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Abstract. Multimodal sensor fusion is an essential capability for au-
tonomous robots, enabling object detection and decision-making in the
presence of failing or uncertain inputs. While recent fusion methods ex-
cel in normal environmental conditions, these approaches fail in adverse
weather, e.g., heavy fog, snow, or obstructions due to soiling. We in-
troduce a novel multi-sensor fusion approach tailored to adverse weather
conditions. In addition to fusing RGB and LiDAR sensors, which are em-
ployed in recent autonomous driving literature, our sensor fusion stack
is also capable of learning from NIR gated camera and radar modalities
to tackle low light and inclement weather.
We fuse multimodal sensor data through attentive, depth-based blending
schemes, with learned refinement on the Bird’s Eye View (BEV) plane
to combine image and range features effectively. Our detections are pre-
dicted by a transformer decoder that weighs modalities based on distance
and visibility. We demonstrate that our method improves the reliability
of multimodal sensor fusion in autonomous vehicles under challenging
weather conditions, bridging the gap between ideal conditions and real-
world edge cases. Our approach improves average precision by 17.2AP
compared to the next best method for vulnerable pedestrians in long dis-
tances and challenging foggy scenes. Our project page is available here1.

1 Introduction

Autonomous vehicles rely on multi-modal perception systems with sensors such
as LiDAR [16, 34, 71, 84], camera [22, 73, 75], and radar [49], combining distinct
modalities with complementary weaknesses and strengths to enable safe au-
tonomous driving. Recent work [3,13,28,47,62,77,83] combines input from these
diverse sensors to enhance environment perception with accurate localization and
classification of objects in captured street scenes. As such, these systems benefit
from the accuracy of LiDAR depth [77], the robustness of radar [28,51], and the
dense semantic information of cameras [13,47,62]. Although fusion is crucial for
downstream classification and localization tasks, as was shown in [3,7,29], when
∗ These authors contributed equally to this work.
1 https://light.princeton.edu/samfusion/
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Fig. 1: In this work, we present SAMFusion, a multimodal fusion approach combining
gated NIR, RGB color-imaging, LiDAR, and radar point clouds for object detection in
challenging adverse weather conditions. The qualitative results above show beneficial
low light detection capabilities due to the gated camera as well as example detections
from our proposed approach in night-time, snowy and foggy conditions, which are
achieved through attentive blending of features and multimodal querying. We depict
ground truth bounding boxes in red, and predictions in green.

sensors fail, special care is required to achieve better results with fusion than
with single camera networks. Examples of fusion strategies include physically-
inspired entropy-driven fusion, as proposed in [3], and learned attention fusion as
seen in [7]. The most effective 3D object detection methods often utilize a Bird’s-
Eye-View (BEV) representation, either by concatenating modality-specific fea-
ture maps [42,47] or by employing multiple attention-based modules to enhance
BEV features [1,19]. However, the robustness of these techniques is typically val-
idated only on datasets collected under favorable weather conditions [8,20], and
they have not been proven effective against adverse weather-related disturbances,
such as asymmetric degradation in LiDAR point clouds [4]. This vulnerability
is largely attributed to the reliance on a unimodal query generator, and depen-
dence on LiDAR-based depth projections [83], which can lead to network failures
in the absence of reliable LiDAR data.

Recent advancements in gated imaging technology offer a promising alterna-
tive to conventional imaging modalities, and were explored in [5, 22, 31, 66, 67].
This work demonstrates the capability of gated cameras to actively eliminate
backscatter [5], provide accurate depth [66,67], and achieve high signal-to-noise
ratios (SNR) in adverse scenarios such as night-time, fog, snowy or rainy con-
ditions, all due to their active gated scene illumination. We will therefore use
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gated cameras in addition to more conventional camera, LiDAR and radar data
to further increase robustness.

In summary, we tackle the challenge of robust object detection in inclement
weather by addressing two key problems in sensor fusion: modality projection
quality and robustness against sensor distortions in adverse weather. To this
end, we propose a sensor-adaptive multi-modal fusion method – SAMFusion. We
introduce a novel encoder structure with a depth-guided camera-LiDAR trans-
formation and additional early fusion between both camera modalities, incorpo-
rating distance-wise precise cross-modal projections. Additionally, we introduce
a novel multi-modal, distance-based query generation approach to avoid relying
solely on the LiDAR modality to generate detection proposals, as in [1, 83].
Specifically, we make the following contributions:

– We propose a novel transformer-based multi-modal sensor fusion approach,
improving object detection in the presence of severe sensor degradation.

– We introduce an encoder architecture combining early camera fusion, depth-
based cross-modal transformation, and adaptive blending in conjunction
with learned distance-weighted multimodal decoder proposals to increase
the reliability of object detection across lighting and weather conditions.

– We design a transformer decoder that aggregates multimodal information in
BEV through multimodal proposal initialization.

– We validate the method on automotive adverse weather scenes [4] and im-
prove 3D-AP, especially for the pedestrian class by more than 17.2AP in
dense fog and 15.62AP in heavy snow on the most challenging distance
category from 50 m-80 m relative to the state of the art.

2 Related Work

3D Object Detection. The task of 3D object detection evolved from 2D object
detection, requiring the prediction of 3D-bounding boxes (bboxes) and orienta-
tions of objects [21,34,41,54,82]. Unimodal LiDAR methods, such as [34,88], have
been explored to leverage the depth accuracy of the LiDAR sensor to predict 3D
bboxes based on LiDAR point clouds. Point-based methods [54,55,59,82] there-
fore generate detections from raw point cloud features. Other methods group
LiDAR points into 3D voxels [14, 15] or pillars [74, 84]. Voxel and point-based
methods can also be chained together, such as in [58, 60, 76], which implement
additional refinement steps to improve 3D object detection performance based
on region of interest pooling [23, 57]. Camera-based methods were investigated
in [44–46, 73], which work in the image space itself. However, camera data has
proven to be a good candidate for fusion with LiDAR, as the former can be
mapped to a BEV representation, and the latter natively lives in the BEV
space. Therefore, the camera representation space has since evolved from camera
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coordinates [46, 73] to joint multi-view setups and predicted BEV representa-
tions [26,39], improving 3D detection accuracy.
Multi-modal Sensor Fusion. While a common BEV map is not necessarily the
default choice, several multi-modal sensor fusion approaches have incorporated
semantic camera information to enrich individual LiDAR points, as described
in [65, 69, 85]. Subsequent studies, such as [78, 86], have investigated how to
extract detailed information from camera data for LiDAR point clouds, which is
heavily dependent on the quality of projection and was further refined by [85].
These approaches introduced virtual 3D camera points to provide a more dense
environmental context for enhancing sparse point clouds at long distances. Li et
al. [38] extended this approach by integrating deformable attention [89] to create
a unified representation of both modalities in the 3D voxel space.

Recently, another line of research operating in the BEV space has shown
remarkable effectiveness. This approach fuses features that are aggregated in
a reference frame (e.g., the LiDAR BEV perspective) and then processed by
task decoders performing various perception tasks such as 3D object detec-
tion [9, 27, 30, 40, 45, 70, 79], lane estimation [37, 45, 53], tracking [25], semantic
segmentation [40, 45, 47], and planning [25]. Such a framework supports mul-
titasking and multimodal models that benefit from the additional supervision
and regularization provided by these configurations. However, even the most re-
cent BEV representation approaches [32, 47] still face challenges in projecting
detailed camera features into the BEV world coordinate system and preventing
error propagation in the case of sensor distortions.
Sensor Fusion in Adverse Weather. In this work, we specifically aim to
tackle the degradation of individual sensors under adverse weather conditions,
which drastically reduces object detection performance as shown previously
in [28,50,63,64,72]. Multi-modal sensor fusion emerged as a viable approach to
achieve robustness under these scenarios [2,3,7,18,50,87]. In detail, [2,13,29,43]
fuse the camera modality with radar information, while [3, 7] introduce addi-
tional sensing modalities and exploit novel, physically-grounded fusion tech-
niques. However, these only allow for the prediction of 2D object detections.
Our approach projects to a common BEV plane, with attention-based feature
fusion and the incorporation of dense depth to allow for more performant 3D
object detection.

3 SAMFusion

In this section, we introduce the SAMFusion architecture for multimodal 3D
object detection. SAMFusion leverages the complementary strengths of LiDAR,
radar, RGB, and gated cameras. Gated cameras excel in foggy and low-light
conditions, while radar is effective in rain and at long distances. By integrating
these sensors into a depth-based feature transformation, a multi-modal query
proposal network and a decoder head, SAMFusion ensures robust and reliable
3D object detection across diverse scenarios. The architecture is illustrated in
Fig. 2.
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(a) Backbones, legend (b) SAM encoder (c) SAM decoder

Fig. 2: SAMFusion Architecture. 2a First, we extract features from each modality. 2b
Then, we refine them, fusing modalities through attention and depth-based blending. 2c
Finally, refined gated and range (LiDAR and radar) features are agglomerated in BEV,
and are combined in a weighted manner that is aware of distance and weather, before
being refined further and sent to detection heads to produce bounding box outputs.
The gated camera and radar sensors complement the high-definition RGB camera and
LiDAR to better handle poor illumination and adverse weather.

The inputs - RGB/gated camera, LiDAR, radar - are transformed into fea-
tures through their respective feature extractors 2a. These features are blended
in the Multi-Modal encoder 2b in an attentive fashion, and are combined with
camera-specific feature maps to produce enriched features φ∗ - we refer to this
as “early fusion”.

Features φ∗ are now passed to the multi-modal decoder proposal module
2c where they are refined with another level of fusion in the Bird’s Eye View
representation to combine the image features (gated camera) and the range fea-
tures (LiDAR, radar) in an adaptive, distance-weighted fashion for initial object
proposals. Additionally, the enriched features φ∗ are sent to the transformer de-
coder that refines the initial object proposals to attentively produce detection
outputs. The decoder proposals include optimizations to adaptively weight dis-
tance through a learned weighting scheme that is aware of the physical properties
of ranging sensors while fusing with the information-dense camera modality.

3.1 Cross-Modal Adaptive Blending

This section describes the early attention fusion schemes of individual sensor
features. An illustration of the methodology is shown in Fig. 2b.

In the SAMFusion encoder, early attention fusion integrates information from
different modalities. To achieve this, we first create a weighted context from the
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features of the primary modality, which aligns with the features of the secondary
modality. This context (key) is then queried with data from the second modality
(query), resulting in a rich mix of aligned features.

Our early fusion approach supports queries from both camera and LiDAR
modalities, creating two parallel instances of pair-wise (query, key) attentive
fusion. In "Camera-Adaptive Blending," queries from RGB and gated cameras
are compared against weighted LiDAR context samples (RGB camera against
Sampled LiDAR and gated camera against Sampled LiDAR). This blending
accounts for objects visible in one modality but not in the other. Similarly, in
"LiDAR-Adaptive Blending," LiDAR queries are scored with sampled weighted
camera context features blended across RGB and gated images (LiDAR against
Sampled camera).

Finally, we refine radar features in a similar fashion, where the radar propos-
als are scored with weighted context provided from the RGB camera.
Camera-Adaptive Blending. In this module, we use attention to score the
camera features φC , φG (query) against the weighted context φL,CG (keys, val-
ues) derived from the LiDAR modality. To generate such a context, we gather
LiDAR BEV features φL corresponding to the camera features. We note that
the LiDAR feature encoder outputs are available in the form of a BEV image.
Therefore, we transform all the camera pixels (u, v) onto the LiDAR coordinate
frame. In order to achieve this, we need pixel-wise depth d(u, v) for each camera
feature coordinate. In Fig. 2b we denote the concatenation with the symbol c○
that assigns the corresponding depth to each pixel.

Together with depth, we use known camera intrinsics and extrinsics (with
respect to LiDAR) to lift image points into the 3D (x, y, z) LiDAR coordinate
space. In our setup, we compute depth differently for RGB and gated cameras.
For RGB cameras, we use stereo RGB pairs from the dataset and predict depth
utilizing [35], while for gated cameras, the depth (dMG) is attained from a mono-
RGB method [56], which is fine-tuned on the gated camera data following [68].

The projection - ψC,L for RGB camera, ψG,L for gated camera, ψC;G,L - is
attained by lifting the pixels into a point cloud using

z = d(u, v),
x = (u− Cx)× z/fx,

y = (v − Cy)× z/fy,

(1)

where (fx, fy) are the horizontal and vertical focal lengths of the camera and
(Cx,Cy) is the pixel location corresponding to the camera center, and then
applying a change of frame of reference to bring the 3D points into the LiDAR
coordinate frame.

The reprojected 3D camera points (x, y, z) are then squashed along the height
coordinate y onto the LiDAR BEV grid. Further, we resolve the discretization of
the LiDAR feature map φL(x, z) by bilinear interpolation of the corresponding
BEV coordinates. Subsequently, the found correspondences are used to enrich
each 3D camera point (x, y, z) with extracted LiDAR features φL, which are
backprojected into the camera image and paired with image features prior to
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scoring with attention. Through this procedure, for each RGB and gated cam-
era pixel φC(u, v) and φG(u, v) we obtain corresponding LiDAR feature points
φL,C(u, v) and φL,G(u, v).

Finally, these two independent weighted LiDAR contexts are blended to-
gether to get a composite representation φL,CG that is aware of both camera
modalities. This composition is obtained by summing up the two feature maps,
where we drop the positional dependence in φL,C(u, v) and φL,G(u, v) for nota-
tional convenience:

φL,CG = φL,C ⊕ φL,G, (2)

where ⊕ is the element-wise addition operation.
The described process is introduced to integrate detailed camera-specific in-

formation into φL,CG, avoiding the case when either modality fails due to reduced
visibility of the sensors in adverse lighting conditions.

Having obtained the associated LiDAR feature points to compare with, we
integrate cross-modal attention to learn enriched modality-specific feature maps,
including object features from the LiDAR modality that can be occluded in the
camera frames due to the physical position of the sensors. We carry out an
attention computation between the respective camera and LiDAR modalities
(φC , φL,CG) and (φG, φL,CG) to produce the final enriched camera-specific fea-
ture maps φ∗

C and φ∗
G, to guide the decoder object proposals. We write the

cross-modal attentive blending equation with LiDAR (key, value) φL,CG, abbre-
viating the extracted RGB and gated features φC , φG as φC;G and the enriched
maps φ∗

C , φ
∗
G as φ∗

C;G, as

φ∗
C;G =

∑
φL,CG∈Js

softmax

(
φC;G φ

T
L,CG√
d

)
φL,CG. (3)

The attention computation is performed over a local window Js around the
sampled point (i, j), with a window size of k and a softmax normalization factor
of d, representing the dimensionality of the point cloud features.

We note that, besides the cross-modal attention mechanism, we execute intra-
modal-attention in parallel on the queried modality, described by

φ∗
C;G =

∑
φC;G∈Js

softmax

(
φC;G φ

T
C;G√
d

)
φC;G. (4)

Afterwards, φ∗
C;G feature maps, cross-modal-attention and intra-modal-attention

results are fused with a learned weighting scheme (independently for RGB φC

and gated φG).
LiDAR-Adaptive Blending. In this module, we blend LiDAR features φL

with a weighted context from RGB and gated camera features φCG,L using at-
tention, with LiDAR features serving as queries and camera features as keys
and values. Unlike camera-adaptive blending, depth is inherently included in
the LiDAR BEV features φL(xL, zL). Therefore, before projecting into the cam-
era feature map, we assign the LiDAR points (xL, yL, zL) to columns at the
respective feature map grid positions (xL, zL).
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Furthermore, the 3D LiDAR features φL(xL, yL, zL) are mapped onto the cor-
responding 2D image points (uC;G,L, vC;G,L) by projection, analogous to Eq. 1,
through the ψL,C;G LiDAR-to-camera (RGB; gated) projection matrix. The cam-
era features corresponding to relevant LiDAR feature coordinates (uC;G,L, vC;G,L)
are acquired by sampling from the image modalities through bilinear interpola-
tion.

Next, we blend the LiDAR-aware sampled image features from the two cam-
era modalities

φCG,L = φC,L ⊕ φG,L, (5)

before scoring against corresponding LiDAR queries. As before, we drop the posi-
tional dependence in φC(uC,L, vC,L), φG(uG,L, vG,L) for notational convenience.

The enriched LiDAR feature map φ∗
L is obtained similarly to the Camera-

Adaptive-Blending in Sec. 3.1, blending the output of the cross-modal attention
between LiDAR queries and LiDAR aware image features (similarly to Eq. 3) to
the output of the intra-modal attention over LiDAR features (as per Eq. 4).
Radar-Adaptive Blending. In the radar branch, we rely on the same prin-
ciple as for the LiDAR-Adaptive Blending described in Sec. 3.1, with the only
difference being that we calculate the weighted context from the RGB camera
modality only and don’t perform intra-modal attention due to the sparseness of
radar point clouds.

3.2 Multi-Modal Decoder Proposals

SAMFusion generates initial object proposalsQMM based on a multi-modal BEV
feature map with an additional learned weighting scheme, prioritizing modalities
based on distance and weather. The distance weighting is encoded in the BEV-
based fusion of radar and LiDAR while additional weather robustness is gained
by enriching the multimodal queries with the gated modality. An example is
rainy weather, where LiDAR is compromised and can be enhanced by proposals
from camera and radar modalities.

In particular QMM are generated from LiDAR, radar and gated camera fea-
tures. An illustration of the methodology is presented in Fig. 2c.
Weighted Radar And LiDAR Feature Map Fusion. We leverage distance-
dependent sensor-specific ranging characteristics and employ a weighted fusion
approach to combine the enriched feature maps φ∗

L and φ∗
R into a joint feature

map φLR described by

φLR = ΓMLP (f(d, σ)φ
∗
L + (1− f(d, σ))φ∗

R) (6)

where f = exp((− d
2σ2 )

2), and d is the distance of each feature point from the
ego veichle and σ is a learned parameter.

The learned ΓMLP weighs LiDAR and radar features through a gaussian
mask with learned variance, which amplifies LiDAR at close range and suppresses
it at longer ranges to favor radar. The range is dependent on the learned guassian
variance. The resulting features φLR are thus modulated to contain LiDAR and
radar, weighted by their relative importance across the ROI.
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Late Gated Camera Features Fusion. To generate the final object proposal,
our method encodes the initial proposals extracted from the gated camera. Due
to the time-of-flight principle of the sensor, they encode distance within the cap-
tured intensity profiles. To encode detailed gated camera features φ∗

G a pillar-
based conditioning approach is used to transform the camera feature map into a
common BEV representation matching the distance-weighted feature map φLR.
The original LiDAR coordinates are transformed according to the 3D LiDAR
points into the camera representation, as described in Sec. 3.1 and are used to
sample camera features φ∗

G. Then, camera features are assigned to the corre-
sponding LiDAR pillars and the feature positions in the LiDAR BEV grid are
determined through average pooling, resulting in a BEV camera feature map
φG,BEV . Features φG,BEV and φLR are fused in an additive manner to obtain
a distance-encoded weighted feature map φfuse dependent on three modalities
by conditioning the ranging sensor feature maps with corresponding gated cam-
era features. Further, we apply class-dependent convolution layers onto φfuse to
extract object proposal centers based on maximum intensity values and obtain
the initial object proposals QMM . QMM sets the starting point for the decoder
refinement process through Multi-Modal-Predictive-Interaction layers obtained
from Yang et al. [83].

3.3 Training

The SAMFusion architecture, designed as a transformer network, follows the
learning methodology of Carion et al. [11] and Bai et al. [1]. It first matches labels
to predictions using Hungarian loss [33], then minimizes a loss composed of a
weighted sum for classification (Cross-Entropy), regression, and IoU. Detailed
loss formulations are provided in the supplemental material.

3.4 Implementation

We implement SAMFusion in PyTorch [52] and the open-source library MMDe-
tection3D [17]. We initialize the camera branch with a ResNet-50 [24] backbone
and pretrained Cascade Mask R-CNN [10] weights. The original RGB and gated
camera images are scaled with center-based cropping to [800,400] to reduce com-
putational cost. We define the voxels to be 0.075 m deep, 0.075m wide and 0.2 m
high. We restrict the LiDAR and radar point clouds to (0 m, 100m) in range
and to (-40 m, 40 m) in width. The height range is set to (-3m, 1m) and (-0.2m,
0.4 m) for LiDAR and radar respectively. We implement four stacked transformer
decoder layers, guided by RGB, gated camera, and LiDAR modalities with 200
initial multi-modal proposals. We train all models for 12 epochs in an end-to-end
manner with a batch size of 4 on NVIDIA V100 GPUs. Refer to the supplemen-
tal material for hyperparameter and training settings on the SeeingThroughFog
dataset [3] as well as a full latency comparison against multi-modal sensor fusion
methods, proving the real-time capabilities of our approach.
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Table 1: Evaluation of SAMFusions detection performance measured in AP and com-
pared to State-of-the-Art mono- and multi-modal methods based on the car and pedes-
trian classes on the SeeingThoughFog [3] test set.

Average Precision for Pedestrian class

Method Modality
Day Night

3D object detection BEV detection 3D object detection BEV detection
0-30m 30-50m 50-80m 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m

M3D-RPN [6] C 26.20 14.50 9.84 30.68 17.47 10.07 25.09 6.43 2.07 26.42 7.69 2.74
PatchNet [48] G 32.88 18.05 5.62 39.45 20.27 9.77 15.37 13.37 6.75 21.60 18.15 8.46
Gated3D [31] G 50.94 20.59 14.14 53.26 22.15 16.51 48.53 23.99 14.98 49.82 25.57 15.46
Stereo-RCNN [36] S 48.58 23.26 7.77 50.11 25.10 8.38 46.09 21.63 11.57 47.58 25.47 11.84
SECOND [80] L 70.75 51.81 19.34 71.05 52.51 20.28 69.04 48.09 14.56 70.51 49.23 15.32
MVXNet [62] CL 74.51 61.69 29.78 74.88 62.63 30.54 74.15 55.66 23.19 74.42 55.90 23.58
BEVFusion [42] CL 64.25 57.91 8.86 64.76 59.41 8.86 65.78 52.91 7.25 66.25 54.40 7.27
DeepInteraction [83] CL 78.01 66.59 28.55 77.98 66.67 28.54 71.98 61.10 20.53 71.96 61.29 20.72
SparseFusion [77] CL 68.27 60.18 16.89 68.18 60.32 16.92 61.11 57.09 12.67 61.21 57.24 12.66
SAMFusion CGLR 80.09 70.97 40.16 79.97 70.99 40.35 75.49 67.59 27.14 75.49 67.56 27.16

Average Precision for Car class

Method Modality
Day Night

3D object detection BEV detection 3D object detection BEV detection
0-30m 30-50m 50-80m 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m

M3D-RPN [6] C 53.21 13.26 10.52 60.80 16.16 10.52 51.18 20.76 2.73 52.53 21.39 2.74
PatchNet [48] G 23.91 10.86 7.34 24.87 11.33 7.84 23.74 16.79 7.16 25.15 17.76 8.29
Gated3D [31] G 52.15 28.31 14.85 52.31 29.26 15.02 51.42 25.73 12.97 53.37 29.13 13.12
Stereo-RCNN [36] S 54.17 17.16 6.17 57.92 17.69 6.26 47.36 17.21 13.02 53.81 18.34 13.08
SECOND [80] L 95.68 81.90 46.81 95.70 82.18 47.55 98.01 84.10 48.53 98.03 84.23 50.39
MVXNet [62] CL 96.29 84.09 50.35 96.30 84.09 51.83 96.36 85.99 49.79 96.36 86.06 51.17
BEVFusion [42] CL 95.30 86.86 11.43 95.43 87.38 11.24 93.89 84.84 12.17 93.95 85.31 12.48
DeepInteraction [83] CL 97.12 87.95 51.84 97.13 88.47 51.99 98.31 88.09 46.83 98.31 88.11 46.87
SparseFusion [77] CL 97.47 88.10 31.02 97.49 88.26 31.11 96.12 86.49 27.99 96.13 86.51 28.01
SAMFusion CGLR 97.25 89.50 50.68 97.26 89.69 50.80 98.77 88.91 44.40 98.82 89.16 45.46

4 Experiments

In this section, we present experiments validating the design choices of SAMFu-
sion. Subsection 4.1 introduces the metrics and datasets, Subsection 4.2 presents
ablations of the individual contributions and Subsection 4.3 showcases compar-
isons against existing state-of-the-art uni- and multi-modal 3D detection meth-
ods on day, night, foggy and snowy scenarios.

4.1 Dataset And Evaluation Metrics

This section describes the evaluation of SAMFusion on the SeeingThroughFog
dataset [3], consisting of 12,997 annotated samples in adverse weather conditions,
covering night, fog, and snowy scenarios in Northern Europe. Following [31], we
divide the dataset into 10,046 samples for training, 1,000 for validation, and 1,941
for testing. The test split is further divided into 1,046 daytime and 895 nighttime
samples, with respective weather splits. Additionally, we provide results for our
evaluations on the NuScenes dataset [8] in the supplemental material.
Evaluation Metrics. Object detection performance is evaluated according to
the metrics specified in the KITTI evaluation framework [21], including 3D-AP
and BEV-AP for the passenger car and pedestrian class. We incorporate 40 recall
positions [61] for the AP calculation. To match the predictions and ground truth
we apply intersection over union (IoU) [12] with an IoU of 0.2 for passenger cars
and 0.1 for pedestrians. Further, we follow [81] and report results according to
respective distance bins.
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Fig. 3: Qualitative results on 3D Object detection in adverse weather compared to
state-of-the-art multi-modal sensor fusion methods and ground truth (GT). While all
methods perform well in the daytime setting, SAMFusion outperforms other reference
methods in adverse and low light conditions (rain, snow, fog, twilight, night). In rainy
and snowy settings, other methods show missing (BEVFusion) or spurious (MVXNet,
DeepInteraction) detections, especially for the pedestrian class. In twilight and night,
the effects are more pronounced, with missing and erroneous detections in most objects.
Moreover, we see SAMFusion excel with far-away objects and pedestrian detection.

4.2 Ablation Experiments

In this subsection, we validate our methodological contributions shown in Ta-
ble 2a and Table 2b.

Table 2a explores ablations with varying numbers of input modalities using
the SAMFusion architecture. Configurations include single camera-LiDAR (CL),
gated-LiDAR (GL), camera-LiDAR-radar (CLR), gated-LiDAR-radar (GLR),
and camera-gated-LiDAR-radar (CLGR) inputs. These methods utilize queries
based on LiDAR and radar data with learned distance weightings. We focus our
results on the pedestrian class at extended distances, where detection is most
challenging due to sparse LiDAR points. The outcomes underscore the benefits
of integrating additional modalities, particularly noticeable during both day and
night conditions.

Performance comparisons between single camera modalities with passive RGB
and active gated imaging (GL and CL) show distinct advantages under different
lighting conditions. In daylight, the inclusion of RGB color information in CL
provides a performance boost of 2.85 AP-points within the 50 m to 80 m range.
Conversely, at night, the superior SNR of active illumination in GL enhances de-
tection, yielding improvements of +1.08AP in mid-range and +3.45 AP in long-
range distances. Integrating both camera technologies in the CGL configuration
leverages the strengths of each, delivering enhanced performance across day and
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Fig. 4: We show qualitative results on different sequences (rows) of the proposed
method and reference approaches (columns). On the left the ground truth is illustrated
with red bounding boxes, followed by the proposed SAMFusion approach, BEVFu-
sion [42], MVXNet [62] and DeepInteraction [83].

night settings. The addition of radar data further amplifies overall performance,
although the absence of the gated camera slightly diminishes night-time efficacy.

The optimal results manifest when all four modalities (CGLR) are used, cap-
italizing on the unique strengths of each sensor to bolster the architecture’s re-
silience across diverse lighting and adverse weather conditions. This configuration
also benefits from leveraging proposals generated from all involved modalities.

Further, in Table 2b, we extend our validation to assess the impact of our fu-
sion technique beyond mere modality integration. We investigate the efficacy of
depth-based transformations, weighted BEV maps, and various modal proposal
strategies. The incremental inclusion of these methodological enhancements cor-
relates with notable performance improvements, indicating that simply stack-
ing modalities is insufficient for maximizing results. For instance, incorporating
multi-modal proposals elevates night-time pedestrian detection by 15.2% over
solely point cloud-based proposals. Additionally, our distance-aware weighting
mechanism, ΓMLP , further boosts detection capabilities by up to 20.7%. No-
tably, proposals utilizing gated imaging data yield a larger improvement margin
than those based on color data, due to their inherent distance encoding, which
facilitates superior geometrical localization.
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Table 2: We measure the individual method contributions on the most difficult pedes-
trian class. Table 2a ablates the addition of new modalities as input and in the proposal
generation. We observe that adding beneficial sensor modalities improves pedestrian
detection reliability, especially in low light conditions. Fusing both cameras in the adap-
tive blending module boosts overall detection quality of small objects due to detailed
camera specific feature maps with significant information content in far distances. Table
2b ablates the proposal modality configurations and the depth-based transformations
in the encoder and the learned Γ -weighting for LiDAR-radar-fusion. Object detection
results are evaluated based on the 3D AP metric explicitly for the pedestrian class and
the most relevant far distance from 50-80m.

(a) Ablation of Input Modality configurations.

Input Proposal Day Night
Modality Modality 3D object detection 3D object detection

30-50m 50-80m 30-50m 50-80m

A
b
la

t
io

n

CL L 66.59 28.55 61.10 20.80
GL L 65.59 26.89 63.25 22.11

CGL L 66.88 28.94 64.17 22.34
CLR LR 69.06 35.02 65.97 20.95
GLR LR 69.52 32.17 67.05 24.40

CGLR LR 69.98 35.60 67.22 26.85
CGLR GLR 70.99 40.16 67.56 27.14

(b) Ablation of SAMFusion components.

Input Depth-based Proposal Day Night
Modality Transformation Modality ΓMLP

C G R L 50-80m 50-80m

A
b
la

t
io

n

CGLR ✗ ✗ ✗ ✗ ✓ ✗ 28.94 22.34
CGLR ✗ ✗ ✗ ✓ ✓ ✗ 29.48 23.02
CGLR ✓ ✗ ✗ ✓ ✓ ✗ 29.49 24.01
CGLR ✓ ✗ ✗ ✓ ✓ ✓ 35.60 26.85
CGLR ✓ ✓ ✗ ✓ ✓ ✓ 36.19 22.79
CGLR ✓ ✗ ✓ ✓ ✓ ✓ 40.16 27.14

Table 3: Detection performance of SAMFusion measured in AP compared to multi-
modal methods in challenging weather conditions, evaluated on the car and pedestrian
classes of weather test splits from [3]. We achieve significant performance increases
shown in the last row of each Table.

Average Precision for Pedestrian class Average Precision for Car class

Method Modality
Snow Fog Snow Fog

3D Object Detection 3D Object Detection 3D Object Detection 3D Object Detection
0-30m 30-50m 50-80m 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m

MVXNet [62] CL 76.23 59.73 25.83 73.89 50.98 16.73 95.82 86.02 50.28 92.81 84.62 52.30
BEVFusion [42] CL 71.12 62.61 10.01 76.24 58.04 8.61 92.55 89.74 10.79 92.20 84.04 13.97
DeepInteraction [83] CL 72.91 57.56 18.38 66.62 50.32 10.64 95.36 82.05 56.21 95.44 83.55 49.30
SparseFusion [77] CL 73.33 66.84 19.87 79.25 58.39 17.05 96.79 91.35 32.11 95.81 87.71 25.16
SAMFusion CGLR 87.44 80.51 41.45 83.18 66.96 34.31 97.36 93.06 56.22 96.50 92.41 52.99
Improvement in AP +11.2 +13.6 +15.62 +3.9 +8.5 +17.2 +0.5 +1.7 +0.01 +0.7 +4.6 +0.7

4.3 Assessment

We compare SAMFusion against nine state-of-the-art methods, including one
monocular camera 3D object detection method [6], two gated camera methods
[31, 48], one stereo camera approach [36], one LiDAR approach [80], and four
LiDAR-RGB fusion methods [42,62,77,83]. The results are summarized in Table
1 and further qualitative assessments are presented in Figure 3 and 4, with
reported detections in both BEV and perspective view.

SAMFusion outperforms all state-of-the-art multi-modal methods in pedes-
trian detection under adverse weather and varying lighting conditions. Partic-
ularly in the far distance range of 50m to 80m, SAMFusion achieves margins
of up to 34.85% during the day and 17.03% during the night for 3D pedestrian
detection. Additionally, pedestrian detection performance increases in mid-range
distances by 10.6%. These improvements can be attributed to the enhanced vis-
ibility at night arising from additional active sensors, but also to their effective
incorporation through a multi-modal distance-based weighting scheme.
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Car detection improves slightly. This is due to labeling bias in the car category
for 3D annotations, which prioritize precision over completeness. Objects with
fewer than five LiDAR points were marked as "don’t care", making it difficult
to measure improvements in such challenging cases. For pedestrians, a different
strategy focusing on completeness was employed, thereby providing a greater
amount of challenging ground truth labels not available for the car category.

Adverse Weather Evaluation. Table 3 validates the proposed method in ad-
verse weather, like snow and fog. State of the art LiDAR-RGB methods struggle
with reduced visibility and back-scatter in adverse weather, causing such fusion
approaches to perform significantly worse than in clear conditions, despite the
relatively simple scene configurations. Relative to these baselines, SAMFusion
achieves improvements of up to 13.6AP (20.4% relative) for pedestrians at mid-
range and 15.62AP (60.51% relative) at long-range compared to the second-best
(LiDAR and RGB) method in snowy scenes. In foggy scenes SAMFusion achieves
high margins of up to 17.2AP (101.2% relative) for pedestrians. For the car class
in foggy conditions, it achieves improvements of up to 4.6AP (5.2% relative).

Detection performance in adverse weather correlates with scene difficulty.
The relative improvement in performance compared to Table 1 can be explained
by the reduced number of road users in these weather splits simplifying the
general task at hand as less people participate in road traffic.

5 Conclusion

We propose SAMFusion, a multi-modal adaptive sensor fusion method for robust
3D object detection in adverse weather for autonomous driving. Our approach
enhances the conventional camera-LiDAR perception stack with gated camera
and radar sensors, significantly improving performance in low-light and adverse
weather scenarios, particularly for detecting narrow-profiled and vulnerable road
users. SAMFusion employs depth-based adaptive blending of sensing modali-
ties in conjunction with a learned multi-modal, distance-weighted decoder-query
mechanism that leverages sensor-specific visibility over distance. We validate our
method on the challenging SeeingThroughFog dataset [3], achieving an improve-
ment of 17.2AP points for pedestrians in dense fog and 15.62AP points in
heavy snow at long range. Future work will incorporate additional tasks such as
planning and propagating uncertainty in adverse weather for improved decision-
making and trajectory planning, further enhancing the robustness and effective-
ness of autonomous driving systems in challenging conditions.
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