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In this Supplemental Document, we present additional results and
method details in support of the findings from the main manuscript.
Specifically, we first describe the fabrication of the diffractive optical
element, introduce color-accurate Bayer imaging as an additional
application of the proposed 2-in-1 camera, and additional exper-
iments on exploring End-to-End optimization. Next, we describe
pre-processing steps to obtain uncoded and coded captures. We
then provide additional network details, PSF calibration process,
fine-tuning description, ground truth acquisition, and additional
experiments for each of the applications from the main document
(snapshot HDR imaging, snapshot hyperspectral imaging, and abso-
lute depth imaging).

Contents

Contents 1
1 Fabrication of Diffractive Optical Element 1
2 Color-Accurate Bayer Imaging 2
3 End-to-End Optimization for HDR Application 3
4 Pre-Processing and Cross-talk Compensation 3
5 Optically Coded Snapshot High Dynamic Range

Imaging 4
6 Optically Coded Snapshot Hyperspectral Imaging 5
7 Monocular Depth from Coded Defocus 9
References 14

∗Authors contributed equally to this work.

Authors’ addresses: Zheng Shi, zhengshi@princeton.edu; Ilya Chugunov, chugunov@p
rinceton.edu, Princeton University, USA; Mario Bijelic, mario.bijelic@princeton.edu;
Geoffroi Côté, gcote@princeton.edu; Jiwoon Yeom, jy9976@princeton.edu, Princeton
University, USA; Qiang Fu, qiang.fu@kaust.edu.sa; Hadi Amata, hadi.amata@kaust
.edu.sa; Wolfgang Heidrich, wolfgang.heidrich@kaust.edu.sa, KAUST, Saudi Arabia;
Felix Heide, Princeton University, USA, fheide@princeton.edu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
0730-0301/2024/7-ART141
https://doi.org/10.1145/3658225

1 FABRICATION OF DIFFRACTIVE OPTICAL ELEMENT
We fabricate the DOEs with photo-lithography (PL) and reactive-
ion etching (RIE) techniques with 5.4 micrometer pixel pitch. The
fabrication procedures are as follows.

Sample Preparation. The substrate is a fused silica wafer with
4-inch diameter and 0.5 mm thickness. The wafer is first placed in
Piranha bath at 115 ◦C for 10 min, followed by de-ionized water
rinse and nitrogen drying to remove contaminants. A thin layer of
Chromium (Cr) is deposited onto the wafer surface by sputtering as
a hard mask layer for the following etching step.

Master Mask Fabrication. Master masks are fabricated by laser di-
rect writing on 5-inch soda lime marks with Heidelberg 𝜇PG 501. In
order to achieve 16-level structures, four master masks are required.

Patterning. The patterns on the master masks are transferred to
the wafer by photo-lithography. We first prepare the wafer with
HMDS (Hexamethyldisilazane) vapor priming at 150 ◦C for 20 min.
Then, a thin film of photoresist AZ1505 is spin-coated on the wafer,
with 0.6 𝜇𝑚 thickness. The wafer is aligned with the master mask
on a contact aligner (EVG6200 ∞) with a separation of 30 𝜇𝑚 in
between. We apply UV exposure (9 mJ/cm2) to transfer the patterns
from the mask to the photoresist. In the following development
step, the exposed areas are removed by the developer AZ726MIF for
17 sec. Next, the open areas on the Cr layer are etched by Cr etchant
(HClO4 and (NH4)2[Ce(NO3)6] solution) for 1 min to transfer the
patterns on the hard mask on the wafer. The residual photoresist is
removed by acetone afterwards.

Etching. The structures on the wafer are fabricated by dry etching
(RIE) in a vaccum chamber. We use plasma of 15 sccm CHF3 and
5 sccm O2 at 10 ◦C and control the time of etching for the desired
depth. The open areas on the wafer (no Cr covering) are selectively
removed by the plasma. After the etching, the Cr layers are removed
for the next step.

Finishing. We repeat the above patterning and etching steps for
4 times to create the 16-level structures. In each etching step, the
target depths are 75 nm, 150 nm, 300 nm, and 600 nm for the design
wavelength at 550 nm. In the finishing step, we deposit a Cr aper-
ture around the clear region of the DOE to prevent unwanted light
outside. The samples are diced with a dicing saw to the physical
dimension of 10 mm × 10 mm.
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Fig. 1. Microscopic images and Zygo profile measurements for the fabri-
cated DOEs. (a) Monocular Depth from Defocus. (b) Hyperspectral Imaging.
(c) HDR imaging. Scale bar is 50 𝜇𝑚. Microscopic images are taken by Nikon
Eclipse L200N, 20×. 3D height profiles are taken by Zygo NewView 7300,
20×.

2 COLOR-ACCURATE BAYER IMAGING
In this section, we describe an additional novel application. We
present this application in simulation as it was conceived after the
fabrication of the DOEs presented in the main manuscript.

Conventional optical systems aim to minimize chromatic aberra-
tions and focus all light from a given direction to the same spot on
the sensor. On the sensor, a color filter array, typically in a Bayer
arrangement [Lukac 2018], rejects all light outside a specific range
of wavelengths for a given pixel. Assuming a perfectly imaging
system, one shortcoming of this approach is that only the light
corresponding to one of the three color channels will be recorded
for any given point in a scene, which may result in artificial colors
being reconstructed.

Departing from this approach and inspired by Miyata et al. [2021],
we investigate a DOE which deliberately maximize chromatic aber-
ration and design the DOE to focus red, green, and blue light onto
the corresponding Bayer filter locations. This allows us to improve
the color accuracy in scenes where there are high-frequency details:
in the grid-like regions of the scene that are correspondingly aligned
with the Bayer sensor, unbiased samples can be collected for the R,
G, and B channels instead of a single one of these channels. For other
regions, the light is suppressed instead of providing incomplete R,
G, and B samples. To this end, we aim to optically implement the

target PSF

𝑝′Bayer (𝜆) =


Δ(256, 256), 𝜆 = 𝜆R
Δ(257, 256), 𝜆 = 𝜆G
Δ(257, 257), 𝜆 = 𝜆B,

(1)

where Δ(𝑖, 𝑗) represents a dirac delta at pixel (𝑖, 𝑗) and 𝜆R, 𝜆G and
𝜆B are corresponding RGB wavelength. We optimize the DOE phase
profile to fit this PSF with

L𝑝,Bayer = L1
(
𝐹 (ℎL, 0,∞O, 𝜆RGB) , 𝑝′Bayer

)
, (2)

where L1 distance between the simulated left PSF 𝑝L and the target
PSF with depth at optical infinity ∞O for discrete RGB wavelength
samples 𝜆RGB = {𝜆R, 𝜆G, 𝜆B}.
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Fig. 2. Synthetically reconstructed scene after the simulation of a Bayer
filter (top row), where the PSF is either an ideal Dirac delta or the color-
shifted PSF of the proposed color-accurate Bayer imaging method. In both
methods, nearest-neighbor interpolation is used to reconstruct all color
channels from the Bayer image. In contrast to an ideal PSF, the proposed
method leads to a more accurate reconstruction of the color channels, which
we show as the mean absolute error over the U and V channels in LUV color
space (bottom row).

Table 1. PSNR in RGB and LUV color spaces when synthetically recon-
structing natural scenes after the simulation of a Bayer filter using our
color-accurate Bayer imaging method. We compare to the PSF of an ideal
image formation process (i.e., a centered Dirac delta PSF).

RGB [dB] L [dB] U [dB] V [dB]

Ideal PSF (debayering) 28.9 35.5 37.6 35.7
Ideal PSF (nearest neighbor) 28.9 35.5 37.7 35.7
Proposed 28.9 35.4 39.5 37.8

We assess the proposed method for color-accurate Bayer imag-
ing in simulation using the BSDS500 dataset [Arbelaez et al. 2010],
composed of 500 images of diverse real-world scenes. We consider
the PSF from Eq. (1) for the proposed method, and an identity trans-
formation for the baseline image. For all methods, we apply the PSF,
simulate a naive RGGB Bayer filter (with a transmittance of either
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1s or 0s for the corresponding color channels), and add Gaussian
noise (𝜎 = 1 pixel). From the simulated Bayer image, we recon-
struct the original image using nearest-neighbor interpolation for
the proposed method, and both nearest-neighbor interpolation and
debayering for the baseline method. Then, we compare the PSNR in
both RGB and LUV color spaces.

The findings in Tab. 1 and Fig. 2 validate that the proposedmethod
achieves a better color accuracy than the application of a perfect PSF
in the presence of a Bayer filter, albeit at the cost of slightly worse
luminance reconstruction; incidentally, both methods yield similar
reconstruction performance in RGB space. The proposed approach
can find use in applications where color accuracy is important, e.g.,
in artistic or machine-vision applications.

3 END-TO-END OPTIMIZATION FOR HDR
APPLICATION

In the main manuscript, we derive motivation for our split-aperture
DOE designs from prior work that utilized a single camera setup. For
instance, we co-optimize our HDR DOE design alongside the recon-
struction network with a streak-like PSF initialization, as opposed
to the more common random or focusing PSF initializations. In this
section, we explore whether an end-to-end optimization conducted
without a prior, can yield better results. We explore two methods
for jointly optimizing the DOE and network designs, evaluating
their performance through simulations as it was conceived after
the fabrication of the DOEs presented in the main manuscript. We
present qualitative and quantitative comparisons in Figure 3 and
Table 2, respectively.

Table 2. Quantitative Evaluation of HDR Reconstruction Quality. We
measure the reconstruction quality in the overall image and the highlight
regions, using the RMSE and PSNR, where PSNR is calculated with a max-
imum value of 28. We compare the proposed method against end-to-end
learning with random PSF initialization, and recent differentiable proximal
solver [2023].

↓RMSE ↑PSNR ↓RMSE𝐻 ↑PSNR𝐻

Δ-Prox [2023] 1.58 48.18 10.82 31.33
Rand Init 0.90 54.16 7.28 37.01
Proposed 0.88 54.87 7.14 37.68

First, we replace the streak-like PSF initialization with a random
diffuser PSF, and jointly optimize both the DOE and the reconstruc-
tion network from scratch. The initialization influences the learned
PSF to scatter energy similarly to a diffuser, creating a haze around
highlights as observed in the ’Random Init’ configuration. This
scattering makes it challenging for the network to reconstruct fine
details from the haze, resulting in a slight performance decrease
compared to our proposed design.

Next, we explored Δ-Prox [Lai et al. 2023], a recent development
that introduced a domain-specific language (DSL) and compiler for
transforming optimization problems into differentiable proximal
solvers. This method, which uses model-based proximal optimiza-
tion, has demonstrated better local minima attainment compared
to jointly optimizing the DOE design with a separate deep learn-
ing reconstruction network, as the proposed method. As shown in
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Fig. 3. End-to-End Snapshot HDRMethods in Simulation.We compare
the proposed method against end-to-end learning with random PSF initial-
ization, and recent differentiable proximal solver [2023]. For each method,
the leftmost column shows the learnt PSF, followed by simulated coded
capture and the reconstructed scenes at 0EV, -3EV, and -6EV.

Figure 3 under the "Dprox" configuration, Δ-Prox converged to a
markedly different PSF design, replicating highlights both locally
and at greater distances, and outperformed all baselines discussed
in our main manuscript, as shown in Table 2. However, unlike
deep learning networks that can easily copy LDR content from the
uncoded capture and focus primarily on highlight recovery, the
unrolled ADMM solver must deconvolve the entire image using
both coded and uncoded captures, resulting in decreased quality in
LDR regions and more artifacts near highlights.

4 PRE-PROCESSING AND CROSS-TALK
COMPENSATION

In our experiments, we use the Canon EOS 5D Mark IV dual-pixel
sensor, which records raw captures in the Canon Raw 2nd edition
(CR2) format. Our preprocessing begins with extracting two raw
frames from each CR2 file, a process conducted using RawDigger
software. Dual-pixel sensors are designed to output separate left
and right views, but in practice, they produce a composite image
(frame 1) consisting of the sum of these two views, alongside an
individual view (frame 2). To obtain the second view, we subtract
frame 2 from frame 1. For saturated pixels, we assign the same value
to both views.
To compensate for crosstalk, we capture images of a white wall

with half of the aperture blocked, either left or right, as shown in
Fig. 4. We note that the cross-talk ratio differs among the Bayer
color channels, likely a result of slight chromatic aberrations in the
microlenses. Therefore, we compute the cross-talk ratios from the
raw captures prior to debayering, addressing each color channel
separately. To reduce the effect of sensor noise, we average the ratios
for each column, creating a uniform weight for each. We further
refine this by fitting a 1D smoothing spline across all columns,
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Fig. 4. Cross-talk Calibration Capture with Partial Aperture Blocked. We
show here the central 3072 × 3072 pixels of the sensor during a calibration
process where half of the aperture is blocked.

which smooths the transition of the cross-talk ratios, enhancing the
calibration uniformity.
Finally, we demosaic the calibrated raw captures using bilinear

interpolation. The white balance for both captures is adjusted based
on the gray world assumption applied to the uncoded capture.

5 OPTICALLY CODED SNAPSHOT HIGH DYNAMIC
RANGE IMAGING

Reconstruction Network Architecture. We employ a DWDN-like
network architecture to extract the optically encoded information,
which initially conducts feature-based inverse filtering on the coded
capture, followed by an encoder-decoder network for image recon-
struction. See Tab. 3 and 4 for full network specification.

PSF Calibration Setup. A fiber tip (M37L01) coupled with a broad-
band Fiber-Coupled LED (MBB1F1) is used as a point light source.
This light is collimated into plane wave illumination using two
achromatic doublet lenses (AC254-150-A-ML).

Additional Details on the Training Process. To train our model, we
gather 2039 HDR images with a mix of outdoor night scenes and
indoor scenes fromHDRi Haven, amongwhich 1839 images are used
for training purposes and 200 images are reserved for validation.
To accommodate different image sizes, we take random 512 × 512
crops of the images for both training and validation. To ensure each
crop contains saturated regions, we multiply the images by a scale
factor such that 1% to 5% of pixels are saturated. After the scaling,
we clip the pixel values to [0, 28] and use the processed image as
the target HDR data. During training, we also apply left-right flips
as additional data augmentation.

Table 3. HDR Reconstruction Network architecture description (part 1).
Specifically,“conv-k(𝑎)-s(𝑏)-LRelu” represents a convolution layer with an
𝑎 × 𝑎 kernel window, using the stride 𝑏, followed by a Leaky Relu (𝛼 = 0.02)
activation function, “Res-k(𝑎)-Relu” represents a ResNet Block with an 𝑎×𝑎

kernel and Relu activation function, and “Interpolate-(𝑎)” represents inter-
polate the input scale 𝑎. We use "convT" to denote transposed convolution,
Wdeconv to denote Wiener-deconvolution using the coded PSF, and "con-
cat" to denote concatenation.

Input Layer Type Output (# Channels)

Uncoded_capture

conv-k5-s1-LRelu

Uncoded_feature (6)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

coded_capture

conv-k5-s1-LRelu

coded_feature (6)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

coded_feature Wdeconv coded_deconv (6)
Interpolate-0.5(concat conv-k5-s1-LRelu

scale1_in (32)(Uncoded_feature, Res-k5-Relu
coded_feature, Res-k5-Relu
coded_deconv)) Res-k5-Relu

scale1_in

conv-k5-s2-LRelu

scale1_encode1 (64)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

scale1_encode1

conv-k5-s2-LRelu

scale1_encode2 (128)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

scale1_encode2

Res-k5-Relu

scale1_decode2 (64)Res-k5-Relu
Res-k5-Relu

convT-k3-s2-Relu
scale1_decode2 Res-k5-Relu

scale1_decode1 (32)+ Res-k5-Relu
scale1_encode1 Res-k5-Relu

convT-k3-s2-Relu
scale1_decode1 Res-k5-Relu

scale1_out (32)+ Res-k5-Relu
scale1_in Res-k5-Relu

Fine-tuning Process. Our reconstruction network implements a
two-step fine-tuning process to ensure that the reconstructed im-
ages are aligned with both the measured attributes of the DOE
and the characteristics of real-world captures. First, we fine-tune
the network on synthetic data, replacing the theoretical forward
PSF simulation in the model with the actual measured PSF values,
acquainting the network with the true characteristics of the fabri-
cated DOE. The next phase involves refining the network output to
achieve cross-modal consistency. In this step, we reintroduce the
reconstructed highlights into the image formation model. The goal
here is to adjust the overall intensity so that the intensity of the sim-
ulated coded capture aligns with that of the real coded capture. This
adjustment prevents the network from overfitting to the training
distribution and ensures the output is consistent with real-world
imaging scenarios.
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Table 4. HDR Reconstruction Network architecture description (part 2).
Specifically,“conv-k(𝑎)-s(𝑏)-LRelu” represents a convolution layer with an
𝑎 × 𝑎 kernel window, using the stride 𝑏, followed by a Leaky Relu (𝛼 = 0.02)
activation function, “Res-k(𝑎)-Relu” represents a ResNet Block with an 𝑎×𝑎

kernel and Relu activation function, and “Interpolate-(𝑎)” represents inter-
polate the input scale 𝑎. We use "convT" to denote transposed convolution,
Wdeconv to denote Wiener-deconvolution using the coded PSF, and "con-
cat" to denote concatenation.

Input Layer Type Output (# Channels)

concat(Uncoded_feature, conv-k5-s1-LRelu

scale2_in (32)coded_feature, Res-k5-Relu
coded_deconv, Res-k5-Relu

Interpolate-2(scale1_out)) Res-k5-Relu

scale2_in

conv-k5-s2-LRelu

scale2_encode1 (64)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

scale2_encode1

conv-k5-s2-LRelu

scale2_encode2 (128)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

scale2_encode2

Res-k5-Relu

scale2_decode2 (64)Res-k5-Relu
Res-k5-Relu

convT-k3-s2-Relu
scale2_decode2 Res-k5-Relu

scale2_decode1 (32)+ Res-k5-Relu
scale2_encode1 Res-k5-Relu

convT-k3-s2-Relu
scale2_decode1 Res-k5-Relu

scale2_out (32)+ Res-k5-Relu
scale2_in Res-k5-Relu

concat(uncoded_caputre conv-k5-s2-Relu output (3), scale2_out)

Ground Truth Acquisition Procedure. For acquiring ground truth
high dynamic range (HDR) data in outdoor test cases, we mount the
camera on a tripod to capture the scene at various exposure settings
(0EV, -3EV, and -6EV), without using the DOE. To account for the
imperfect light efficiency of the DOE, we align the 95th percentile
intensity value of the uncoded capture with that of the 0EV ground
truth capture. Subsequently, we scale the intensities of all ground
truth captures to correspond with this calibration. This method
provides us with a reliable and consistent set of ground truth data,
essential for evaluating the system performance in real-world HDR
imaging scenarios.

Additional Simulation Results. In addition to the results presented
in the main manuscript, we present additional qualitative simula-
tion results in Fig.5. For each scene showcased, the leftmost column
features the output from our method, followed by the reconstructed
scenes at different exposure levels: 0EV, -3EV, and -6EV. Addition-
ally, to emphasize the method’s capability in detail resolution, we
provide zoomed-in views of the saturated areas. These results fur-
ther illustrate the effectiveness of our proposed 2-in-1 camera in
capturing the rich details in both the bright and dark regions of the
scene.

Table 5. Hyperspectral Reconstruction Network architecture description
(part 1). Specifically,“conv-k(𝑎)-s(𝑏)-LRelu” represents a convolution layer
with an 𝑎 × 𝑎 kernel window, using the stride 𝑏, followed by a Leaky Relu
(𝛼 = 0.02) activation function, “Res-k(𝑎)-Relu” represents a ResNet Block
with an 𝑎 × 𝑎 kernel and Relu activation function, and “Interpolate-(𝑎)”
represents interpolate the input scale𝑎. We use "convT" to denote transposed
convolution, Wdeconv to denote Wiener-deconvolution using the coded
PSF, and "concat" to denote concatenation.

Input Layer Type Output (# Channels)

Uncoded_capture

conv-k5-s1-LRelu

Uncoded_feature (6)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

coded_capture

conv-k5-s1-LRelu

coded_feature (31)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

coded_feature Wdeconv coded_deconv (31)
Interpolate-0.5(concat conv-k5-s1-LRelu

scale1_in (64)(Uncoded_feature, Res-k5-Relu
coded_feature, Res-k5-Relu
coded_deconv)) Res-k5-Relu

scale1_in

conv-k5-s2-LRelu

scale1_encode1 (128)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

scale1_encode1

conv-k5-s2-LRelu

scale1_encode2 (256)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

scale1_encode2

Res-k5-Relu

scale1_decode2 (128)Res-k5-Relu
Res-k5-Relu

convT-k3-s2-Relu
scale1_decode2 Res-k5-Relu

scale1_decode1 (64)+ Res-k5-Relu
scale1_encode1 Res-k5-Relu

convT-k3-s2-Relu
scale1_decode1 Res-k5-Relu

scale1_out (64)+ Res-k5-Relu
scale1_in Res-k5-Relu

Additional Experimental Results. In Fig.6, we showcase further
experimental results achieved with our proposed 2-in-1 camera in
various outdoor settings. These additional results are compared with
ground truth captures derived from bracketed exposures, as well
as a learned LDR-to-HDR baseline method. These supplementary
scenes serve as additional experimental validation of our method’s
effectiveness across diverse real-world environmental conditions.

6 OPTICALLY CODED SNAPSHOT HYPERSPECTRAL
IMAGING

PSF Calibration. Employing a similar setup as for the HDR ap-
plication, we utilize a broadband fiber-coupled LED and a collima-
tion lens as the light source. For PSF measurements across vari-
ous wavelengths, we incorporate a linear variable VIS bandpass
filter (Edmund 88-365) and a miniature spectrometer (Ocean Insight

ACM Trans. Graph., Vol. 43, No. 4, Article 141. Publication date: July 2024.
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Fig. 5. Additional Synthetic Results of Snapshot HDR Methods. We assess the proposed method for snapshot HDR imaging in simulation by comparing
the proposed method to the LDR-to-HDR method DeepHDR [Santos et al. 2020], and the DOE-based Rank-1 Optics approach [Sun et al. 2020]. DeepHDR,
constrained by its LDR input, produces plausible HDR imagery but falls short in detailed recovery. Conversely, Rank-1 Optics occasionally struggles to
differentiate HDR encoding from LDR content, resulting in visible streak artifacts. By simultaneously obtaining both LDR uncoded capture and coded capture,
the proposed method is able to reconstruct highlight details without affecting the imaging quality of the LDR content.
ACM Trans. Graph., Vol. 43, No. 4, Article 141. Publication date: July 2024.
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Fig. 6. Additional Experimental Captures of Snapshot HDR Imaging. We assess the proposed method experimentally for snapshot HDR imaging
in outdoor settings, comparing our results with Ground Truth data obtained through bracketed exposures. The proposed method is able to recover fine
detail of the highlights, while the learned LDR-to-HDR method, DeepHDR, produces incorrect HDR estimates with image structure and intensity levels that
significantly deviate from those in the ground truth captures. Please zoom into the electronic version of this document for details.
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Table 6. Hyperspectral Reconstruction Network architecture description
(part 2). Specifically,“conv-k(𝑎)-s(𝑏)-LRelu” represents a convolution layer
with an 𝑎 × 𝑎 kernel window, using the stride 𝑏, followed by a Leaky Relu
(𝛼 = 0.02) activation function, “Res-k(𝑎)-Relu” represents a ResNet Block
with an 𝑎 × 𝑎 kernel and Relu activation function, and “Interpolate-(𝑎)”
represents interpolate the input scale𝑎. We use "convT" to denote transposed
convolution, Wdeconv to denote Wiener-deconvolution using the coded
PSF, and "concat" to denote concatenation.

Input Layer Type Output (# Channels)

concat(Uncoded_feature, conv-k5-s1-LRelu

scale2_in (64)coded_feature, Res-k5-Relu
coded_deconv, Res-k5-Relu

Interpolate-2(scale1_out)) Res-k5-Relu

scale2_in

conv-k5-s2-LRelu

scale2_encode1 (128)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

scale2_encode1

conv-k5-s2-LRelu

scale2_encode2 (256)Res-k5-Relu
Res-k5-Relu
Res-k5-Relu

scale2_encode2

Res-k5-Relu

scale2_decode2 (128)Res-k5-Relu
Res-k5-Relu

convT-k3-s2-Relu
scale2_decode2 Res-k5-Relu

scale2_decode1 (64)+ Res-k5-Relu
scale2_encode1 Res-k5-Relu

convT-k3-s2-Relu
scale2_decode1 Res-k5-Relu

scale2_out (64)+ Res-k5-Relu
scale2_in Res-k5-Relu
scale2_out conv-k5-s2-Relu output (31)

USB4000-VIS-NIR-ES), enabling the creation of a narrowband light
source around wavelength of interest. Limited by the LED spectral
coverage, we calibrate the PSF from 450nm to 700nm at 10nm inter-
vals. For wavelengths ranging from 400nm to 440nm, which are not
directly measured, we interpolate the PSFs from the measurements
for visualization and finetuning purposes.

Additional Details on the Training Process. We use 278 training
images and 32 unseen testing images. To accommodate different
image sizes, we take random 512 × 512 crops of the images for
both training and validation purposes. During training, we also
apply left-right flips and random channel shuffles for additional
data argumentation.

Reconstruction Network Architecture. Similar to the snapshot HDR
application, we employ a DWDN-like network architecture that per-
forms feature-based inverse filtering on the coded capture, followed
by an encoder-decoder network to reconstruct hyperspectral infor-
mation from the dual captures. See Tab. 5 and 6 for a full network
specification.

Fine-tuning Process. The fine-tuning procedure for our reconstruc-
tion network follows a two-stage approach similar to that used in
HDR applications. In the initial stage, we fine-tune the network

using synthetic data, substituting the theoretical forward PSF sim-
ulation in the model with the measured PSF values. However, due
to the spectral coverage of our LED, we calibrate the PSF within
the 450nm to 700nm range, at intervals of 10nm. For the 400nm to
440nm spectrum, which is not directly measured, we extrapolate the
PSFs from the 450nm measurement. This extrapolation maintains
the relative intensity among the 0th, 1st, and 2nd order diffractions,
adjusting only the diffraction positions based on simulated values,
Following this, we focus on enhancing the network output for cross-
modal alignment. Here, the reconstructed hyperspectral scene is
reintegrated into the image formation model. We then employ a
pixel-wise L1 loss to ensure that both the simulated coded and
uncoded captures correspond accurately with the actual captures.

(a)

(b)

Fig. 7. (a) Ground Truth Acquisition Setup using a Spectrometer. (b) Spectral
profile of the narrow-band light source used for PSF calibration.

Ground Truth Acquisition Procedure. To acquire accurate ground
truth spectral intensity data, we employ a miniature spectrometer
(Ocean Insight USB4000-VIS-NIR-ES), as shown in Fig.7(a). The spec-
tral measurements are conducted under controlled lighting, which
includes an overhead ceiling light and two-stage lights set to a color
temperature of 5500K. We measure the spectral reflection at the
center of each color and then normalize these measurements using
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Table 7. Depth Reconstruction Network architecture description.
Specifically,“conv-k(𝑎)-s(𝑏)-LRelu” represents a convolution layer with an
𝑎 × 𝑎 kernel window, using the stride 𝑏, followed by a Leaky Relu (𝛼 = 0.02)
activation function, “ResNet18” represents a ResNet18 backbone without
the final decision layers. We use "convT" to denote transposed convolution,
and "concat" to denote concatenation.

Input Layer Type Output (# Channels)

Uncoded_capture ResNet18 Uncoded_feature (1024)
coded_capture ResNet18 coded_feature (1024)

concat convT-k2-s2-Relu
up5 (512)(Uncoded_feature, conv-k3-s1-Relu

coded_feature)) conv-k3-s1

up5
convT-k2-s2-Relu

up4 (256)conv-k3-s1-Relu
conv-k3-s1

up4
convT-k2-s2-Relu

up3 (128)conv-k3-s1-Relu
conv-k3-s1

up3
convT-k2-s2-Relu

up2 (64)conv-k3-s1-Relu
conv-k3-s1

up2
convT-k2-s2-Relu

up1 (32)conv-k3-s1-Relu
conv-k3-s1

up1 conv-k5-s1-Relu output (1)

the data obtained from white and black references. For generat-
ing narrowband light sources targeting specific wavelengths for
wavelength-dependent PSF calibration, as illustrated in Fig.7(b), we
use a similar setup as for the HDR application complemented by a
linear variable VIS bandpass filter (Edmund 88-365).

Additional Simulation Results. Complementing the main manu-
script, Fig.8 contains further qualitative simulation results. For each
scene, the leftmost column shows the sensor captures using our
method, followed by reconstructions in both RGB and hyperspec-
tral formats (alternate hyperspectral channels (410nm to 700nm at
20nm intervals). The RGB images are generated from hyperspec-
tral reconstructions and sensor response curves. These additional
results further validate the capability of our method in precisely
reconstructing both spatial and spectral details with high fidelity.

Additional Experimental Results. Fig.9 reports additional experi-
mental results obtained with our 2-in-1 camera for various indoor
and outdoor environments. Given the limitations of our spectral
measurement equipment in point-wise measurements, reference
spectral curves were not acquired in these uncontrolled lighting
conditions. Consequently, in these scenarios, we compare the results
of our proposed method solely with those from a learned RGB-to-HS
(hyperspectral) method. These experimental results further demon-
strate the effectiveness of our approach in real-world settings under
varying lighting conditions.

7 MONOCULAR DEPTH FROM CODED DEFOCUS
Additional Details on the Training Process. FlyingThings3D dataset

contains 30K images, and is divided into 18K pairs for training, 4K
pairs for validation and 8K pairs for testing. We take random 512 ×

512 crops of the images for both training and validation purposes,
and we also apply left-right flips as additional data augmentation
during training. We set the target range in this dataset to the range
from 1m to 5m.

Reconstruction Network Architecture. We utilize ResNet18 [He
et al. 2016] as a feature extractor for both uncoded and coded cap-
tures, processing them independently before channeling them into
a unified decoder. The ResNet18 components in our architecture
begin with pre-trained weights, which are further refined with the
rest of the network during the training phase. See Tab. 7 for a full
network specification.

Fine-tuning Process. We first tine-tune the network using syn-
thetic data, substituting the theoretical forward PSF simulation in
themodel with themeasured PSF values.We notice model trained on
FlyingThings3D dataset [Mayer et al. 2016] doesn’t genalize well to
the real captures so we additionally used Hypersim dataset [Roberts
et al. 2021] during the fine-tuning process. Note Hypersim dataset
was not used for the model used in synthetic evaluation. Addi-
tionally, to address the significant resolution disparity between the
training scenes (512× 512) and experimental captures (3072× 3072),
we apply a segmentation-based median filter to refine the depth
output, where we apply Segment Anything [Kirillov et al. 2023]
on the uncoded capture to obtain object boundaries, and perform
masked medium filter to smooth out the depth output.

Ground Truth Acquisition Procedure. To obtain reference absolute
depth information, we employ a solid-state LiDAR camera (Intel®
RealSense™ LiDAR Camera L515). This camera is positioned adja-
cent to our proposed camera setup and we try to achieve a parallel
alignment for consistency in data capture. The RealSense camera
offers a depth output resolution of 1024 × 768. Given that the Re-
alSense camera’s field of view, at 70° × 55°, is substantially broader
compared to the lens used in our setup, we manually crop the output
to match the region corresponding to the scene captured by our
proposed system.

Additional Simulation Results. In addition to the main manuscript,
Fig. 10 presents further qualitative simulation results. For each scene,
the leftmost two columns display the sensor captures using our
method at double intensity. These are followed by depth reconstruc-
tions from the monocular depth estimation method MiDaS [Ran-
ftl et al. 2022], and DOE-based depth from defocus method Deep
DfD [Ikoma et al. 2021], alongside the ground truth data. The relative
depth output from MiDaS is scaled to align with the known target
depth range for consistent comparison. These additional results
underscore our method’s proficiency in accurately reconstructing
absolute depth information in complex scenes.

Additional Experimental Results. Fig.11 reports additional experi-
mental results obtained with our 2-in-1 camera for various indoor
and outdoor environments. In the case of indoor scenes, we employ
a solid-state LiDAR camera to gather absolute depth data from the
scenes, serving as a reference, and in outdoor experiments, where
the RealSense L515 sensor struggles to provide accurate depth, we
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Fig. 8. Additional Synthetic Results for Snapshot Hyperspectral Imaging.We assess the proposed method for snapshot hyperspectral imaging with
simulated ground truth spectral data (400nm to 700nm) and compare the RGB-to-Spectrum HRNet [Zhao et al. 2020], and DOE-based QDO systems [Li et al.
2022]. QCO, limited by its heavily quantized design and spatial resolution loss from optical encoding, faces challenges in high-quality reconstruction. HRNet,
while generating plausible results, tends to overfit to its training dataset, particularly at both ends of the spectrum. Our method, capturing both uncoded and
coded images, achieves high fidelity in recovering spatial and spectral details.
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Fig. 9. Additional Experimental Captures of Snapshot Hyperspectral Imaging.We evaluate our method experimentally for snapshot hyperspectral
imaging under varying lighting conditions. We compare our method to the learned RGB-to-HS technique, HRNet [2020], across different environments:
outdoor (Scene 3), indoor with cool tone lighting (Scene 1), and warm lighting (Scenes 2 and 4). In the absence of Ground Truth RGB captures, we present the
uncoded and coded captures at double intensity, where the uncoded capture serves as a pseudo-ground truth in the RGB domain. While HRNet exhibits
challenges in accurately reproducing colors at the spectrum boundaries, our proposed method demonstrates robust and consistent performance across all
tested lighting scenarios.

limit our comparison to the MiDaS baseline. These experimental re-
sults further validate the proposed approach to reconstruct absolute
scene depth in real-world settings.
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Fig. 10. Additional Synthetic results of Monocular Depth Imaging. We assess our approach for monocular depth estimation in simulation by comparing
our method to the monocular depth estimation method MiDaS [Ranftl et al. 2022], and DOE-based depth from defocus method Deep DfD [Ikoma et al.
2021]. While MiDaS estimates a qualitatively plausible depth map, their estimation remains relative and misrepresent the spatial relationship of non-adjacent
objects. Deep DfD, capable of recovering depth scale, faces challenges in resolving fine details. Our method, leveraging both the sharp details from the in-focus
uncoded capture and the depth cues from the coded captures, is able to accurately capture both the scale and details in the scene.
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Fig. 11. Additional Experimental Captures of Optically Coded Depth Imaging.We evaluate the proposed method in both indoor (Scenes 1 to 3) and
outdoor (Scene 4) environments, and compared it against the monocular depth method MiDaS [Ranftl et al. 2022] applied to the uncoded capture and rescaled
to the target depth range. Areas where the RealSense camera was unable to provide measurements are indicated with a black mask. The depth reconstructions
produced by our proposed method demonstrate a close alignment with the RealSense reference data. In contrast, MiDaS is limited to provide a plausible
relative depth map and often inaccurately merges unconnected objects into a singular, continuous depth profile.
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