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In this supplemental document, we provide additional information in support
of the findings in the main manuscript. Specifically, Sec. 1 provides additional
training details, and Sec. 2 lists further information about the SAMFusion net-
work architecture. In Sec. 3, we present additional evaluations on the NuScenes
dataset [4] in good weather conditions to compare against state-of-the-art meth-
ods. We provide a runtime evaluation in Sec. 4 and include additional qualitative
results of SAMFusion in adverse weather in Sec. 5.
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1 Additional Training Details

We train our method SAMFusion in an end-to-end manner for 12 epochs, starting
from a pretrained Cascade Mask R-CNN [6] checkpoint trained on the COCO
[17] and NuScenes [4] benchmarks. We initialize both camera backbones equally
with Cascade Mask R-CNN [6] checkpoints for the camera branch while learning
the LiDAR and radar weights from scratch. We train all four modality-specific
backbones, the transformer encoder layers, the multi-modal object queries and
the transformer decoder layers without freezing any model components.

During training we augment samples and apply random rotations with a
range of r ∈ [−0.4, 0.4], random scaling with a factor of s ∈ [0.9, 1.1] and random
translation with standard deviation 0.5 in x, y and z direction. Additionally, we
* These authors contributed equally to this work.
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apply random horizontal flipping following [1]. We train with a class-balanced
resampling strategy presented in CBGS [25] to balance the class distribution
for the SeeingThroughFog dataset [2]. Following [25] our training uses the Adam
optimizer with cyclic learning rate policy, with max learning rate 4×10−4, weight
decay 0.0001 and momentum 0.85 to 0.95.

1.1 Additional Training Details on NuScenes

For the experiments on the NuScenes dataset [nuscenes] we make use of the offi-
cial splits, containing 700 and 150 scenes for training and validation respectively,
where each sequence contains roughly 40 samples.

We modify our model and remove the gated camera branch due to the lack
of this modality in the dataset. Moreover, we don’t make use of the stereo-based
depth estimation method for the depth-based transformation in the RGB camera
branch due to absence of stereo pairs. Instead, we rely on projecting sparse
LiDAR points and densifying per-pixel using a depth-completion algorithm [13].

Due to the absence of the gated branch and the stereo-based depth estimation
in the structure of our model during NuScenes experiments, we are able to load
pre-trained weights from [23], specifically RGB and LiDAR branches and MMPI
layers. We train the radar branch and the multi-modal fusion from scratch to
initialize object queries, while freezing the RGB branch Cascade Mask R-CNN
backbone. We train our method in an end-to-end fashion for 6 epochs, with cyclic
learning rate policy, with max learning rate 2 × 10−4, weight decay 0.0001 and
momentum from 0.85 to 0.95.

1.2 Training of Depth Prediction Network

We train the depth estimation method [14] including both RGB stereo images
provided in the SeeingThroughFog [2] dataset. These depth maps are later used
for the projection of camera features. We supervise the training process with
disparity values D determined by equation

D =
b · fB

dLiDAR · p
, (1)

and derived depth values dLiDAR from the LiDAR point cloud as ground
truth. The focal length fB , baseline b and pixel pitch are read from the calibration
files of [2].

We train the architecture on the SeeingThroughFog [2] dataset containing
10,046/1,000/1,941 samples for training, validation and testing, respectively. The
training is performed for 10 Epochs, applying a cyclic learning rate policy with
maximum at 8 · 10−6. The final depth map dCRE is obtained by rearranging
Eq. 1 to

dCRE =
b · fB

DCRE · p
, (2)

with the parameters fB , b from before and the disparity map output DCRE .
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1.3 Training of Baseline Methods

To provide a fair comparison, we apply identical training procedures to all base-
lines on the same training, validation and testing datasets [2] as SAMFusion.
The camera-based monocular methods M3D-RPN [3], PatchNet [19], Gated3D
[12], and Stereo-RCNN [15] are implemented from the corresponding open source
repositories, with hyperparameters tuned during training on the SeeingThrough-
Fog dataset [2]. In total, we train the mono-LiDAR method SECOND [22] as
well as the multi-modal architectures MVXNet [21], BEVFusion [18], DeepIn-
teraction [23] and utilize the MMDetection3D framework [9]. For the best possi-
ble results, all methods are initialized from their publicly available checkpoints.
Those checkpoints were either based on the NuScenes [4] or Kitti [11] datasets.

2 Additional Network Details

In this section, we provide detailed descriptions of the network architecture.

2.1 Multi-Modal Feature Weighting Module

In Tab. 1 we provide details of our distance-aware weighting network for the
multi-modal query initialization, fusing camera and ranging sensor feature maps.

Multi Modal Feature Map Weighting

Layer # Component Sigmoid mask Output Shape

0a Convfuser (φ∗
L, ΓMLP ) ✓ 128× 180× 180

0b Convfuser (φ∗
R, ΓMLP ) ✓ 128× 180× 180

1 Convfuser (0a, 0b) ✗ 128× 180× 180

Combined feature map φfuse Shape: 128× 180× 180

Feature map blending module
Layer # Layer Description Output Shape
Convfuser Conv2d (3x3) 128 × 180 × 180

GroupNorm (num_groups=16)
ReLU
Conv2d (3x3)
GroupNorm (num_groups=16)
ReLU
Conv2d (3x3)
GroupNorm (num_groups=16)
ReLU

Table 1: Additional architecture details of our feature fusion module, combining all
four modalities with distance encoding. We present the overall structure of the feature
map blending module (left). This layer is initialized with sigmoid weights ΓMLP and
applied to the ranging sensor feature maps φ∗

L and φ∗
R from radar and LiDAR sensors.

On the right we present the detailed structure of the Convfuser weighting module.

We encode distance cues into the LR weighting scheme by fusing both en-
riched feature maps φ∗

L and φ∗
R. The LiDAR feature maps are weighted by a

gaussian mask with learned variance while the radar features are weighted by
the inverse of the same mask. Accordingly, we prioritize φ∗

L features at close
distances while favoring φ∗

R at far distances. Our weighting scheme learns to
modulate LiDAR and radar feature maps according to the ΓMLP weights per
feature coordinate.
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3 Additional Quantitative Evaluation

To further evaluate the SAMFusion architecture in comparison to state-of-the-
art multimodal methods on larger, non adverse weather datasets, we evaluate
our method on the NuScenes dataset [4], utilizing the NuScenes detection score
(NDS) [4] and mean Average Precision (mAP) [10] metrics across 10 classes: car,
truck, bus, trailer, construction vehicle, pedestrian, motorcycle, bicycle, barrier,
and traffic cone.

We summarize our results in Tab. 2. Our method is able to achieve similar
performance to state-of-the-art models like DeepInteraction [23] and BEVFusion
[18] on non-adverse weather scenarios, showcasing that large detection improve-
ments on adverse weather don’t compromise performance on normal conditions.

We highlight that our method focuses on autonomous driving edge cases,
tackling situations where the perception task is challenged by adverse weather
and long detection ranges. In this regard, the NuScenes dataset showcases only
a small pool of samples characterized by harsh weather. Moreover, the detection
range of NuScenes is limited to 50 meters, while our method showcases large
improvements over previous state-of-the-art methods specifically on ranges above
this threshold (50-80 m). The limited range of the dataset samples does not allow
SAMFusion to exploit the advantages of longer ranges of the radar modality
compared to LiDAR, and due to the absence of the gated camera modality, our
method can only rely on these additional sparse radar point clouds compared to
other methods. Evaluating the method between 20-50m for the NuScenes dataset
we document an improvement of 2.2% AP and 1% NDS. The numbers are shown
in Table 3. For the NuScenes dataset it is noted in the literature that many
NuScenes radar detections give no information about the height at which they
were received, and that radar detections contain objects which are not relevant
for the task at hand [20], such as ghost and irrelevant objects, as well as ground
detections, all of which would require an additional pre-processing step or data
augmentation step to learn to handle. However, training in harsh conditions
on the SeeingThroughFog dataset presents plenty of situations where sensor
modalities fail, motivating the usage of the robust radar modality. In general,
radars return strong echoes from distant metallic objects like cars, but their
low angular resolution of 1◦ in the Seeing Through Fog dataset hinder accurate
lateral positioning, impairing long-range detection box regression. Adding radar
data improves car recall but lowers the MSE of bounding boxes. Both properties
are reflected in the mAP score and therefore, explain diminishing margins in
far distances presented in the main document. The NuScenes dataset includes
perfect LiDAR and camera data which rarely motivates the necessity of radar
data and, therefore, of an additional modality.

4 Runtime Evaluation

Next, we present runtime evaluations. Our full method is bottlenecked by the
feature extraction backbones and optimized in our prototype system with one
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Method Modality mAP ↑ NDS ↑
FUTR3D [7] CL 64.5 68.3
AMVP [24] CL 67.1 70.8

AutoAlignV2 [8] CL 67.1 71.2
TransFusion [1] CL 67.5 71.3
BEVFusion [16] CL 67.9 71.0
BEVFusion [18] CL 68.5 71.4

DeepInteraction [23] CL 69.9 72.7
SAMFusion CLR 68.6 71.7

Table 2: Results on nuScenes dataset validation split.

Method Modality mAP ↑ NDS ↑
DeepInteraction [23] CL 56.6 64.6

SAMFusion CLR 58.8 65.6

Table 3: Results on nuScenes dataset validation split for detections on the 20-50
meters range.

Model Inference time [ms] ↓ Frames per Second ↑
MVXNet [21] 74.0 13.5

BEVFusion [18] 57.4 17.5
DeepInteraction [23] 48.3 20.7

SAMFusion 70.7 14.3

Table 4: Inference time comparison to existing multi-modal detection methods.

GPU for each feature extractor. Our plain pytorch implementation of SAMFu-
sion without onnx optimization operates at 14.3FPS on a Nvidia A100 GPU
with a batch size of one. Therefore, SAMFusion is matching the sampling rate
of the LiDAR sensor operating at 10Hz and hence provides real-time detection
capabilities. We load and preprocess the stereo depth maps for the cross-modal
transformation in a parallel step on a separate fifth GPU to optimize compu-
tational efficiency during adaptive blending. We present a comparison of the
inference time to state-of-the-art sensor fusion reference methods which use less
modalities in Tab. 4.

5 Additional Qualitative Evaluation

In this section, we provide additional qualitative examples in Fig. 5, 6 and 7. For
all methods, the same confidence threshold of 0.15 is applied and the detections
are projected into the left RGB camera image (1920 × 1080). In comparison to
[18, 21, 23], we attain a higher recall and fewer false positives.
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In particular, the first row of Fig. 6 demonstrates robust detections in strong
fog due to the gated camera and radar sensors, where camera-LiDAR architec-
tures fail due to backscatter and loss of contrast. The improvement is notable,
especially for narrow-profile, low-contrast objects such as pedestrians, where
SAMFusion yields higher detection accuracy. The bounding box orientations are
also better aligned for our method, as can be seen in Fig. 7. This emphasizes the
precise geometric understanding caused by the transformations in the adaptive
blending module.

Camera-LiDAR approaches such as [1, 23, 5, 18, 16, 21] are able to detect
narrow-profiled objects at close distances, but struggle with recognizing objects
at far distances, especially in low light conditions. This is addressed by our
method, due to the integration of active sensors with night vision abilities. The
active illumination of the gated camera offers especially high contrast at long
ranges. Fig. 5 validates SAMFusion detection reliability, comparing it to state-of-
the-art sensor fusion architectures [18, 21, 23]. We observe multiple missed detec-
tions correlating with increased distance for all camera-LiDAR-based methods
as shown in the first row of Fig. 5. This results from sparse LiDAR point clouds
in far distances with low angular resolution, leading to few points per-object,
especially for pedestrians, and decreased signal-to-noise-ratio in passive RGB
captures due to limited scene illumination from headlights alone. In particular,
light-absorbing dark clothes on pedestrians reduce contrast for camera-based de-
tections even further. Meanwhile, SAMFusion relies on four sensor inputs with
improved night vision due to the gated camera equally illuminating the scene
and suppressing backscatter efficiently. This reduces the number of random false
positives due to increased information density.
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Table 5: Nine additional sequences (rows) with qualitative results compared across
reference approaches (columns). The ground truth is illustrated on the left with red
bounding boxes, followed by SAMFusion, BEVFusion [16], MVXNet [21] and DeepIn-
teraction [23].
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Table 6: Nine additional sequences (rows) with qualitative results compared across
reference approaches (columns). The ground truth is illustrated on the left with red
bounding boxes, followed by SAMFusion, BEVFusion [16], MVXNet [21] and DeepIn-
teraction [23].



SAMFusion: Sensor-Adaptive Multimodal Fusion Method 9

Table 7: Nine additional sequences (rows) with qualitative results compared across
reference approaches (columns). The ground truth is illustrated on the left with red
bounding boxes, followed by SAMFusion, BEVFusion [16], MVXNet [21] and DeepIn-
teraction [23].
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