Spectral and Polarization Vision:
Spectro-polarimetric Real-world Dataset

Yujin Jeon1,* Eunsue Choi1,* Youngchan Kim1 Yunseong Moon1
Khalid Omer2 Felix Heide3 Seung-Hwan Baek1

1 POSTECH 2 Meta 3 Princeton University

Abstract

Image datasets are essential not only in validating existing methods in computer vision but also in developing new methods. Most existing image datasets focus on trichromatic intensity images to mimic human vision. However, polarization and spectrum, the wave properties of light that animals in harsh environments and with limited brain capacity often rely on, remain underrepresented in existing datasets. Although spectro-polarimetric datasets exist, these datasets have insufficient object diversity, limited illumination conditions, linear-only polarization data, and inadequate image count. Here, we introduce two spectro-polarimetric datasets: trichromatic Stokes images and hyperspectral Stokes images. These novel datasets encompass both linear and circular polarization; they introduce multiple spectral channels; and they feature a broad selection of real-world scenes. With our dataset in hand, we analyze the spectro-polarimetric image statistics, develop efficient representations of such high-dimensional data, and evaluate spectral dependency of shape-from-polarization methods. As such, the proposed dataset promises a foundation for data-driven spectro-polarimetric imaging and vision research. Dataset and code will be publicly available.

1. Introduction

Recent progress in computer vision can be largely attributed to comprehensive studies of real-world image datasets, such as ImageNet [14]. Foundation models [1, 35, 53, 64] further underscore data significance. Most of these datasets comprise trichromatic intensity images, inspired by human visual perception, enabling machines to emulate human vision with trichromatic RGB cameras. As such, the datasets have facilitated the development of low-cost, camera-based autonomous agents capable of perceiving and interacting with our world, as we do. However, the reliance on trichromatic intensity in existing image datasets also comes with inherent limitations for analyzing objects in depth. Examples include textureless surface, low-albedo objects, and transparent materials.

Light possesses wave properties, including polarization and spectrum [9], which are not faithfully captured by trichromatic intensity imaging. While these properties are invisible to human, animals like honeybees and ants leverage the polarization and spectrum for navigation and other tasks. Horvath and Varju [25] provide diverse examples and mechanisms of spectral and polarimetric vision in animals. Partly drawing inspiration from nature, researchers have extended the analysis of spectrum and polarization to a variety of fields, including computer vision, robotics, and astronomy. This has spurred interest in polarimetric [7, 8, 38, 49] and hyperspectral imaging [2, 10, 28], and more recently, their integration into spectro-polarimetric imaging [3, 17, 18, 23, 26, 45, 47, 50, 54, 67]. Prior work using spectro-polarimetric images has shown potential for skin analysis [67], vegetation classification [63], shape reconstruction [27], object recognition [13], and segmentation [30, 55].

There are existing spectro-polarimetric datasets, summarized in Figure 2, that have been invaluable for these analyses [19, 38, 39, 52] and training neural networks [4, 11, 22, 36, 40–42, 46, 48]. However, these datasets unfortunately do not capture the diversity of real-world spectro-polarimetric images as effectively as their trichromatic intensity counterparts do. They typically suffer from limited object, scene, and illumination diversity, contain primarily linear polarization information, and offer a small number of images. To advance the field, we propose a comprehensive spectro-polarimetric dataset that encompasses: (1) Full Stokes polarimetric data, including both linear and circular polarization states, represented by Stokes vectors [9] for each pixel and wavelength. (2) A diverse range of spectral channels, facilitating in-depth exploration of the interplay between spectrum and polarization. (3) A broad array of real-world scenes, crucial for extracting meaningful statis-
tics and relationships within spectro-polarimetric images.

To this end, we introduce two novel spectro-polarimetric datasets designed to cover real-world spectro-polarimetric scenes: a trichromatic Stokes dataset consisting of 2,022 images, and a hyperspectral Stokes dataset containing 311 images across 21 spectral channels. The trichromatic Stokes dataset covers a wider range of scenes thanks to its convenient capture setup and process. The hyperspectral Stokes dataset provides richer spectral-polarimetric information than the trichromatic Stokes dataset. Both datasets cover a variety of natural indoor and outdoor scenes. Each image in these datasets is annotated with four specific parameters: the type of environment (indoor or outdoor), the illumination conditions (clear/cloudy sunlight or white/yellow office light), the timestamp of capture, and the scene categorization (either object- or scene-oriented).

Utilizing these datasets, we systematically analyze the statistics of real-world spectro-polarimetric images. We focus on examining statistics of Stokes vectors, in addition to the gradients and polarimetric attributes associated with them. We also conduct an analysis of unpolarized and polarized images derived through polarimetric decomposition. We then develop two efficient spatio-spectral-polarimetric representations using principal component analysis (PCA) and implicit neural representation (INR). These representations exhibit effective denoising capabilities and low memory footprints by exploiting the compressible structure of spectro-polarimetric images. We also analyze the impact of intensity denoising for spectro-polarimetric images, spectral dependency of shape-from-polarization methods, and environment dependency on the statistics of spectro-polarimetric images.

In summary, we make the following contributions.

• We introduce a trichromatic Stokes dataset and a hyperspectral Stokes dataset, featuring 2,333 diverse annotated indoor and outdoor scenes under various illumination conditions, which encompasses full-Stokes polarization data for linear and circular states.

• We develop efficient spatio-spectral-polarimetric representations and analyze real-world spectro-polarimetric images, encompassing Stokes vectors and their gradients, unpolarized and polarized images, shape from polarization, denoising, and environment dependency.

2. Related Work

Spectro-polarimetric Image Dataset Several datasets have been introduced for analyzing polarization and spectral information. With the advent of trichromatic linear-polarization cameras, a line of work has attempted to acquire trichromatic linear-polarization images, ranging from a few objects and scenes [5, 11, 42, 52] to a large number of scenes for specific target applications such as reflection separation [40, 46] and glass segmentation [48].

Applications of Spectro-polarimetric Imaging Spectro-polarimetric information has been investigated for diverse vision and imaging tasks. Using linear-polarization images has found applications in shape reconstruction [4, 5, 7, 16, 21, 31, 41, 70], appearance acquisition [15, 36], removing reflections [37, 40, 46, 51, 59, 62], transparent-object segmentation [33, 48], seeing through scattering [20, 43, 68], and image enhancement [69]. Trichromatic Stokes images have been used for tone-mapping [12] and seeing through scattering [6]. Expanding into multi-spectral domain, spectral-polarimetric analysis has been applied to object recognition [13], skin analysis [67], dehazing [61], specular reflection inpainting [29], background segmentation [30] and tensor representation [65]. In addition to vision tasks, spectro-polarimetric imaging has been used for various biological applications, such as marsh vegetation classification [63], coastal wetland classification [55] and leaf nitrogen determination [44]. While the aforementioned studies demonstrate the benefits of using spectro-polarimetric data, we believe that the full potential of spectro-polarimetric images is still locked by the absence of real-world spectro-polarimetric datasets.

3. Background on Polarization

Polarization, the oscillation pattern of the electric field, can be represented using a Stokes vector, $s = [s_0, s_1, s_2, s_3]^T$. Figure 1. Two representative polarization visualizations. (a) Polarization ellipse depicts the electric-field oscillation projected onto a plane tangent to the light propagation. (b) Poincaré sphere visualizes the polarization state of light on the normalized Stokes-vector axes s_1, s_2, s_3.

Lapray et al. [39] acquire linear-polarization images for the near-infrared spectral band, albeit only on 10 objects. Fan et al. [19] acquire the first multispectral full-Stokes polarimetric dataset covering linear and circular states, while it only contains 64 flat objects captured in a lab environment. Our proposed datasets enables analyzing the statistics of real-world spectro-polarimetric images, which cannot be achieved by prior datasets. See Figure 2 for a comprehensive comparison.
Figure 2. Spectro-polarimetric image datasets. We present trichromatic and hyperspectral Stokes datasets of which thumbnails are shown in (a) and label statistics in (b). The table shown on the right compares our datasets with existing spectro-polarimetric datasets. Ours are the only datasets that encompass both linear (LP) and circular (CP) polarization over multiple of spectral bands for diverse real scenes.

s_0 denotes the total intensity, s_1 and s_2 describe the differences in the intensity of linearly-polarized components at orientations of $0^\circ/90^\circ$ and $45^\circ/-45^\circ$, respectively. s_3 is the difference in intensity between right- and left-circularly polarized components.

Figure 1 shows two visualization methods for polarization, the polarization ellipse and Poincaré sphere. Polarization ellipse can be described in terms of the orientation angle ψ and ellipticity χ with respect to the projected Stokes vector x and y axes [9]. The Poincaré sphere visualizes polarization in a three-dimensional space, using the normalized Stokes-vector elements relative to the total intensity: $s'_1 = s_1/s_0$, $s'_2 = s_2/s_0$, $s'_3 = s_3/s_0$. To effectively analyze a Stokes vector, one can compute the degree of polarization (DoP) denoted as ρ, the angle of linear polarization (AoLP) represented by ψ, and the ellipticity angle given by χ; that is

$$\rho = \frac{P}{s_0}, \quad \psi = \frac{1}{2} \arctan \left(\frac{s_2}{s_1} \right), \quad \chi = \frac{1}{2} \arctan \left(\frac{s_3}{L} \right),$$

where $P = \sqrt{s'_1^2 + s'_2^2 + s'_3^2}$ and $L = \sqrt{s'_1^2 + s'_2^2}$.

We also use the polarimetric visualization method proposed by Wilkie et al. [60] using DoP, AoLP, and chirality of polarization (CoP). CoP describes the left- or right-handedness of the circularly polarized component, which is related to χ. Finally, the Mueller matrix $M \in \mathbb{R}^{4 \times 4}$ describes the change of a Stokes vector: $s'_{\text{out}} = Ms'_{\text{in}}$, where s'_{in} and s'_{out} are the input/output Stokes vectors. For more details on polarization, we refer to the book by Collett [9].

4. Spectro-polarimetric Dataset

We introduce a trichromatic Stokes dataset comprising 2022 Stokes images and a hyperspectral Stokes dataset with 311 Stokes images at 21 spectral channels. Both datasets cover natural real-world indoor and outdoor scenes. Each Stokes image is accompanied by four labels detailing: (1) the environment (indoor or outdoor), (2) the illumination condition, including clear or cloudy sunlight and white or incandescent light, (3) the time of image capture, (4) the scene type, distinguishing between object-oriented and scene-oriented.

Figure 2 shows thumbnails, label statistics, and comparison of our datasets to existing ones. Prior datasets suffer from a narrow range of scenes, restricted illumination conditions, linear polarization only, and fewer images.

Acquisition We acquire the datasets using two imaging systems depicted in Figure 3(a), proposed and developed by previous studies [34, 56]. First, the trichromatic Stokes camera by Tu et al. [56] incorporates on-sensor quarter-wave plates (QWPs) and linear polarizers (LPs) [9]. This al-

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Polar.</th>
<th># of bands</th>
<th>Scene count</th>
<th>Scene diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>[41]</td>
<td>LP</td>
<td>1</td>
<td>522</td>
<td>Outdoor scenes</td>
</tr>
<tr>
<td>[39]</td>
<td>LP</td>
<td>6</td>
<td>10</td>
<td>Indoor objs.</td>
</tr>
<tr>
<td>[52]</td>
<td>LP</td>
<td>3</td>
<td>40</td>
<td>Indoor objs.</td>
</tr>
<tr>
<td>[22]</td>
<td>LP</td>
<td>3</td>
<td>6</td>
<td>Indoor multiview</td>
</tr>
<tr>
<td>[40]</td>
<td>LP</td>
<td>3</td>
<td>807</td>
<td>Reflective objs.</td>
</tr>
<tr>
<td>[42]</td>
<td>LP</td>
<td>3</td>
<td>500</td>
<td>Outdoor scenes</td>
</tr>
<tr>
<td>[36]</td>
<td>LP</td>
<td>3</td>
<td>44,300</td>
<td>Synthetic</td>
</tr>
<tr>
<td>[48]</td>
<td>LP</td>
<td>3</td>
<td>4,500</td>
<td>Transparent objs.</td>
</tr>
<tr>
<td>[38]</td>
<td>LP</td>
<td>3</td>
<td>2,000</td>
<td>Indoor/outdoor scenes</td>
</tr>
<tr>
<td>[34]</td>
<td>LP, CP</td>
<td>21</td>
<td>4</td>
<td>Synthetic multiview</td>
</tr>
<tr>
<td>[34]</td>
<td>LP, CP</td>
<td>21</td>
<td>4</td>
<td>Indoor/outdoor multiview</td>
</tr>
<tr>
<td>Ours (RGB)</td>
<td>LP, CP</td>
<td>3</td>
<td>2022</td>
<td>Indoor/outdoor scenes</td>
</tr>
<tr>
<td>Ours (HS)</td>
<td>LP, CP</td>
<td>21</td>
<td>311</td>
<td>Indoor/outdoor scenes</td>
</tr>
</tbody>
</table>
Figure 3. Acquisition of spectro-polarimetric images. We capture spectro-polarimetric images using (a) trichromatic and hyperspectral Stokes cameras [34, 57]. (b) Camera response functions. (c) Reconstructed raw Stokes images per each spectral channel.

allow for single-shot capture of trichromatic Stokes images, enabling convenient data collection on diverse scenes. The resolution of a trichromatic Stokes image is 2100 (width) × 1920 (height) × 3 (RGB) × 4 (Stokes elements). Second, the hyperspectral Stokes camera from Kim et al. [34] captures images by sequentially scanning 21 spectral channels from 450 nm to 650 nm in 10 nm increments with a LCTF which functions as a LP. For each spectral channel, we capture images by rotating a QWP with a fixed LP. This system enables a detailed analysis of the interplay between wavelength and polarization. The resolution of a hyperspectral Stokes image is 612 (width) × 512 (height) × 21 (wavelengths) × 4 (Stokes elements).

Spectro-polarimetric Image Formation Using the two imaging systems, we capture raw images from which a per-pixel Stokes vector for each spectral channel is reconstructed. We introduce an unified image formation model that can be applied to both cameras. Suppose a light ray with a Stokes vector \(s_\lambda \) at wavelength \(\lambda \) impinges on a Stokes camera. As the light passes through polarization-modulating optical filters modeled by the Mueller matrix \(M(\Theta) \), its Stokes vector transforms. \(\Theta \) denotes the polarization-filter configuration. The camera sensor then captures light intensity, represented by the first element of the Stokes vector. The recorded intensity, \(I_c(\Theta) \), at a spectral channel \(c \) and polarimetric filter configuration \(\Theta \), is described by

\[
I_c(\Theta) = \left[\int \Omega_{c,\lambda} M_c(\Theta) s_\lambda d\lambda \right]_0
\]

\[
= \left[M_c(\Theta) \int \Omega_{c,\lambda} s_\lambda d\lambda \right]_0
\]

\[
= [M_c(\Theta)s_c]_0, \quad (2)
\]

where \(\Omega_{c,\lambda} \) is the spectral transmission per channel at wavelength \(\lambda \) shown in Figure 3(b). \([x]_0 \) denotes the first-element of the Stokes vector \(x \), which is the total intensity. For a spectral channel \(c \), \(M_c \) is the Mueller matrix of the polarization-modulating optics, and \(s_c \) is the Stokes vector.

For polarization modulation, both cameras utilize a QWP and a LP, yielding the Mueller matrix

\[
M_c(\Theta) = C_c Q_c(\theta_1) P_c(\theta_2), \quad (3)
\]

where \(C_c \) is the error-compensating calibration matrix [34, 57]. \(Q_c \) and \(P_c \) are the QWP and LP Mueller matrices [9], respectively. The set \(\Theta = \{\theta_1, \theta_2\} \) denotes the corresponding angles of the QWP fast axis and the LP polarization axis, which is set for accurate Stokes vector reconstruction [34, 57]. Lastly, we determine the per-channel Stokes vector \(s_c \) by solving the least-squares problem

\[
\arg\min_{s_c} \sum_{i=1}^{\Theta} (I_c(\Theta_i) - [M(\Theta_i)s_c]_0)^2. \quad (4)
\]

For the hyperspectral Stokes camera, we use four configurations with the rotating QWP. For the trichromatic Stokes camera, the fixed micro-filter setup shown in Figure 3(a) gives four/eight configurations for the (red, blue) channels and the green channel, respectively.

Figure 3(c) shows the reconstructed Stokes images. A Stokes vector is physically-valid if DoP meets the following inequality: 0 ≤ \(\rho \) ≤ 1. 99% of the reconstructed Stokes vectors in our datasets satisfy the DoP condition. For the following dataset analysis, we filter out Stokes vectors violating the DoP condition and the unstable Stokes vectors reconstructed from saturated and underexposed pixel intensity values.
Figure 4. Efficient spatio-spectral-polarimetric representations. (a) PCA basis of the hyperspectral Stokes dataset in sRGB. (b) Qualitative results of PCA and INR compared to single-shot denoising [66] at 550 nm. (c) Proportion of variance with respect to each PCA basis in order, \(\log(\sigma_i^2 / \sum \sigma_n^2)\), where \(\sigma_i\) denotes standard deviation of the \(i\)-th basis. (d) BPP and MSE analysis of PCA with respect to the number of PCA bases. (e) Training PSNR curve of INR. (f) BPP and MSE value of INR with respect to the number of MLP layers.

Figure 5. Noise in Stokes images and intensity denoising. (a) Noise in reconstructed Stokes image \(s_1\) reconstructed from a single-shot, single-shot with a learned intensity denoiser [66], and burst imaging (Pseudo GT) averaged over 100 shots. (b) Reconstruction accuracy of a Stokes image with varying number of averaged images. (c) Reconstruction accuracy of Stokes elements with and without intensity denoising.

5. Dataset Analysis

We provide our analysis of the acquired Stokes datasets.

Noise and Intensity Denoising Spectro-polarimetric images are susceptible to noise due to the low-light throughput of spectral and polarimetric filters. Our datasets are not exempt from these issues. To assess noise in Stokes images, we capture and average 100 images of a scene shown in Figure 3(c) for each polarization configuration \(\Theta\). From these averaged images, we reconstruct pseudo ground-truth Stokes image, shown in Figure 5(a). Figure 5(b) reports the MSE and PSNR of reconstructed Stokes images with respect to the number of averaged images. To achieve a PSNR exceeding 35 dB, we need to average over 4/25 shots for the trichromatic/hyperspectral Stokes cameras, indicating lower SNR of the hyperspectral Stokes dataset. We find that state-of-the-art learning-based intensity denoising methods, such as KBNet [66], can effectively reduce noise for each polarization configuration, leading to accurate Stokes-vector reconstruction, despite lack of polarization images during training. For the denoised single-shot capture, we achieve a PSNR of 34.5 dB, demonstrating the potential of using pretrained intensity restoration networks for Stokes imaging. Figure 5(c) shows PSNRs of reconstructed Stokes images per each spectral channel and Stokes element. With the intensity denoising, we find that the PSNR significantly increases for \(s_1\), \(s_2\), and \(s_3\).

Efficient Spatio-spectral-polarimetric Representations Each pixel in a hyperspectral Stokes image contains a Stokes vector for every spectral channel, leading to a total
of $21 \times 4 \times 32$ bits using single-precision floating format. This results in a bit-per-pixel (BPP) value of 2,688, equating to 100 MB for storing a single hyperspectral Stokes image of 512×612 pixels. Given the substantial memory required to store a spectro-polarimetric image, we investigate efficient representations of real-world spatio-spectral-polarimetric data, for which we explore two methods: a PCA-based model and implicit neural model.

First, we conduct PCA on non-overlapping hyperspectral Stokes patches. Figure 4(a) shows the 40 most significant PCA bases, revealing varied spatial and spectral features for each Stokes element: s_0, s_1, s_2, s_3. Notably, spatial structures are more evident in s_0, while s_1, s_2, s_3 show spectral features, suggesting a stronger correlation between spectrum and polarization than spatial features. To visualize hyperspectral intensity, we convert it to sRGB, which means that the same sRGB color may originate from different spectra. Figure 4(c) shows the variance of the coefficients for the top 200 PCA bases, indicating that spatio-spectral-polarimetric data can indeed be compressed. This is further evidenced by Figure 4(d), which shows the reconstruction error and BPP when varying number of PCA bases used to recreate a hyperspectral Stokes image. Using 2.22 MB coefficients adequately represents a 100 MB hyperspectral Stokes image as shown in Figure 4(b), exhibiting a high compression rate with the reconstruction error of 2.69×10^{-5}. See the Supplemental Document for further details on PCA analysis.

Second, we devise an INR for hyperspectral Stokes images by modifying the recently-proposed network architecture, NeSpoF [34]. The original NeSpoF architecture models a volumetric hyperspectral Stokes field. Here, instead, we aim to represent a hyperspectral Stokes image. Specifically, our INR, modeled by an MLP F_c, outputs the Stokes vector s for a given pixel position p_x, p_y and spectral channel index c, that is

$$s = F_c(p_x, p_y, c),$$

where γ is the network parameters. We fit the MLP to a hyperspectral Stokes image by minimizing the reconstruction loss between the network output and the hyperspectral Stokes image. The training curve is shown in Figure 4(e). Figure 4(f) shows the reconstruction error and BPP of our INR with respect to varying number of the MLP layers. With just 8 layers corresponding to a BPP of 60, we achieve a converged reconstruction error of 1.90×10^{-5}, resulting in just 2.22 MB of network parameters to represent a 100 MB hyperspectral Stokes image. See Supplemental Document for architecture details.

Both PCA and INR experiments validate that a natural spectro-polarimetric image is compressible. PCA provides PCA basis vectors that can be applied to any instance, however with a lower reconstruction accuracy than INR. INR is overfitted to a single instance, while higher reconstruction accuracy can be achieved. These representations are also beneficial for denoising spectral-polarimetric images, as shown in Figure 4(b), which even outperforms the learning-based intensity denoiser [66].

Polarized and Unpolarized Intensity We decompose hyperspectral Stokes images into the polarized images $P = \sqrt{s_1^2 + s_2^2 + s_3^2}$ and unpolarized images $U = s_0 - P$ per each spectral channel. Figure 6(a) shows specular reflections such as the glow of leather sofa separated into polarized light. Note that the polarized image typically encodes the illumination colors for dielectric surfaces. Figure 6(b) reveals that the intensity distributions of polarized light, obtained from the entire hyperspectral Stokes dataset, is skewed towards low and high-intensity values compared to the unpolarized light. This is because polarized images mostly contain specular reflections, which is sparsely distributed and has high intensity values. We then compute the variance of the PCA bases for polarized intensity along the spectral channel. Figure 6(c) highlights that the spectral variance for polarized intensity is lower than that of unpolarized intensity. We speculate that the color of polarized light lies in a lower dimensional space than that of unpolarized light, since diffuse reflection with diverse spectral variations is mostly captured by unpolarized light, making the spectral variation of unpolarized light more pronounced.
Stokes Vector Distributions in Natural Stokes Images

Next, we analyze the distribution of all Stokes vectors in our Stokes dataset. Figure 7 reports the histograms of Stokes elements s_0, s_1, s_2, s_3 across all spectral channel. We find that the distributions of Stokes elements (s_1, s_2, s_3) have symmetric shapes of positive and negative sides. Stokes elements of s_1 and s_2 have similar shapes meaning that the directions of linearly-polarized light are equally distributed in natural images. The circular component s_3 is more condensed near zero than the linear elements, resulting in a higher peak both in trichromatic and hyperspectral datasets. This indicates that pixels are often more linearly polarized than circularly polarized. Refer to the Supplemental Document for further analysis.

Gradient Analysis of Stokes Images

Gradient distribution of images has been often used as priors for image-based applications including image restoration, understanding, and editing. Here, we perform gradient analysis of Stokes and polarization-feature images. Figure 8(b) shows that the gradient of Stokes and normalized Stokes vectors exhibits a similarity to Hyper-Laplacian priors, commonly used to describe the gradient of natural intensity-images. An interesting finding is that total intensity s_0 has more high-gradient values than the linear components of s_1 and s_2, and the circular component s_3 has the lowest-value distribution.

We then analyze the gradient distributions of polarization features, including AoLP, degree of linear polarization (DoLP), degree of circular polarization (DoCP), and CoP. DoLP and DoCP are computed as $DoLP = \sqrt{s_1^2 + s_2^2}/s_0$ and $DoCP = |s_3|/s_0$, respectively. To compute the gradient of AoLP images, we consider the angular wrapping property. That is, AoLP has a range from $-\pi$ to π and the AoLPs of $-\pi$ and π are identical. Thus, if the gradient exceeds π, we estimate the gradient as $\nabla \text{AoLP} = \pi \times \text{sign}(\nabla \text{AoLP})$, where ∇ is the gradient operator and sign is the sign operator that returns 1 if positive, otherwise -1. Figure 8(c) shows that the gradients of AoLP are generally higher than DoLP and DoCP. This implies that sparsity in the measurement gradient is milder for AoLP than DoLP and DoCP. DoLP and DoCP have shapes similar to Hyper-Laplacian priors while DoCP is sharper than DoLP. The gradient of CoP shows symmetric distributions for right-circular and left-circular directions. Unlike AoLP, the probability decreases as the gradient approaches extreme values. The difference in tendency between linear-polarization and circular-polarization features, as well as their distributions, means that we need distinct priors for each polarization feature, emphasizing the importance of a full Stokes dataset that measure not only linear but also circular polarization.
Shape from Polarization and Spectral Channels Methods that recover shape from polarization, SfP, have made rapid progress in the last decade. SfP aims to extract normals by analyzing the normal-dependent polarization change of reflected light. Specifically, SfP analyzes the DoP and AoLP based on Fresnel theory [9], which describes the polarization change of light upon reflection and transmission at a smooth surface [32, 41]. Here, we analyze an overlooked problem in SfP: the spectral dependency of estimated normals. Surface normals, as a geometric surface property, should be consistent regardless of the input spectral channels used for SfP. In Figure 9, we test the state-of-the-art SfP method by Lei et al. [41], designed for in-the-wild scenes. The evaluation results on our Stokes dataset clearly reveal that normal maps reconstructed from different spectral channels exhibit variations. We compute the standard deviations of spectral variations for each x, y, and z component of the estimated normals. Figures 9(e) and (f) show the probability distributions of the standard deviation, highlighting the large variations in the estimated normals for both hyperspectral and trichromatic datasets. Interestingly, the x and y components of normals show larger standard deviations than the z component. This implies that the spectral variation of DoP, which determines the z component, has less impact on the distribution than that of AoLP, which governs the x and y components. Our analysis underscores the development of a spectrum-aware SfP method as an interesting future research.

Environment Dependency Figure 10 shows the Poincaré spheres projected onto the $s'_1 - s'_2$ and $s'_1 - s'_3$ planes with respect to dataset labels. Colorbar is based on the normalized pixel count. (b) DoCP distributions for indoor and sunlight categories. (c) Example s_3 images.

to other artificial lighting [25]. As shown in Figure 10(a), Stokes vectors are distributed more widely across s'_3 axis under sunlight compared with Indoor scene. In addition, we find that DoCP is distributed at higher values for the sunlight compared to the indoor: pixels with DoCP over 0.5 are rarely observed in indoor scenes. This is also confirmed in the example s_3 images for indoor and sunlight scenes.

Another interesting finding is that cloudy or sunny illumination result in different polarization statistics. Figure 10(a) shows that Stokes vectors of cloudy scenes are more concentrated near the origin, meaning that light is more depolarized compared to light under clear sunlight. This is aligned with previous studies [24, 58] that report the impact of cloud-particle scatterings on light depolarization.

6. Conclusion

In this work, we have introduced a novel trichromatic and hyperspectral Stokes image dataset that encompasses diverse natural scenes and various illumination conditions, totaling more than 2,333 scenes. We analyze the empirical distribution of the Stokes vectors of natural spectro-polarimetric images. To efficiently represent spatio-spectral-polarimetric data, we devise a PCA-based model and an implicit neural representation. We further provide detailed analysis on Stokes gradient distributions, denoising characteristics, spectral dependency of SfP, and environment dependency. As such, our work provides a foun-
dation for future research on spectral-polarimetric imaging and vision.

References

[29] Md Nazrul Islam, Murat Tahtali, and Mark Pickering. Specular reflection detection and inpainting in transparent object through msplfi. IEEE Transactions on Geoscience and Re-

