is not pro-
grammable after being fabricated, we demonstrate that SVN3 can 
serve as a reconfigurable versatile computational camera with a uni-
versal optical encoder. By adjusting the electronic back-end (decoder) 
using transfer learning, SVN3 is capable of performing diverse 
vision tasks beyond the initially designed task. Using the same phys-
ical setup for ImageNet classification, we conduct image recognition 
experiments on the CIFAR-100 (52), Flowers-102 (58), Food-101 (59), 
and Pet-37 (60) datasets. For all of these datasets, we achieve compa-
rable or better performance than the (finetuned) AlexNet (Fig. 5B), 
consistently validating the flexibility of our hybrid opto-electronic 

system without adapting the optical front-end. We also validate this 
capability for other computer vision tasks, e.g., semantic segmentation 
in PASCAL VOC (48) dataset, where our hybrid network is com-
petitive to the AlexNet-based segmentation network as validated in 
Fig. 5C. Our SVN3 achieves a pixel accuracy of 65.73% compared 
with 66.34% of AlexNet-based segmentation on the PASCAL VOC 
test set.

DISCUSSION
In this work, we investigate a novel nanophotonic neural network that 
lifts the limitations of existing ONNs, propelling them to performance 
parity with the first modern digital neural network, AlexNet. To this 
end, we embed computation in the camera lens, performed during 
the image capture, and we exploit the spatially varying nature of large 
optical aberrations. Specifically, we propose a LKSV CNN, learned via 
low-dimensional reparameterization techniques, and physically real-
izing it via a meta-optical system. The proposed method shifts almost 
all computations (99.64%) from electronic processors into the optical 
domain, while allowing for an ultrathin optical stack of only 4 mm, 
similar to performing computation on the sensor cover glass. We find 
that this approach achieves an image classification accuracy of (top 1) 
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Experimental results Simulation results

Predicted label Predicted label
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Fig. 3. Experimental measurements of a fabricated chip of a design for CIFAR-10 image classification. (A) Qualitative assessment of the experimental measurements 
compared with the ground truth feature channels. Real-valued again denotes the target feature channels via subtracting the negative from the positive image features 
postconvolution. (B) The confusion matrices of the experimental and simulation results on the CIFAR-10 test dataset validate the effectiveness of the method.
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72.76% on CIFAR-10 and (top 5) 48.64% on (1000-class) ImageNet, 
shrinking the gap between photonic and electronic AI, while ensur-
ing generalization to diverse vision tasks without needing to fabri-
cate new optics. Possible multi-aperture extensions of our work 
in the future may allow for high-resolution, multi-channel optical 
computing, and enable future photonic AI to bridge this gap.

MATERIALS AND METHODS
Design and optimization
We used PyTorch to design and evaluate our spatially varying nano-
photonic neural network. See texts S3 to S5 for details on the 
architectural design, in-silicon training, and differentiable inverse 
design of SVN3.

Fig. 4. Experimental (top 2) classification (probability) results on random samples from CIFAR-10 test set. Green- and orange-colored labels under the images denote 
the correct and incorrect predictions, respectively. The method accurately predicts the correct class or a visually similar class. See figs. S15 and S16 for additional examples.
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Sample fabrication
We fabricated the meta-optic on top of a 500-μm-thick double-side 
polished fused silica wafer. First, a 800-nm film of silicon nitride was 
deposited via plasma-enhanced chemical vapor deposition (PECVD) 
in a SPTS DeltaX PECVD using silane and ammonia as the precur-
sor for a growth at 350°C. After growth, the wafer is diced in pieces 
of 2 × 2 cm and cleaned in a sonicating bath of acetone, followed by 
a rinse in isopropyl alcohol (IPA). Then, the sample was shortly 
cleaned in a O2 plasma using a barrel etcher at 100 W for ∼15 s. After 
the cleaning step, we spin-coated the sample with ZEP 520A resist 
(∼400 nm), followed by a layer of a discharging polymer (DisCharge 
H2O). The arrays of kernels were then written on single chips for the 
spatially varying and spatially invariant designs via electron beam 
lithography (EBL) using a JEOL-JBX6300FS with acceleration volt-
age of 100 kV and 8-nA beam current. After EBL, the sample was 
rinsed in IPA and developed in amyl acetate for 2 min and rinsed in 
IPA. To define a hard mask, we evaporated 65 nm of alumina using 
a laboratory-built e-beam evaporator and a Al2O3 evaporation source. 
The resist was then lift-off overnight in N-Methylpyrrolidone (NMP) 

at 110°C and the sample was further cleaned in a brief O2 plasma 
etch to remove remaining organic residues. We then used inductively 
coupled reactive ion etching (Oxford Instruments, PlasmaLab100) 
with an etch chemistry based on fluorine to transfer the metasurface 
layout from the hard mask into the silicon nitride film to a thickness 
of ~750 nm, whereas the remaining 50 nm of PECVD ensures higher 
stability of the etched device layer. After fabrication of the device 
layer, we deposited a metal aperture layer surrounding the metasur-
faces to exclude any stray light. These apertures were created through 
optical direct write lithography (Heidelberg-DWL66) and subse-
quent deposition of a 150-nm-thick metal film (Cr).

Experimental setup
We built two experimental setups to characterize the optical perfor-
mance of metalens array samples, as described in detail in text S7: 
The first one is used to experimentally measure the PSFs of the met-
alens array samples. In this setup, a 520-nm pigtailed single-mode 
fiber laser is used to mimic a point light source, and a CMOS sensor 
is used as the detector to measure the intensity response of a metalens 

B C
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Experimental measurements
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ImageNet CIFAR-100 Flowers-102 Pet-37 SVN3 AlexNet

Top 1 accuracy (SVN3)

Top 1 accuracy (AlexNet)

Top 5 accuracy (SVN3)

Top 5 accuracy (AlexNet)

Food-101

Fig. 5. Validation of SVN3 as a versatile camera for diverse vision tasks. (A) Experimentally measured feature maps of SVN3 on the ImageNet dataset. (B) Recognition on 
ImageNet and other downstream datasets (CIFAR-100, Flowers-102, Food-101, and Pet-37) using the same optical front-end and the transfer-learned electronic decoder. (C) Trans-
fer learning for semantic segmentation on PASCAL VOC dataset. SVN3 again achieves comparable or better performance than the AlexNet-based segmentation network (see fig. 
S17 for additional examples). These findings validate that the proposed camera, with a fixed optical encoder, can generalize to diverse tasks by adapting the electronic back-end.
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array sample upon the incidence of a point light source positioned 
at the designed object distance. A microscope objective, together 
with a relay lens, is used to magnify the PSF measurement on the 
detector plane. The second setup is used to realize the designed opti-
cal system and to measure the image features, as shown in Fig. 2 (A 
and B). In this setup, the green channel of a smartphone OLED dis-
play that is placed at the designated object distance is used as the 
incoherent light source, and a large-area CMOS sensor is placed at 
the focal plane of the metalens array device. The smartphone and 
the sensor are controlled by a computer and synchronized such that 
when the dataset images are displayed on the smartphone sequen-
tially, the sensor captures the corresponding image features of all the 
metalens elements in a single shot.

Supplementary Materials
The PDF file includes:
Supplementary Text
Tables S1 to S7
Figs. S1 to S23
Legend for movie S1
References

Other Supplementary Material for this manuscript includes the following:
Movie S1
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