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Abstract: Depth sensing is essential for 3D environmental perception across application7

domains, including autonomous driving, topographical mapping, and augmented and virtual8

reality (AR/VR). Traditional correlation time-of-flight (ToF) methods, while able to produce dense9

high-resolution depth maps, are plagued by phase wrapping artifacts which limit their effective10

depth range. Though multi-frequency methods can help reduce this problem by simultaneously11

solving for phase wrap counts in multiple wavelengths, this requires multiple measurements per12

pixel, necessitating additional hardware and imaging time. We introduce a 3D imaging method13

that requires a single per-point measurement by combining frequency-modulated continuous wave14

(FMCW) operation, all-optical correlation ToF imaging, and a specialized frequency-decoding15

network. Our system performs all-optical correlation imaging at GHz rates. The method is16

validated through both simulations and real-world experiments, comparing favorably to existing17

methods in all experiments.18

1. Introduction19

The field of image processing has witnessed significant advancements driven largely by the20

advent of large-scale image datasets, such as ImageNet [1], and the increase in computational21

power. For depth sensing, a parallel development has been sparked by affordable RGB-D22

depth cameras. This trend highlights the need for acquiring high-quality depth maps in large23

volumes, a key goal for a wide range of applications in 3D graphics and vision, ranging from24

autonomous driving [2] and topographical mapping [3] to gaming [4] and virtual reality [5].25

For these applications, acquiring high-quality depth information is essential for accurate scene26

understanding and decision makeing. The quality of the captured depth hinges on not only27

the signal-to-noise ratio (SNR) of the hardware components [6] but also on the computational28

efficiency and capability of the subsequent processing algorithms [7].29

Time-of-flight (ToF) methods stand out as some of the most effective techniques in active30

depth sensing. These approaches recover the distance between the scene and the detector31

either by directly measuring the round-trip travel time of light or by analyzing the interference32

patterns of different light paths. Direct ToF methods, such as flash-based direct-ToF cameras [8]33

and scanning-based LiDAR systems [9], generate point clouds by measuring travel distances.34

However, despite their compactness and cost-effectiveness, direct ToF techniques often suffer35

from low resolution. This is primarily due to the limitations of sensitive time-resolved detectors36

and the low photon-flux in reflected pulses, which in turn adversely affects the signal-to-noise37

ratio (SNR) [10,11]. In contrast, correlation ToF methods overcome these constraints by utilizing38

the interference of continuously intensity-modulated signals between the emission and return39

paths. Depth is inferred by calculating the phase shift. Unlike direct ToF, correlation ToF does40

not require ultra-short pulse generation or extreme sampling rates. This obviates the need for41

time-tagging sparse photons, thus enabling significantly higher depth resolution [12].42

In correlation ToF imaging, high modulation frequency is desirable for its ability to suppress43

signal perturbations and improve resolution. Holding sensor noise and measurement quantization44

constant, depth precision is directly proportional to phase contrast [13]. If the signal frequency45

is doubled, the depth change represented by a single bit flip in the phase measurement is46



correspondingly halved. As illustrated in Fig. 1, a 100 MHz ToF system might achieve cm-scale47

precision for a small object placed 1 meter away from the detector, whereas a 10 GHz system48

could resolve micron-scale textures. Building upon this concept, Baek et al. [13] propose the49

implementation of stable GHz modulation through electro-optic modulators (EOMs), polarizing50

optics, and integrated circuits, enabling all-optical correlation computations in free-space and51

bypassing the noise inherent in photon-electron conversion.52

However, high-frequency modulation introduces a trade-off in range resolution. A 10 GHz53

signal, for example, has a wavelength of approximately 3 cm, translating to a range resolution54

of 3 cm per phase wrap. This becomes problematic in typical indoor settings where distances55

often surpass 3 cm, resulting in multiple phase wraps and the need for effective unwrapping56

mechanisms. Single-frequency phase unwrapping methods, while capable of recovering relative57

depths, encounter issues with reference ambiguity [14]. Without a zero wrap measurement,58

determining the starting point of the unwrapping process is challenging. These methods also face59

difficulties with phase discontinuities, where the exact count of phase wraps is ambiguous. To60

overcome these limitations, multi-frequency phase unwrapping algorithms have been proposed.61

For example, Gupta et al. [15] propose the use of look-up tables to discern phase numbers for62

micro-ToF unwrapping, where high temporal frequencies are used which have small (micro)63

periods. Additionally, Baek et al. [13] utilize double-frequency measurements combined with a64

trained-classification network to manage numerous phase wraps over larger distances. However,65

these multi-frequency approaches typically require significantly longer acquisition times and are66

less effective with narrow-bandwidth systems due to their sensitivity to noise.67

In our work, we aim to retain the high contrast benefits of GHz modulation while significantly68

reducing capture times. We build upon the all-optical correlation approach from Baek et al. [13]69

and propose a frequency modulation capture scheme with a single measurement per point.70

Moving beyond merely modulating amplitude and measuring phases, this approach allows us to71

generate absolute depth information from one single-chirp measurement. Utilizing a specialized72

depth-decoding network, our proposed method can reconstruct absolute depth from a single73

measurement, thereby eliminating the need for multi-frequency measurements. Specifically, our74

contributions are as follows:75

• We propose an depth estimation approach that integrates frequency modulated continuous76

wave (FMCW) operation with all-optical correlation ToF, enabling accurate absolute depth77

reconstruction in the GHz range from a single-chirp measurement, eliminating the need78

for multiple frequency measurements and effectively halving the capture time.79

• We propose a trained frequency-decoding network that extends the FMCW range resolution80

beyond the traditional 12.5 m limitation, overcoming the constraints imposed by the EOMs81

with low 20 MHz modulation bandwidth.82

• We validate our proposed system and frequency-decoding network, along with a inference-83

guided test-time optimization algorithm, in simulation and with an experimental prototype,84

demonstrating our capability for absolute depth imaging in a computationally effective and85

robust manner.86

2. Related Work87

In the following, we briefly review work related to the proposed method.88

Correlation ToF. Correlation ToF involves illuminating a scene with periodically modulated89

light and determining distances by analyzing the phase shifts between transmitted and received90

signals. This depth sensing method, leveraging cost-effective CMOS sensors and standard laser91

diodes for capturing dense depth data [16], has been utilized in devices like the Microsoft Kinect.92
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Fig. 1. Comparative simulated ToF measurements of a small object with height and
width less than 2 cm at 1 m distance - 100 MHz system achieves cm-scale resolution,
while 10 GHz system attains micron-scale. The higher modulation frequency of 10
GHz provides better resolution due to enhanced phase contrast, reducing unwanted
signal perturbation.

Although flood illumination can lead to multi-path interference, significant research efforts have93

aimed to address this challenge, paving the way for diverse applications such as non-line-of-sight94

imaging, penetration through scattering media, and material classification [17–22]. Nevertheless,95

conventional methods are generally confined to modulation frequencies within the hundreds96

of MHz range due to the photon absorption depth in silicon, restricting depth resolution to97

millimeters or centimeters over several meters of range [23]. Overcoming limitations related98

to low modulation contrast and interferometry errors, which have impeded previous efforts to99

increase modulation frequency [24,25], our work adopts an all-optical free space approach for100

correlation measurements [13]. This strategy circumvents the limitations imposed by photon101

absorption in silicon, facilitating operation at modulation frequencies beyond 10 gigahertz.102

Phase Unwrapping. In high-frequency correlation ToF systems, the travel distance of the103

signal typically surpasses a single wavelength, inadvertently leading to phase shifts in correlation104

signals exceeding 2𝜋. Accurately determining the phase offset to achieve absolute depth recon-105

struction necessitates the use of phase unwrapping algorithms. Current single-frequency phase106

unwrapping methods primarily recover relative depth and wrap count but require assumptions107

about the scene to infer absolute depths [26–28], and can only retrieve absolute depth to a108

limited extent. To circumvent this, multi-frequency phase unwrapping algorithms have been109

developed. These algorithms utilize lower-frequency signals to unwrap high-frequency phases110

and employ techniques like weighted Euclidean division or frequency-space lookup tables for111

wrap count retrieval [15, 29–32]. However, while achieving promising performance in MHz ToF112

imaging scenarios, these methods are prone to noise and ambient light interference, resulting113

in compromised performance when managing the numerous wrap counts encountered in GHz114

correlation imaging. To tackle this issue, our approach merges FMCW operation with all-optical115

correlation ToF, and decodes absolute depth information from the frequencies of the correlation116

signals. Combined with our advanced frequency-decoding network and test-time optimization117

algorithm, our method can reliably reconstruct absolute depths with high-fidelity geometric118

features from single-chirp measurement, even within the GHz range.119

120

3. Methods121

To efficiently acquire absolute depth information without the need for multiple frequency122

measurements, we introduce a single-chirp depth imaging pipeline which is illustrated in Fig. 2.123

This process begins by projecting a frequency-modulated signal onto the scene. The correlation124
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Fig. 2. Overview of the Single-chirp Depth Imaging Pipeline. The method begins
with FMCW capture hardware emitting frequency-modulated signals into the scene.
Reflected signals are captured, and the FMCW correlation signals are optically computed
in the time domain. Phase shifts are then extracted before using FFT converting these
signals to the frequency domain. Next, pixel-wise frequency decoding is applied to the
frequency domain signals to determine absolute depths for each pixel. The final step
involves a test-time optimization, which further refines the depth output by integrating
the estimated depths with phase information.

signals generated are then optically computed and subsequently decoded on a pixel-by-pixel125

basis to compute the absolute depths for each pixel. Following this, the depth outputs are further126

refined through a test-time optimization process. Detailed description of each component in this127

pipeline are provided in the subsequent sections.128

3.1. Frequency Modulated Continuous Wave129

Next, we provide an overview of the proposed Frequency Modulated Continuous Wave (FMCW)130

ToF method. The method utilizes a signal, denoted as 𝑝(𝑡), which oscillates at a saw-tooth131

chirped frequency 𝜔(𝑡) with bandwidth 𝐵 and chirp length 𝑇𝑠 , as illustrated in Fig. 3. This signal,132

having an amplitude 𝛼 and a DC offset 𝛽, is projected onto a scene, and can be expressed as:133

𝑝(𝑡) = 𝛼 cos(𝜔(𝑡)𝑡) + 𝛽, 𝜔(𝑡) = 2𝜋( 𝑓0 +
𝐵

𝑇𝑠
𝑡), (1)

where 𝑓0 = 𝑓𝑐 − 𝐵
2 . The light reflected back from the scene, denoted by 𝑝(𝑡), undergoes a time134

delay 𝜏 and oscillates at frequency 𝜔𝑝 = 𝜔(𝑡 + 𝜏), which introduces a phase shift 𝜙 and results135

in an attenuated amplitude 𝛼̃ and offset 𝛽:136

𝑝(𝑡 + 𝜏) = 𝛼̃ cos(𝜔𝑝𝑡 + 𝜙) + 𝛽, 𝜙 = 𝜔𝑝𝜏. (2)

To extract the phase shift 𝜙, the reflected signal 𝑝(𝑡) is mixed with a reference signal 𝑟 (𝑡) =137

cos(𝜔𝑟 𝑡 + 𝜓), where 𝜔𝑟 = 𝜔(𝑡). The resulting correlation signal is:138

𝑝(𝑡 + 𝜏)𝑟 (𝑡) = 𝛼̃
2 cos((𝜔𝑟 − 𝜔𝑝)𝑡 + 𝜓 − 𝜙)

+ 𝛼̃
2 cos((𝜔𝑟 + 𝜔𝑝)𝑡 + 𝜙 + 𝜓) + 𝛽 cos(𝜔𝑟 𝑡 + 𝜓).

(3)

By integrating over the exposure time 𝑇 , which acts as a low-pass filter when 𝑇 >> 1
𝜔

, the term139

𝛼̃
2 cos((𝜔𝑟 − 𝜔𝑝)𝑡 + 𝜓 − 𝜙) is isolated, enabling the decoding of depth information from the140



Fig. 3. Frequency-Time Plot showing a reference signal (red) with bandwidth 𝐵 and
chirp duration 𝑇𝑠 , alongside the returned signal (blue). The observation period 𝑇𝑜 and
the time delay 𝜏 indicate the round-trip travel time between the detector and the scene.

phase shift 𝜙:141

𝐶𝜓 =

∫ 𝑇

0
[𝑝(𝑡 − 𝜏)𝑟 (𝑡)]𝑑𝑡

=
𝛼̃

2(𝜔𝑟 − 𝜔𝑝)
sin((𝜔𝑟 − 𝜔𝑝)𝑡 + 𝜓 − 𝜙) + 𝑇𝐾.

(4)

While the use of GHz-range modulation frequencies in our system enables ultra-high, mm-scale142

resolution, it also brings a phase unwrapping challenge due to the fact that the path length between143

the scene and the detector often surpasses a single wavelength of the modulated light, which144

is typically in the centimeter range. In standard meter-scale indoor scenes, this discrepancy145

results in dozens of phase wraps, posing a significant challenge in determining absolute depths146

accurately.147

To address this challenge and accurately recover depths in the presence of phase wraps, we148

focus on the 𝜔𝑏 = 𝜔𝑟 − 𝜔𝑝 frequency component of the correlation signal, as defined in Eq. 4.149

The one-way travel distance, denoted as Δ𝑑, can be deduced from the beat frequency 𝑓𝑏 =
𝜔𝑏

2𝜋 , in150

conjunction with the chirp slope 𝑆 as follows:151

𝑓𝑏 = 𝑆2Δ𝑑
𝑐
, Δ𝑑 =

𝑐 𝑓𝑏𝑇𝑜
2𝐵𝑒

, (5)

where c is the speed of light, 𝑇𝑜 = 𝑇𝑠 − 𝜏 is the observation time, and 𝐵𝑒 = 𝐵
𝑇𝑜
𝑇𝑠

is the effective152

bandwidth. Consequently, the correlation signal can be rewritten as:153

𝑆(𝑡) = 𝐴 cos(2𝜋 𝑓𝑏𝑡 + 𝜙). (6)

In practice, the beat frequency 𝑓𝑏 is typically estimated using Fast Fourier Transform (FFT).154

The ability to resolve distinct peaks in the frequency domain is constrained by the 3 dB width155

of the FFT sinc function centered at 𝑓𝑏, which inversely relates to 𝑇𝑜. This implies that two156

frequencies in the frequency domain are resolvable only if:157

Δ 𝑓 >
1
𝑇𝑜
. (7)

Similarly, the range resolution Δ𝑟 of the FMCW method can be defined as158

Δ𝑟 =
𝑐

2𝐵𝑒

. (8)



Taking into account the aforementioned constraint, let us consider a system operating at a159

7.15 GHz modulation frequency, which corresponds to a wavelength of 4.2 cm. In this scenario,160

for an indoor scene with a maximum depth of 2 meters, we encounter approximately 2×200
4.2 ≈ 100161

phase wraps that need to be resolved. To accurately determine the absolute distance for each162

wrap, an effective bandwidth of approximately 3.6 GHz is required.163

However, while Electro-Optic Modulators (EOMs) capable of GHz-rate modulation in free164

space can be custom-designed, the practical limitation arises from the narrowed usable bandwidth165

of the tank resonant circuit, which in our case restricts the bandwidth to 20 MHz [33]. Given166

this bandwidth, the theoretical range resolution, calculated using Eq. 8, is approximately 12.5 m.167

This resolution is drastically below the 4.2 cm resolution necessary for effective unwrapping at a168

7.15 GHz modulation frequency.169

To address this limitation in range resolution, we introduce a two-step approach. First, a170

frequency decoding network is optimized to enhance the resolution limit from 12.5 meters to171

centimeter-scale. Second, a gradient-based test-time optimization algorithm is employed to172

further refine scene depth reconstruction to millimeter-scale resolution. In the following, we173

provide details of the experimental setup and the computational methods employed for depth174

reconstruction.175

176

3.2. Frequency Decoding Network177

We devise a neural network model where the input is the correlation signal array associated with178

a pixel to infer the absolute depth 𝑑𝑝 from input signal arrays while elevating the resolution limit179

from 12.5 meters to the cm-scale. The input array is denoted as 𝑠𝑝 := 𝑠1𝑝 , 𝑠2𝑝 , ..., 𝑠𝑁𝑝 , where 𝑁 is180

the length of the signal array. Prior to inputting the signal array into the network, we apply a Fast181

Fourier Transform (FFT) to the raw time-domain signal array 𝑠 to transform it into the frequency182

domain. This transformation enhances feature extraction and representation, which helps the183

model to more effectively capture frequency characteristics essential for encoding absolute depth184

information. The transformed input, denoted as 𝑠′𝑝 = 𝐹𝐹𝑇 (𝑠𝑝), retains the same length as 𝑠𝑝185

but represents the frequency domain. Mathematically, this is expressed as:186

𝑠′𝑘𝑝 =

𝑁∑︁
𝑛=1

𝑠𝑛𝑝 × 𝑒 −2𝑖 𝜋
𝑁

𝑘𝑛. (9)

We employ a Multi-Layer Perceptron (MLP) for our frequency decoding network (FDN). It187

comprises 8 layers, each containing 1024 neurons and softsign activation function to introduce188

non-linearity and enable more intricate modeling capabilities. The deep architecture and wide189

layers enable the model to discern complex relationships among the signals.190

We optimize the network to minimize the ℓ1 lossL𝐹𝐷𝑁 between the predicted𝐹𝐷𝑁 (𝐹𝐹𝑇 (𝑠𝑝))191

and actual depths 𝑑𝑝 ,192

L𝐹𝐷𝑁 (𝑠𝑝 , 𝑑𝑝) = | |𝐹𝐷𝑁 (𝐹𝐹𝑇 (𝑠𝑝)) − 𝑑𝑝 | |1. (10)

To train the network, we gathered 8 sets of correlation signal data, where 7 sets are used for193

training while 1 set is withheld for testing purpose. These measurements cover a depth range194

from 0 mm to 1500 mm, with 1 mm increments, using our measurement apparatus equipped195

with a piezoelectric motion stage. This stage is designed for minute axial adjustments, featuring196

a theoretical resolution of 50 nm. We use the Adam optimizer [34], and train the model for 5000197

epochs with a batch size of 16 and a learning rate of 10−4. The model achieves convergence in198

approximately 8 minutes on an NVIDIA A100 GPU. Further details of the network are elaborated199

in the supplemental document.200



Fig. 4. Test Performance of the Frequency-Decoding Network. (a) Displays the ground
truth wrap count, and (b) shows the predicted wrap count over a depth range of 0 mm
to 1500 mm using the frequency decoding network. Notably, conventional baseline
methods are unable to unwrap this 1D data due to their reliance on spatial context.

As demonstrated qualitatively in Fig. 4, our tests on withheld measurements reveal a mean-201

square error of 0.86. This deviation in wrap count is further minimized when both phase202

measurements and spatial information are incorporated during the test-time optimization step,203

which will be described in the subsequent section. It is also important to note that conventional204

phase unwrapping methods are unable to unwrap this 1D data efficiently, largely due to their205

reliance on spatial context. Please refer to the supplemental document for more detailed analysis206

of the impact of signal-to-noise ratio on measurement accuracy.207

3.3. Test-Time Optimization208

To further refine the depth output from the pixel-wise frequency decoding network, we implement209

a test-time optimization approach. This process incorporates spatial information from measured210

phase shifts, optimizing the wrap count to align the spatial gradient of the refined depth output211

with that of the high-resolution features provided by the GHz phase contours.212

To extract pseudo-ground-truth gradients, the phase map is first rescaled so that a change of 2𝜋213

in phase directly corresponds to a change in depth of one wavelength, 𝜆 = 4.2 cm, represented by214

the equation215

𝜙𝑑 (𝑥, 𝑦) =
𝜙(𝑥, 𝑦)

2𝜋
𝜆, (11)

where 𝑥 and 𝑦 are the coordinates in the pixel grid. We then filter out the contour lines that216

appear between phase wraps. This is achieved by substituting pixels in the rescaled phase map,217

specifically those with spatial gradient values equal to 𝜆 or −𝜆, with spatial gradients derived218

from the estimated absolute depths provided by the frequency decoding network. Together, the219

psedo-ground-truth gradient 𝛿ℎ and 𝛿𝑣 can be expressed as220

𝛿ℎ =

{
𝜕𝜙𝑑

𝜕𝑥
,

𝜕𝜙𝑑

𝜕𝑥
< 𝜆

𝜕𝑑𝐹𝐷𝑁

𝜕𝑥
,

𝜕𝜙𝑑

𝜕𝑥
≥ 𝜆

, 𝛿𝑣 =

{
𝜕𝜙𝑑

𝜕𝑦
,

𝜕𝜙𝑑

𝜕𝑦
< 𝜆

𝜕𝑑𝐹𝐷𝑁

𝜕𝑦
,

𝜕𝜙𝑑

𝜕𝑦
≥ 𝜆

, (12)

where 𝜕𝑑𝐹𝐷𝑁

𝜕𝑥
and 𝜕𝑑𝐹𝐷𝑁

𝜕𝑦
are the gradients of the frequency decoding network output.221

The optimization algorithm iteratively updates the depth output, starting with the initial222

estimates from the frequency decoding network and progressively minimizing the per-pixel mean223

squared error (MSE) loss between the psedo-ground-truth horizontal and vertical gradient 𝛿ℎ224



(a) (b)

Fig. 5. (a) Schematic illustration of our all-optical FMCW prototype, utilizing polarizing
optics and Electro-Optic Modulators (EOMs). (b) Photograph of the experimental
setup, with light paths marked in green. The EOMs are responsible for generating GHz
amplitude modulation, while frequency modulation is achieved via an RF generator.
See Sec. 4 for more details.

and 𝛿𝑣 , and that of the reconstructed depth, represented as 𝛿′
ℎ

and 𝛿′𝑣:225

L = L 𝛿ℎ
MSE + L 𝛿𝑣

MSE

=
1
𝑝

𝑝∑︁
𝑛=1

(𝛿′ℎ − 𝛿ℎ)
2 + 1

𝑝

𝑝∑︁
𝑛=1

(𝛿′𝑣 − 𝛿𝑣)2,
(13)

where 𝑝 represents the total number of pixels in the image. We have implemented this optimization226

using PyTorch, configured to run for 200 epochs. The learning rate is set to begin at 1 and227

reduces at a rate of 0.95 per epoch. The optimization utilizes the ADAM optimizer [34] and228

converges within 2 minutes on an NVIDIA A100 GPU. Please refer to the supplementary file229

Code File 1 for more implementation details.230

4. Experimental Prototype231

In this section, we provide an overview of our all-optical FMCW ToF measurement setup which232

builds on Baek et al. [13]. Fig. 5 provides a schematic illustration of our prototype, and a233

photograph of the setup, with light paths highlighted.234

The process starts in the illumination module, where a polarizing beam-splitter (PBS) receives235

a 3mW, 532 nm wavelength light beam and converts this light into vertically linearly polarized236

light, which can be represented by:237

𝐸0 = 𝐴𝐿𝑣 , 𝐿𝑣 =


0 0

0 1

 , (14)

where 𝐴 is the amplitude of the incoming light and 𝐿𝑣 is the Jones matrix for vertical linear238

polarizer.239

Following this, the light undergoes modulation through a sequence of optical elements: a half240

wave plate (HWP), a quarter wave plate (QWP), and an Electro-Optic Modulator (EOM). This241

sequence is repeated in reverse after the light reflects off a mirror. The modulation imparted by242

the HWP, oriented at 𝜃HWP = 11.25◦ and QWP, oriented at 𝜃QWP = 45◦, can be defined using243



their respective Jones matrices:244

𝐻 (𝜃HWP)

= 𝑒
−𝑖 𝜋

2


cos2 𝜃HWP − sin2 𝜃HWP 2 cos 𝜃HWP sin 𝜃HWP

2 cos 𝜃HWP sin 𝜃HWP sin2 𝜃HWP − cos2 𝜃HWP

 ,
𝑄(𝜃QWP)

= 𝑒
−𝑖 𝜋

4


cos2 𝜃QWP + 𝑖 sin2 𝜃QWP (1 − 𝑖) cos 𝜃QWP sin 𝜃QWP

(1 − 𝑖) cos 𝜃QWP sin 𝜃QWP sin2 𝜃QWP + 𝑖 cos2 𝜃QWP

 .
(15)

We employ an external RF generator (R&S SMW) to input a frequency chirped sinusoidal245

voltage with a center frequency of 7.15 GHz and a bandwidth of 20 MHz to the RF drivers of246

our EOMs. This GHz modulation within the EOMs is characterized using a Jones matrix 𝐵(𝑉),247

which captures the phase relationship between the light’s perpendicular polarization components:248

𝐵(𝑉) =

𝑒

−𝑖Γ (𝑉 )
2 0

0 𝑒
𝑖Γ (𝑉 )

2

 , (16)

where Γ(𝑉) is the net birefringence and 𝑉 is an oscillating voltage at frequency 𝜔(𝑡). For more249

details of the custom operation of our EOMs, please refer to the supplemental document.250

The polarization state of the light, modulated through the previously described sequence of251

HWP, QWP, and EOM in both forward and backward directions, can be expressed as:252

𝐸1 = 𝐿ℎ

backward pass︷                             ︸︸                             ︷
𝐻 (−𝜃HWP)𝑄(−𝜃QWP)𝐵(𝑉) 𝑀

forward pass︷                        ︸︸                        ︷
𝐵(𝑉)𝑄(𝜃QWP)𝐻 (𝜃HWP)𝐸0, (17)

where 𝑀 and 𝐿ℎ are the Jones matrix of a mirror and a horizontal linear polarizer,253

𝑀 =


1 0

0 −1

 , 𝐿ℎ =


1 0

0 0

 . (18)

By substituting the corresponding Jones matrices into Eq. 17, we can express the detected254

signal 𝐸1 as a function of voltage 𝑉 ,255

𝐸1 = 𝐴


𝑖 (cos𝑉−sin𝑉 )√

2

0

 , (19)

and thereby obtain the signal intensity256

𝐼 (𝑉) = |𝐸2
1 | =

𝐴2

2
(1 − sin 2𝑉). (20)

When applying a voltage oscillating at a GHz modulation frequency 𝜔𝑟 , the signal 𝐼𝑟 (𝑡) detected257

by the reference photodiode takes the form as shown below. This expression can be further258

simplified using a Taylor expansion:259

𝐼𝑟 (𝑡) =
𝐴2

2
(1 − sin (2𝛼 sin (𝜔𝑟 𝑡 + 𝜙)))

≈ −𝐴2𝛼 sin (𝜔𝑟 𝑡 + 𝜙),
(21)



where a small modulation power 𝛼 is assumed.260

This signal propagates in free space towards the scene, completing the illumination module’s261

role. Once reflected back from the scene, the time-delayed signal enters the detection module,262

which mirrors the structure of the illumination module. This detection stage, demodulating the263

returned light, comprises a HWP, a QWP, and an EOM, synchronized with its counterpart in the264

illumination module via an external clock from a function generator (Siglent SDG2042X), and a265

mirror. This demodulation process is akin to mixing the time-delayed signal with a reference266

signal. The demodulated signal is then passed through a 1 MHz lowpass filter to extract the267

correlation signal, featuring the lower beat note (𝜔𝑟 − 𝜔𝑝), as outlined in Eq. 3 and Eq. 4.268

5. Assessment269

In this section, we validate the proposed neural single-chirp depth imaging approach using both270

simulated and experimental data. Specifically, we first perform quantitative evaluation of our271

proposed method on the synthetic Hypersim dataset [35], where our method is compared against272

representative existing approaches. We then experimentally validate our hardware prototype273

and depth reconstruction pipeline on unseen real-world measurements, where our method is274

qualitatively compared against the state-of-the-art single-frequency phase unwrapping method.275

Fig. 6. Depth reconstruction results and corresponding error maps on selected
Hypersim [35] RGB-D indoor scenes: we present a qualitative comparison between
conventional, learned methods, and our proposed approach. From left to right, the
methods displayed are: state-of-the-art single-frequency method PUMA [27], the
kernel density based multi-frequency method KDE [32], the double-frequency neural
phase unwrapping method Baek et al. [13], and our proposed method.



RMSE (mm) MAE (mm) RE (1)

PUMA [27] 572.71 487.70 0.30

KDE [32] 542.62 419.86 0.31

Baek et al. [13] 373.49 346.27 0.14

Proposed 88.17 71.79 0.04

Table 1. Quantitative comparison of baseline methods and the proposed method on
a set of synthetic test scenes evaluated in Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Relative Error (RE). Our method produces results with
significantly lower error comparing to the baseline methods.

5.1. Synthetic Experiments276

In our evaluation, we consider two types of existing phase unwrapping methods as baselines. The277

first type is the traditional single-phase unwrapping method, represented by Phase Unwrapping278

Maximum Flow (PUMA) [27], which reconstructs relative depth information from a single279

measurement. The second type is multi-frequency phase unwrapping methods, aimed at280

reconstructing absolute depth from at least two measurements. Representative methods include281

the traditional kernel density estimation (KDE) method [32], used in Kinect V2 software, and282

the recent neural unwrapping method by Baek et al. [13], the most pertinent to our proposed283

approach.284

Qualitative and quantitative comparisons are reported in Fig. 6 and Tab. 1, respectively, while285

additional qualitative results are presented in the Supplemental Document. For these comparisons,286

we utilize the Hypersim RGB-D dataset [35], which contains 77,400 synthesized indoor scenes,287

each comes with ground truth depth maps and RGB images. For our simulations, we select scenes288

within a 0 to 2 meters depth range and simulate synthetic captures at a frequency of 7.15 GHz.289

For the baseline methods requiring multiple frequency measurements, we additionally simulate290

captures at a higher frequency of 14.32 GHz.291

PUMA [27] is an energy minimization framework for single-frequency phase unwrapping. In292

this framework, the objective functions are modeled as first-order Markov random fields and a293

minimization process is then performed through a series of max-flow/min-cut calculations. While294

it is appealing that PUMA provides an exact solution of the energy minimization problem using295

the graph-cuts, it encounters limitations when faced with scenarios involving over a hundred296

phase wraps, and often defaults to predicting a uniform wrap count across the entire image.297

Both KDE [32] and Baek et al. [13] are dual-frequency phase unwrapping methods that298

are capable of deriving absolute depth information from phase measurements at two different299

frequencies. KDE, which is an estimation approach based on neighborhoods of phase wrap300

hypotheses that favors spacial consistencies. However, this method often struggles to capture301

detailed surface features or handle discontinuities in phase wraps, which is particularly problematic302

when there are over a hundred phase wraps. Baek et al. is a double-frequency neural phase303

unwrapping method optimized for GHz frequency operation. As shown both qualitatively and304

quantitatively, Baek et al. offers a substantial improvement in depth estimation accuracy compared305

to the previously discussed baselines. However, its performance struggles when numerous objects306

having sharp edges and complex geometric structures are present. In contrast, our method307

not only reduces the error to less than one-third across all metrics and is able to preserve fine308

geometric details in large-scale indoor scenes.309



ProposedPUMA

Fig. 7. Our experiments validate the proposed method across five real-world scenes,
featuring diverse geometric structures and surface textures, under indoor ambient
lighting. We also assess the performance of existing single-frequency phase-unwrapping
method PUMA [27] on GHz phase measurements. Since PUMA reconstructs only the
relative wrap count, we adjusted its output to align with the depth range of our test
scenes. PUMA often merges objects with the background, leading to failures in most
scenes. In contrast, our method effectively reconstructs absolute depth information for
target objects, showcasing its robust capability across a wide range of surface materials,
from low-reflectance, dark-colored surfaces to glossy ones.

5.2. Real-World Experiments310

We further validate the proposed system on real-world scenes containing target objects with311

different materials and complex geometric structures. In each case, we gathered 100 × 100312

pixel measurements using our experimental prototype, assisted by a galvo scanning system.313

Sample measurements for these scenes are shown in Fig. 7, and we additionally compared to314

the single-frequency phase unwrapping method PUMA using the same 7.15 GHz measurement.315

Given that PUMA exclusively reconstructs the relative wrap count, we modified its output to316

correspond with the depth range of the test scenes. PUMA performs significantly better when317

dealing with just a few phase wraps as opposed to the hundred wraps in the synthetic experiments.318

However, constrained by the inherently ill-posed nature of unwrapping with single-frequency319



input, it struggles to handle phase discontinuity, often resulting in the foreground object blending320

into the background or background being teared. The proposed method successfully tackles321

this challenge, enabling accurate reconstruction of absolute depth information across a broad322

spectrum of surface materials, including low-reflectance, dark-colored surfaces as well as glossy323

ones. The outcomes are comprehensively visualized through depth maps, point clouds, and324

surface normals in Fig. 7.325

6. Conclusion326

In this work, we proposed a novel depth sensing system capable of reconstructing absolute depth327

information from single-chirp measurements. Our approach, leveraging frequency-modulated328

continuous-wave optics combined with a frequency-decoding network and test-time optimization,329

effectively halves the capture time compared to the traditional multi-frequency measurement-based330

methods commonly used for absolute depth inference. Using all-optical GHz Time-of-Flight331

methods, our method improves the range resolution from 12.5 meters, a limit set by the 20332

MHz modulation bandwidth, to 4.2 centimeters. As demonstrated in Figs. 6 and 7, our method333

showcases exceptional depth reconstruction capabilities in both synthetic and real-world scenarios,334

surpassing current state-of-the-art techniques.335

While our approach is generally resilient across various material types, from matte to glossy336

surfaces, we acknowledge that the precision of our frequency decoding network can be affected337

by noise variations in the correlation signals of low reflectance materials. Objects with low338

reflectance may absorb more of the laser energy, resulting in weaker return signals and lower339

signal-to-noise ratio. This can lead to reduced precision and accuracy in depth detection for340

such objects [36,37]. In the future, this limitation may be addressed by retraining the network341

with a broader range of material data, thereby enhancing its robustness. Additionally, the use of342

narrowband spectral filters can further refine precision, particularly in environments with strong343

ambient light.344

Looking ahead, we see the proposed method as a building block for diverse computational345

imaging challenges, including non-line-of-sight imaging, single-shot ultrafast optical imaging,346

and single-photon ToF imaging. Beyond indoor imaging, our method also holds the potential for347

large-scale applications such as autonomous driving and wireless radio systems communications,348

underscoring its versatility and potential impact across various fields.349
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