
Radar Fields:
Frequency-Space Neural Scene Representations for FMCW Radar

- Supplementary Information -
David Borts

dborts@princeton.edu
Princeton University

Erich Liang
erliang@princeton.edu
Princeton University

Tim Brödermann
tim.broedermann@vision.ee.ethz.ch

ETH Zürich

Andrea Ramazzina
andrea.ramazzina@daimler.com

Mercedes Benz

Stefanie Walz
sefanie.walz@daimler.com

Mercedes Benz

Edoardo Palladin
edoardo.palladin@torc.ai

Torc Robotics

Jipeng Sun
js2694@princeton.edu
Princeton University

David Bruggemann
brdavid@vision.ee.ethz.ch

ETH Zürich

Christos Sakaridis
csakarid@vision.ee.ethz.ch

ETH Zürich

Luc Van Gool
vangool@vision.ee.ethz.ch

ETH Zürich

Mario Bijelic
mario.bijelic@princeton.edu

Princeton University, Torc Robotics

Felix Heide
fheide@princeton.edu

Princeton University, Torc Robotics

This document provides further detail and additional results to
support the findings of the main manuscript. We give detailed
descriptions of data preprocessing and occupancy estimation, model
architecture and training, 3D reconstruction, evaluation metrics,
and dataset acquisition.
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1 ADDITIONAL DETAILS ON METHOD,
PREPROCESSING AND TRAINING

In this section, we specify key implementation details of our al-
gorithm, including data preprocessing, model architecture, and
training.

1.1 Data Preprocessing
Each sequence in our dataset consists of multiple data streams -
GNSS, radar, LiDAR, and RGB camera data. Observations in these
modalities are not necessarily synced, so we match the data points
from each data stream to its temporally closest radar data point.
Each radar data point accepts only one data point match per modal-
ity, so data points too far away from any radar observation are
discarded. This way, we have corresponding GNSS, LiDAR, and
RGB data for any radar frame that we provide as input to our model.

To fit any given scene within a finite bounding box, we rescale
the 3D scene uniformly across all dimensions so that it fits within a
unit bounding box with corners of (0, 0, 0) and (1, 1, 1). We rescale
all scene bounding box axes uniformly to preserve relative scale,
with the global scale factor set by the largest axis.

For each ground truth radar FFT frame we train on, we omit
the inner-most 75 range-azimuth bins from training supervision
(approximately 3 meters around the sensor). This is because, in
our collected radar frames, there is a persistent intense reading in
these inner bins due to the radar detecting the metallic roof of our
data collection vehicle. Because this high intensity circle does not
correspond to meaningful scene information and is not visible in
other frames, we must ignore the data within these bins to avoid
potential artifacts.

Finally, we apply a single global noise floor to all frames in the
sequence before training to remove excessive sensor noise from the
supervision signal, especially at regions corresponding to empty
space in data.
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1.2 Computational Occupancy Estimator
During data preprocessing, we also iterate over each ground truth
FFT frame in a given input sequence, estimating a probability of
occupancy for each range-azimuth bin in that frame. These per-
frame probability distributions are stored alongside the processed
ground truth frames, and used as an additional supervision signal
for our neural occupancy field at train time. To do this, we design a
computational occupancy estimator O(𝑃𝑟 ) to extract the presence
of objects from raw FFT data.

First, we filter out specular sensor saturation artifacts and other
noise by computing a dynamic, per-bin noise threshold for each
bin in the FFT signal 𝑃𝑟 (𝜙,𝑏). Note that this differs from how
we preprocess the ground truth FFT signal, where we instead ap-
ply a lower global noise threshold, as we do not wish to remove
reflectance-dependent artifacts from the FFT. We first estimate the
noise threshold per azimuth direction 𝜙 , 𝑛𝜙 and per range bin 𝑏, 𝑛𝑏
independently, such that:

𝑛𝜙 = median (𝑃𝑟 (𝜙,𝑏)) (over all bins 𝑏 with fixed 𝜙) (1)
𝑛𝑏 = median (𝑃𝑟 (𝜙,𝑏)) (over all azimuth angles 𝜙 with fixed 𝑏)

(2)

We then compare these per-azimuth and per-range thresholds pair-
wise to get a grid of unique thresholds for each azimuth-range bin.
The final noise threshold 𝑇 is

𝑇 (𝜙,𝑏) = 2 ∗max
(
𝑛𝜙 , 𝑛𝑏

)
. (3)

This allows us to account for range-dependent noise and specular
highlights. Specular highlights occur across ranges for fixed az-
imuth angles, increasing the received median power per send beam
as a scene reflector saturates the sensor. Received signal intensity
is also range-dependent due to the inverse square law, as illustrated
in Eq. 7 of the main manuscript, meaning that a noise estimate per
distance is useful for estimating occupancy. We apply our dynamic
threshold 𝑇 ,

𝑃 ′𝑟 (𝜙,𝑏) =
{
𝑃𝑟 if 𝑃𝑟 (𝜙,𝑏) ≥ 𝑇 (𝜙,𝑏)
0 otherwise

(4)

where 𝑃 ′𝑟 is the thresholded measurement. Next, we iterate over
each range-azimuth bin of the thresholded FFT 𝑃 ′𝑟 and estimate a
probability of occupancy for that bin using a simple Bayesian update
rule and occlusion model, building on the algorithm proposed in
[Werber et al. 2015]. In particular, we compute a probability of
occupancy 𝑝𝑟 for each FFT bin,

𝑝𝑟 (𝜙,𝑏) = 𝑃 ′𝑟 (𝜙,𝑏) exp
(
𝛿 (𝑃 ′𝑟 (𝜙,𝑏) − 𝑃𝑜 )

)
, (5)

assuming that the received power is normalized such that 𝑃 ′𝑟 ∈
[0, 1], with 𝛿 and 𝑃𝑜 being hyperparameters governing the sensi-
tivity of the estimate. We then combine the above equation with
an occlusion model, such that the occupancy probability at a given
range also depends on the signal intensity at closer ranges. In other
words, an FFT bin with a large signal “casts a shadow” of occupancy
on bins behind it that attenuates over distance, thereby modeling
occlusion and filling out gaps in the measurement with,

𝑝𝑛 (𝜙,𝑏) = max
(
𝑝𝑟 (𝜙,𝑏), 𝑃𝑟 (𝜙,𝑏𝑝 ) exp

(
Δ𝑥

Δ𝑏

))
, (6)

with Δ𝑥 = 𝑏𝑝 − 𝑏, (7)

and 𝑏𝑝 being the bin at which the last strong reflection from an
object was detected, such that 𝑏𝑝 < 𝑏. We decay the signal over
distance Δ𝑏. Finally, we use 𝑝𝑟 to perform a Bayesian update of our
occupancy probabilities. Our occupancy probabilities O(𝑃𝑟 ) are all
initialized to 0.5 and updated as

O(𝑃𝑟 ) =
𝑝𝑟𝑝𝑐

𝑝𝑟𝑝𝑐 + (1 − 𝑝𝑟 ) (1 − 𝑝𝑐 )
, (8)

with 𝑝𝑐 being the previous probability estimate and 𝑝𝑟 being the
new estimate computed using our above equations.

Finally the predicted O(𝑃𝑟 ) allows us to directly supervise the
predicted occupancy of our model. Note that, during training, for
each sampled bin in a specific frame, we only supervise predicted
occupancy with the computed O(𝑃𝑟 ) from that same frame, avoid-
ing artifacts from resampling a spherical radar representation from
a Cartesian global occupancy map. In this sense, O(𝑃𝑟 ) is local,
computed per-frame without input from any other frames, and su-
pervises the reconstruction for one frame only. It is fundamentally
different from our 3D learned occupancy field, which synthesizes
information across frames into a unified representation.

A visualization of O(𝑃𝑟 ) is shown in Fig. 2, while the benefit of
using O(𝑃𝑟 ) as an additional supervision signal is shown in Fig. 1.

1.3 Position and Azimuth Encoding
Before querying our neural networks with any position or view
angle information, we apply input encodings to improve training
convergence. For 3D positions (𝑥,𝑦, 𝑧), we apply a multiresolution
hash grid encoding [Müller et al. 2022] with final grid resolution of
512× 512× 512. We use 16 layers, with the per-level scale computed
as exp( 𝑙𝑜𝑔2 (𝑟/16)15 ), where 𝑟 is the resolution. For view angle, we
encode it via spherical harmonics with 4 frequency bands.

1.4 Sampling
During each training iteration, we use a batch size of 16 randomly
sampled radar frames from any given input sequence. From each
frame in a batch, we sample 200 random azimuth angles and 900
bins per-azimuth from that frame. For each sampled azimuth, we
super-sample 9 additional rays within the elliptical cone of sensor
beam divergence to perform physics-based importance sampling.

1.5 Model Architecture and Training Details
We utilize TCNN [Müller et al. 2022] as the backbone for our neural
networks and input encodings to accelerate optimization. We use
the ADAMW optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.999. We also
use a learning rate schedule, with an initial learning rate of 0.001
that decreases exponentially such that it reaches 0.0001 by the final
training iteration. For our experiments, training is done over 500
iterations on a single NVIDIA A100.

1.6 3D Voxel Grid Reconstruction
To generate voxel grids from our model, we query our occupancy
field with an evenly-spaced grid of 360 by 360 by 16 points in 3D
world space, and threshold the predicted occupancies to determine
voxel presence. Any grid cell whose occupancy probability is 0.5 or
greater is considered occupied. We then apply an additional mask to
the voxel grid, pruning any occupied voxels whose corresponding
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Figure 1: Ablation experiment demonstrating the benefits of regularizing our neural occupancy field with an estimated ground
truth occupancy O(𝑃𝑟 ). The figure is divided into three sections, from left to right: the leftmost column displays the raw radar
waveform; the middle section presents the predicted 𝛼𝑅 with (left) and without (right) O(𝑃𝑟 ) supervision; and the rightmost
section illustrates the differences in predicted 𝜌𝛾 . Notably, the absence of additional occupancy supervision results in the
absorption of specular highlights into the occupancy field and, therefore, the loss of its geometric interpretation. Supervising
the occupied space directly helps to separate these specular effects into the reflectance field.

𝜌𝛾 at that location is below a threshold. The motivation behind this
last technique is that, at locations in space where the reflectance is
too low, the sensor would be unable to discern any occupancy.

2 EVALUATION DETAILS
2.1 FFT Reconstruction
We evaluate signal reconstruction performance using PSNR and
RSME on the FFT data. The FFTs are represented in Cartesian
coordinates, centered at the radar location, and are three-channel
tensors with normalized values in the 0 to 1 range. We compute
PSNR and RSME between two images 𝑋 and 𝑌 as

PSNR(𝑋,𝑌 ) = 10.0 log
(

1
MSE(𝑋,𝑌 )

)
, (9)

RSME(𝑋,𝑌 ) =
√︁
MSE(𝑋,𝑌 ). (10)

2.2 Ground-truth Point Cloud Generation
To evaluate the scene reconstructions of our method, we first gener-
ate a point cloud by thresholding the ground truth radar FFTs and
accumulating the resulting points from all frames in the sequence.
However, estimating ground truth geometry from raw waveform
data is notably challenging due to low angular sampling, entangled
multipath effects, and sensor noise. Consequently, we also derive
ground truth scene geometry using LiDAR data, which provides a
resolution an order of magnitude higher than that of radar. We ag-
gregate LiDAR data across the entire sequence to establish a dense
and accurate ground truth. This LiDAR-derived geometry is then
refined by filtering and projecting it into the radar frame, where it
is combined with the sparse, yet robust and informative radar point

cloud. Specifically, we further refine this point cloud by retaining
only those LiDAR points that are within a maximum distance of
0.1 m from a corresponding radar point. By doing so, we ensure
that our evaluations of different methods are strictly confined to
areas covered by both LiDAR and Radar sensors, allowing for a
precise comparison of their effectiveness in scene reconstruction.
This high resolution and refined point cloud is used only during
evaluation and not for training the scene representation.

2.3 BEV Occupancy Reconstruction
The metrics used to evaluate the BEV Occupancy Reconstruction
are the Chamfer Distance (CD) and Relative Chamfer Distance
(RCD) between the generated 2D ground truth point cloud and
the point cloud obtained by applying peak-finding to the predicted
occupancies. Chamfer Distance between two point clouds 𝑋 and
𝑌 is computed as the sum of the distances from each point in X to
its nearest neighbor in Y, plus the sum of the distances from each
point in Y to its nearest neighbor in X. We compute CD and RCD as

𝐶𝐷 (𝑋,𝑌 ) = 1
2

(
1
𝑥

∑︁
𝑥∈𝑋

𝑑𝑖𝑠𝑡𝑃𝑟𝑒𝑑𝑥 + 1
𝑦

∑︁
𝑦∈𝑦

𝑑𝑖𝑠𝑡𝐺𝑇𝑦

)
(11)

𝑅𝐶𝐷 (𝑋,𝑌 ) = 1
2

©« 1𝑥
∑︁
𝑥∈𝑋

𝑑𝑖𝑠𝑡𝑃𝑟𝑒𝑑𝑥

∥𝑥 ∥22
+ 1
𝑦

∑︁
𝑦∈𝑌

𝑑𝑖𝑠𝑡𝐺𝑇𝑦

∥𝑦∥22
ª®¬ (12)

with 𝑑𝑖𝑠𝑡𝑃𝑟𝑒𝑑𝑥 = min𝑦∈𝑌 ∥𝑥 − 𝑦∥22, 𝑑𝑖𝑠𝑡𝐺𝑇𝑦 = min𝑥∈𝑋 ∥𝑥 − 𝑦∥22.
The capture setups for our experiments exhibit variations in the

Field of View (FoV) for both LiDAR and Radar sensors. Notably, the
radar provides data across a complete 360° field, whereas the LiDAR
focuses more densely on a narrower 120° field, primarily directed
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Figure 2: Visualization of O(𝑃𝑟 ). from left to right, the sequence begins with the raw input FFT 𝑃𝑟 , followed by the thresholding
results 𝑃 ′𝑟 , the estimated O(𝑃𝑟 ), and finally the our neural occupancy field prediction 𝛼𝑅 . The thresholding effectively removes
arbitrary noise and specular reflections from 𝑃𝑟 . The final estimate 𝛼𝑅 not only correlates well with O(𝑃𝑟 ) but also achieves
sharper detail, especially at greater distances, as it can integrate occupancy signals from across frames to recover a more
complete scene representation. For example, note how most vehicles are only partially resolved in O(𝑃𝑟 ), while 𝛼𝑅 captures
their silhouettes more clearly.

forward. This discrepancy in FoV coverage results in certain regions
where the LiDAR and radar data do not overlap. In these non-
overlapping areas, the refined ground truth point cloudmay contain
empty spaces due to the necessity of matching data from both
sensor types. Therefore, when matching predicted radar points to
the nearest accumulated refined ground truth point to compute
distance metrics, we exclude any predicted points that have no
ground truth points within 2 m. This way, we do not penalize radar
points outside the field of view of the LiDAR. However, this is no
longer an issue when matching ground truth points to predicted
radar points. As such, we only apply the 2 m maximum in the
former case, and not the latter case.

3 ADDITIONAL EXPERIMENTS
In this section, we present the results of additional experiments
performed with our method.

3.1 Decomposed Scene Reconstructions
In our model, we formulate predicted radar FFT intensity via a
physically-based decomposition of radar cross section 𝜎 into pro-
jected cross-sectional area𝛼 and one joint reflectivity and directivity
term 𝜌𝛾 . This introduces helpful inductive biases to improve model
performance, and our model is able to disentangle the two directly
from radar FFT data. See Fig. 3 for examples of this decomposition.

Note that in these scenes, highly metallic objects such as cars and
walls have high predicted reflectance.

Here we provide additional results that validate the proposed
method for reconstructing 2D and 3D geometries within outdoor
environments on multiple scenes in Fig. 4. Traditional radar point
clouds, which have undergone post-processing, offer a sparsity that
compromises the precision of scene reconstruction. Attempts to de-
duce bird’s eye view occupancy from these point clouds using a grid
mapping technique [Werber et al. 2015] do not successfully capture
accurate geometry. In contrast, our method capitalizes on the un-
processed frequency-space radar data, facilitating the production of
high-fidelity bird’s eye view occupancy, and remarkably precise 3D
geometry, despite the original data stemming from a standard 2D
radar scan. The absence of physics-based ray importance sampling
leads to a marked decrease in the quality of predicted occupancy,
to the extent that smaller entities, such as vehicles, may not be
consistently detectable. Moreover, without ray super-sampling, our
model cannot learn a unified 3D scene representation. This result
serves to corroborate the validity of the modeling approach we
have introduced.
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Figure 3: Decomposed occupancy and reflectance prediction. We report the predicted decomposition results on different scenes
(columns). Our proposed physics-based method disentangles the radar cross section 𝜎 into a geometry-dependent occupancy
term 𝛼 (2nd row) and a reflectance representation term 𝜌𝛾 (3rd row). By separating geometry from view-dependent material
reflectance, our model is capable of reconstructing the physical structure of a scene while also generating synthetic radar
signatures, a task that would be unfeasible without this disentanglement.

4 ADDITIONAL ACQUISITION AND DATASET
DETAILS

In this section, we provide additional information about the acqui-
sition setup that we mount on our test vehicle, and the dataset we
acquire with this setup.

Acquisition Setup. We list detailed sensor specifications in Ta-
ble. 1. Our custom acquisition setup is housed in a 3D computer-
aided design (CAD) representation of our waterproofed sensor
setup in Fig. 5. Two metal plates are mounted directly to the roof
of the car. The front plate provides support for the LiDAR and the
waterproof box. The rear plate supports the radar and is elevated
compared to the front one due to the natural curvature of the car
roof. All sensors are affixed to these plates using adhesive screws.
The waterproof box is constructed from metal with a plexiglass
front. To align the camera sensors vertically, the RGB camera is
elevated with an additional mounting piece. The processing unit
and other electrical components are secured on stationary steel in
the car trunk.

We utilize an NVIDIA Jetson Xavier AGX as the processing unit
for our sensors, it offers an 8-core ARM CPU with 32GB RAM
at a speed of 137GB/s. We store all raw data streams directly to
an onboard 2TB SSD and do all post-processing at a later stage,
separated from the recordings. The processor communicates with
the sensors using ROS 1, employing ROS wrappers provided by the
manufacturers to capture individual data streams.

Table 1: Multi-modal Sensor Setup.We capture amulti-modal
dataset with a radar sensor capable of capturing RAW radar
data, a LiDAR sensor, camera and IMU sensor. These are the
specifications of the sensorset mounted on the test vehicle,
as described in the main manuscript.

Modality Name Specifications

Radar Navtech CIR-DEV 4 Hz, range: 330 m, range resolution: 43.8 mm,
horizontal angular resolution: 0.9°

LiDAR RS-LiDAR-M1 10 Hz, range: 200 m, avg. angular resolution: 0.2°,
HFOV: 120°, VFOV: 25°, 75K points/scan

Camera TRI023S-CC 30 Hz, 8-bit RGB, 1920×1080, HFOV: 77°,
VFOV: 43°

GNSS&IMU simpleRTK2B Fusion 30 Hz, KF fusion, RTK accuracy: <10cm,

Our recording platform operates on a separate 12V battery, inde-
pendent of the car’s electrical system. While the camera, the Jetson
AGX, and the LiDAR operate on 12V, the radar requires 24V. To
address this disparity, an extra power converter is incorporated to
increase the battery output voltage specifically for the radar.

To minimize blurring of the lens caused by water droplets, a
hydrophobic coating was applied to both the acrylic glass window
of our waterproof box and the LiDAR cover glass, and they were
regularly wiped clean when recording in adverse weather.

Synchronization. We synchronize all internal clocks of our dif-
ferent sensors according to the procedure detailed below. Our com-
puter for recording data is connected to an online GPS time server
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Figure 4: Additional Results of Radar Fields for Scene Reconstruction.We further assess the proposedmethod for the reconstruc-
tion of 2D and 3D scene geometry in outdoor scenes (columns). Conventional post-processed radar point clouds, accumulated
in the second row, are too sparse to provide accurate scene reconstruction. Reconstructed bird’s eye view occupancy produced
by a grid mapping [Werber et al. 2015] from these radar point clouds fails to recover accurate geometry. The proposed method
relies on raw frequency-space raw radar measurements and achieves high quality bird’s eye view occupancy (fourth row),
and even accurate 3D geometry (third row) although the measurement itself is a conventional 2D radar scan. Notice that
the reconstructed voxel grid can also accurately represent the incline of the ground in the scenes in column 3 and column 4.
Without physics-based ray importance sampling (last row), the predicted occupancy decreases substantially such that smaller
objects like vehicles are not always resolved, validating our proposed model.
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Figure 5: Waterproof Sensor Setup. The front-facing LiDAR on the left with its stylized viewing cone and the separate scanning
radar on the right, as well as the GNSS antenna are waterproofed and mounted outside of the waterproof box. The camera and
GNSS/IMU module are mounted in a metal box with a plexiglas window towards the front. The metal box has additional cable
throughlets for the LiDAR, radar, and GNSS antenna cables, and is positioned lower than the radar to ensure that the radar
scans remain undisturbed.

through the network time protocol (NTP) and serves as the primary
clock. The radar is synchronized using NTP. The LiDAR and cam-
era are aligned using the precision time protocol (PTP) along with
software timestamping. The GNSS clock naturally synchronizes
with atomic clocks on GPS satellites.

Sensor Modalities. We further discuss the various sensors in-
cluded in our recording platform and their respective strengths and
weaknesses:

Radar: Radar is a radiolocation system using radio waves. It is an
active sensor and its large wavelength makes it mostly invariant to
small particles encountered in most weather phenomena. It excels
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Figure 6: Angular-Dependent Antenna Gain Response. We
rely on the antenna gain to recover 3D information via our
physics-based ray importance sampling from raw 2D radar
scans. We plot antenna gain in decibels for our Navtech CIR-
DEV radar sensor. Specifically, gain is plotted as a function
of azimuth and elevation offset, in degrees, relative to the
center of any given transmitted radar beam.

in detecting objects over extensive distances and remains resilient
in challenging weather conditions like rain, snow, and fog, making
it the most reliable automotive sensor in adverse situations. This has
led to a growing trend of incorporating radar sensors into driving
datasets. However, it is essential to note that radar often suffers
from lower resolution and various noise modes. Each recorded
radar frame is stored as a 7300 × 400 PNG file. In a similar fashion
to [Barnes et al. 2020], we store all radar beam metadata in the
first 8 pixels of the images. The metadata includes the azimuth, a
valid flag, and a timestamp split into seconds and nanoseconds. The
radiation profile of our sensor is plotted in Fig. 6.

LiDAR: Light detection and ranging (LiDAR) is a commonly-
used sensor for autonomous vehicles and functions by emitting a
905nm wavelength laser pulse that travels to an object and reflects
back to the sensor, providing dependable distance and intensity
measurements in both daytime and nighttime conditions. LiDAR is
an active sensor that is invariant to illumination changes. However,
because the laser pulse travels the distance to an object twice - once
to the object and once back to the sensor - LiDAR measurements
degrademore than camerameasurements in situationswith reduced
visibility, like fog or rain. We store each LiDAR point individually
with its timestamp. This allows for detailed data processing, like
ego-motion compensation, but is very storage intensive.

Camera: The fundamental sensor in most perception systems
is the RGB camera. It is cost-effective, widely adopted, and offers
good spatial resolution with a high frame rate compared to other
sensors. Despite these advantages, the camera is a passive sen-
sor that requires well-illuminated scenes for optimal performance.
Specifically, its performance is considerably restrained under chal-
lenging visual conditions such as night, rain, fog, and snowfall,
resembling the limitations of human vision. Additionally, exposure
to fast changes in light intensity may result in under- or oversatu-
ration of the sensor. We store each camera frame as a 1920 × 1080
RGB image.

Additional Dataset Statistics. Our dataset offers a comprehen-
sive exploration along three key dimensions, enriching our un-
derstanding of diverse external influences on model performance.
Specifically, we recorded both day and night scenes, capturing the
nuances of varying lighting conditions. In addition, we documented

urban and parking lot scenarios, presenting distinct challenges in
scenes and vegetation differences. Moreover, our dataset encom-
passes both clear weather and foggy scenes, providing insights into
the impact of adverse weather conditions on perception systems.
Whereby our final selection of 15 sequences includes 12 sequences
from daytime, 3 from nighttime, 10 from urban settings, 5 from
parking lots, 11 under clear weather, and 4 under foggy conditions.
This intentional diversity allows for a nuanced examination of how
different contextual factors influence model performance. Each of
these in-the-wild sequences averages 17.5 seconds with 70 radar
frames, 150 LiDAR frames, and 450 camera frames.

Dataset Preprocessing. We preprocess our data to compute tra-
jectories and transformations between all of our sensor spaces
and world coordinates. For the radar recordings, we apply a low
threshold to the raw FFT intensity returns to effectively reduce
background noise. To enhance the reliability of the GNSS data, a
Kalman filter is introduced with a linear forward model. This filter
acts to ensure smoother positions by effectively mitigating noise
and minimizing smaller jumps present in the GNSS recordings.

Additional Dataset Samples. Weprovide additional recorded scenes
in Fig. 7 - 8. Fig. 7 displays exemplary day scenes with three urban
and two parking lot scenes with vegetation. Both radar and LiDAR
capture the surrounding scenes with their multiple vehicles well.
Fig. 8 displays exemplary night scenes with 3 parking lot scenes
and two highly adverse foggy night scenes. We can already recog-
nize less of the scenes with our camera, but the LiDAR and radar
give similar results to our day scenes. The fog reduces the visual
conditions significantly, resulting in a blurry camera image and a
degraded point cloud that only reaches a few meters in range. The
radar, on the other hand, is unaffected by these adverse conditions.

5 LIMITATIONS
This method relies on raw radar data, which is inherently a limita-
tion, as it is not always made available by radar sensors and may
require hardware modifications and custom readout routines to
handle the large data volume. In the future, we hope raw radar
data will be made available more broadly by sensor manufacturers.
Currently, our method cannot be deployed in real-time. However,
cross-modal initialization and recent acceleration methods for neu-
ral fields may further improve inference time.
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Figure 7: Additional exemplary scenes with (1st column) images from our forward-facing RGB camera, (2nd column) point
clouds from our forward-facing LiDAR, color-coded by height, with the car in the bottom-left, and (3rd column) 40-meter-radius
BEV radar returns, with the car in the center and pointing to the right.



SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA
David Borts, Erich Liang, Tim Brödermann, Andrea Ramazzina, Stefanie Walz, Edoardo Palladin, Jipeng Sun, David Bruggemann, Christos Sakaridis, Luc Van Gool, Mario Bijelic,

and Felix Heide

Figure 8: (Continued) Additional exemplary scenes with (1st column) images from our forward-facing RGB camera, (2nd

column) point clouds from our forward-facing LiDAR, color-coded by height, with the car in the bottom-left, and (3rd column)
40-meter-radius BEV radar returns, with the car in the center and pointing to the right.


