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In this supplemental document, we provide additional
details on our differentiable image signal processor (ISP),
the training procedure and further quantitative and quali-
tative evaluations and ablation experiments. In Section 1,
we provide details of the different stages of the ISP and list
their trainable and non-trainable parameters. In Section 2,
we discuss the training procedure of the proposed method in
detail. In Section 3, we discuss alternative fusion strategies
in detail. More description of the neural exposure control
module is provided in Section 4. In Section 6, we present
additional quantitative results for a additional unseen test
dataset, conduct additional ablation studies, and show qual-
itative performance. Finally, we provide two videos illus-
trating the operation of the proposed pipeline on image se-
quences.
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1. Differentiable ISP
In the following, we describe the differentiable ISP pipeline
used in the proposed method. This ISP consists of a se-
quence of multiple operations as illustrated in Figure 1. The
first ISP block is a contrast stretcher applied to the RAW
image. This contrast stretcher performs a pixel-wise affine
mapping based on the lower and upper percentile of all
RAW values. The second step of the ISP is a differentiable
variant of bilinear demosaicing, creating a three channel
color image out of the contrast stretched intensities. This is
followed by a resize operation of the image to a shape with
height 600 pixels and width 960 pixels. The fourth step is
a pixel-wise power transform x 7→ xγ with γ = 0.8 where
γ is not learned for this step. The fifth ISP block is the ap-
plication of color correction matrix, i.e., for each pixel, the
(r, g, b) vector, of the red, green and blue values, is mapped
linearly with a 3×3 matrix which is learned during training.
The matrix is initialized to the identity mapping. The sixth
step is a color space transform to the color space YCbCr,
followed by a low-frequency denoiser. More precisely, it is
a denoiser based on a difference of Gaussian (DoG) filters.
To this end, we extract a detail image as

Idetail = K1 ∗ Iinput −K2 ∗ Iinput, (1)

where ∗ is the convolution operator and K1 and K2 are
Gaussian kernels with standard deviations σ1 and σ2 respec-
tively, which are learned such that σ1 < σ2. The output of
the DoG denoiser is

Ioutput = Iinput − g · Idetail · 1|Idetail|⩽t, (2)

where the parameters g and t are learned. After that, a color
conversion back to the previous RGB color space is applied.
The ninth step is a thresholded unsharp mask filter where
the standard deviation of the Gaussian filter, the magnitude,
and the threshold are learned. The tenth step is a pixel-wise
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Figure 1. Block diagram of the differentiable ISP used for the experiments with all tested methods, see text for details.

affine transform with learned parameters. Finally, the last
step is a learned gamma correction step.

2. Additional Training Details

In this section, we provide further details on the training
procedure for the proposed model.

Pretraining The feature extractor was pretrained on Im-
ageNet 1K. The object detector was pretrained jointly with
the ISP with several public and proprietary datasets. The
public datasets that were used for pretraining are MS-
COCO [7], Kitti [3], Cityscapes [2], and BDD [11]. The
resulting pretrained ISP and object detector pipeline is used
as a starting point for the training of all the experiments re-
ported in the paper.

Optimizer and Hyperparameters We train our model
using stochastic gradient descent with momentum of value
0.9. We use a learning rate with exponential decay after
an initial stage of constant learning rate for the first 10,000
iterations. In the initial stage, the learning rate is kept con-
stant at 10−4. Thereafter, the learning rate is multiplied by
0.7 ∗ 10−4 at each training iteration, such that the learning
rate is shrunk by a factor 0.7 every 10,000 iterations. We
train for 160,000 iterations with a batch size of one training
example.

Multi-Exposure Training Pipeline In our training
pipeline for multi-exposure object detection, we simulate
n = 3 LDR captures of the same scene (Ilower, Imiddle,
Iupper), the captures with the lower, middle and upper ex-
posure. The middle exposure capture Imiddle is simulated as
in [8], except that instead of sampling the logarithm of the
exposure shift in the interval [log 0.1, log 10], we sample in
the interval [−15 log 2, 15 log 2]. We empirically found this
interval to be better suited to evaluate object detection per-
formances under the challenges of high dynamic range con-
ditions. The other captures (Ilower and Iupper) are simulated
in the same way, except that in addition to the exposure shift
an extra constant factor is applied (dlower, dupper), respec-
tively. In our experiments we choose dlower = 16−1 and
dupper = 16.

3. Alternative Fusion Strategies

Next, we provide detailed descriptions of alternative fusion
approaches we investigate in our work.

3.1. Local Cross Attention RPN Fusion

We investigate a variant of the local cross attention fusion.
Here, the region proposals are computed independently for
each exposure. The union set of all proposals is used to crop
from the aggregated n feature maps fagg produced by the
feature extractor. We call this variant Local Cross Attention
RPN Fusion.

We treat the different exposure pipelines separate until



the Region Proposal Network (RPN). The network predicts
M first-stage proposals for each stream j, which results in
n · M proposals in total. Based on them, the RoI pooling
layer crops out of the aggregated feature map fagg. fagg

refers to the n feature maps f
(1)
fm,(r,c,k), . . . , f

(n)
fm,(r,c,k), i.e.,

for k ∈ {1, . . . , nd} concatenated along the last axis,

fagg,(r,c,k) = f
(⌊(k−1)/d⌋+1)
fm,(r,c,k%d) , (3)

where % is the modulo operator, and each fused feature map
f
(j)
fm,(r,c,k), with j ∈ {1, . . . , n}, is computed as

f
(j)
fm,(r,c,k) =

n∑
j′=1

α
(j)
j′,r,c · yj′,r,c,k (4)

and,
α
(j)
·,r,c = Attention(Q(j), y·,r,c,·), (5)

similar to Equations (6) and (7) in the main paper. A single
second stage box classifier, which is applied on the full list
of cropped feature maps yield the second stage proposals,
that is

fROI,i,j = NoC(RoiPool(fagg,RPN(FE(ISP(Rj)), i)).
(6)

We employ the loss from [9] without modifications for this
fusion strategy.

3.2. Late Fusion Strategies with Modified Losses

We next provide details on the Late Fusion method of the
main paper and we compare it to two enhanced variants.
The method called Late Fusion in the main paper is called
Late Fusion Standard Loss in this document, in order to
better distinguish it from the two variants, which we dub
Late Fusion Keep Best and Late Fusion NMS. These three
late fusion strategies behave the same at inference time and
only differ at training time. The late fusion strategies treat
features of the individual exposures independently until the
end of the second stage of the object detector. All the re-
fined detection results produced from the n exposures are
gathered in a single global set of detections. Per-class NMS
is performed on this global set of detections, producing a
refined and non-maxima suppressed set of detections per-
taining to the n LDR exposures. In the main paper, we have
evaluated the late fusion strategy where we use the standard
object detection loss from [9].

Here, we further experiment with several alternative
losses to improve the late fusion process. Similar to the
other strategies, we train all blocks of the computer vision
pipeline jointly purely using the object detection loss, which
is a sum of the first stage loss LRPN and second stage loss
L2ndStage like in [4, 9].

LTotal = LRPN + L2ndStage. (7)

For the two proposed enhanced late fusion variants,
LRPN is computed as the sum of the lowest objectness LObj

and localization losses LLoc over all n exposure pipelines
computed per anchor a ∈ A. The set of available anchors
A is identical in each stream. The model is encouraged to
have high diversity in predictions between different streams
and is not punished if instances are missed that are recov-
ered by other streams. The RPN loss which we investigate
can be formalized as

LRPN, prop. =
∑
a

min
j∈{1,...,n}

(
1

NObj
LObj(pj,a, p

∗
a)

+
λ

NLoc
p∗aLLoc(tj,a, t

∗
a)

)
,

(8)

while the standard RPN loss is,

LRPN, std. =
∑
a

(
1

NObj
LObj(pj,a, p

∗
a)

+
λ

NLoc
p∗aLLoc(tj,a, t

∗
a)

) (9)

We compute masked versions of the second stage loss
used in [4, 9]. The mask coefficients αi

j differ depending
on the chosen late fusion strategy,

L2ndSt., prop. =

n∑
j=1

∑
i

αi
j

(
1

NCls
LCls(p

i
j , c

∗i
j )

+
λ

NLoc
1c∗ij ⩾1LLoc(t

i
j , t

∗i
j )

)
,

(10)

c∗ij and t∗ij are the GT class and box assigned to the pre-
dicted box tij . 1c∗ij ⩾1 is equal to 1 when the GT is an object
and 0 when it is background. The coefficients αi

j are the
masks, each of them is set to 0 or 1. For comparison, we
recall below the standard second-stage loss,

L2ndSt., std. =

n∑
j=1

∑
i

(
1

NCls
LCls(p

i
j , c

∗i
j )

+
λ

NLoc
1c∗ij ⩾1LLoc(t

i
j , t

∗i
j )

)
.

(11)

By pruning the less relevant loss components with the
introduced masks, the resulting loss is specialized to well-
exposed regions in the image for a given exposure pipeline.
At the same time, it avoids false negatives in sub-optimal
exposures, as these cannot be filtered out in the final NMS
step.

Two alternative methods to define the masks are detailed
below.

Strategy I, Keep Best Loss: For each ground truth ob-
ject the loss components corresponding to the pipeline that
performs best are kept and prunes the others.



Strategy II, NMS Loss: Prunes the loss components
based on the same NMS step as performed at inference time.

While Strategy I more precisely prunes the loss across
exposure pipelines, Strategy II is conceptually simpler,
which makes it an interesting alternative to test. We review
both strategies in detail below. For a quantitative compari-
son, see Section 6 and Table 2.

3.2.1 Strategy I: “Keep Best Loss”

In the second stage of the object detector, the refined bound-
ing boxes of the different exposure pipelines are merged
into a single set of predicted bounding boxes. The second
stage loss is computed by assigning each box to a single
ground truth (GT) object, see also [4]. If the ground truth
(GT) object is positive (foreground), we first identify the ex-
posure stream j that predicted the bounding box, which re-
ceived the lowest aggregated loss Li

Agg,j = Li
Cls,j + Li

Loc,j

for this GT object. Afterward, we only backpropagate the
losses for the bounding boxes assigned to those GT objects,
which were predicted by the same pipeline j. As an excep-
tion, the losses of all of the bounding boxes that are asso-
ciated with negative GT (background) are backpropagated,
regardless of which exposure stream predicted them. With
the notation from Eq. (11), this is

αi
j =


1, if c∗ij ⩾ 1 and ∃i′ such that GT(i, j) = GT(i′, j),

Li′

Agg,j minimal among all predictions for GT,
1, if c∗ij = 0,

0, otherwise.
(12)

3.2.2 Strategy II: “NMS Loss”

Like in strategy I, here, we get the final detection results
after class-wise NMS on the combined set of all predictions.
The non-suppressed proposals are the only ones for which
the second stage loss gets backpropagated; that is

αi
j =

{
1, if not filtered by NMS,
0, otherwise.

(13)

4. Neural Exposure Control
Next, we further describe how we predict exposures for the
separate HDR sub-frames. Specifically, we design an ex-
posure control network similar to [8] to determine the ex-
posure value of each of the LDR captures for the next time
step. We generalize this module to work for multiple expo-
sures. Let et be the exposure value produced by the network
for time step t and e

(j)
t the exposure value for time step t for

capture j ∈ {1, . . . , n}. Then e
(j)
t is computed as,

e
(j)
t = et · δj−

n+1
2 , (14)

where δ is a hyperparameter. We choose δ = 16 and n = 3
in our experiments.

5. Noise simulation
5.1. Image formation

We simulate image captures from images that have been
recorded with a camera equipped with the Sony IMX490
image sensor. These images already include some level of
noise. We refer to this image sensor as the source image
sensor. Based on a dataset of raw images collected with the
source image sensor, our goal is to simulate raw images as
if they would have been captured with another image sen-
sor that we refer to as the target image sensor (ON Semi
AR0231AT in our case). We add some amount of noise
to the images collected with the source image sensor such
that the total amount of resulting noise equals the amount
of noise that would have been produced by the target image
sensor. The method can be used for other source and target
image sensors, as long as the source image sensor does not
produce more noise than the target image sensor.

For the purpose of noise simulation, we rewrite the im-
age formation model more precisely as follows. We con-
sider the raw image pixel value y for some pixel in the im-
age. This quantity is expressed in DN (digital numbers), a
dimensionless unit used for clarity of the exposition. The
value y can be expressed in terms of the following quanti-
ties, the number of photons Np entering the pixels area dur-
ing the exposure time t, the quantum efficiency η (expressed
in e-/γ, i.e., electrons per photon), the camera conversion
gain g (expressed in e-/DN), the camera gain setting K (a
multiplier such that K = 1 for ISO 100), the number of
electrons Nd that accumulate as dark current during expo-
sure, the thermal noise nv,out which is added to the voltage
at readout, the conversion factor gADC from voltage to digi-
tal numbers, and Mwhite the white level, i.e., the maximum
sensor value that can be recorded. With these notations we
can write

y = min(Np · η · g ·K +Nd · g ·K+

nv,out · gADC ·K, Mwhite) (15)

The thermal noise can be conveniently expressed in
terms of the equivalent number of electrons as

ne,out = nv,out ·
gADC

g
(16)

Using the number of photo-induced electrons Ne = Np ·
η, we can expressed y as follows.

y = min((Ne +Nd + ne,out) · g ·K, Mwhite) (17)

The number of photo-induced electrons Ne is a Poisson
random variable of parameter µe (such that µe is both the



expectation and the variance of Ne). The number of elec-
trons accumulated due to dark current Nd also follows a
Poisson probability distribution. We make the usual ap-
proximation with a gaussian random variable for both Ne

and Nd. This allows to combine the two signal indepen-
dent noise terms into a single gaussian random variable
n = Nd + ne,out, such that we consider n as a gaussian
random variable with expectation m and variance σ2.

n ∼ N (m,σ2) (18)

This simplifies the expression of y,

y = min((Ne + n) · g ·K, Mwhite) (19)

The correspondence with Equation (2) of the main paper
is as follows. The pre-amplification noise is npre = Ne +
n− ϕscene · t, and the post-amplification noise is negligible
in our application, so that we consider it to be zero.

5.2. Mean number of photo-induced electrons

The parameter µe is expressed in electrons and can be writ-
ten as µe = η · µp where µp is the average number of pho-
tons expected to enter the pixel area during the exposure
time t. The average number of photons can be expressed as

µp =
ϕ · t

h · c/λ
(20)

where ϕ is the radiant power (in W) on the pixel surface, h
is Planck constant, c is the speed of light in vacuum and λ
the wavelength of the light that illuminates the pixel. The
radiant power can be written ϕ = E · A where E is the
irradiance (in W/m2) and A is the area of the pixel. We can
then write

µe =
η(λ) · E ·A · t

h · c/λ
(21)

5.3. Source and target image sensors

In the following we consider the case where the probabil-
ity that the number of accumulated electrons reaches the
full-well capacity is low. In such a case we can make the
following approximation.

y = (Ne + n) · g ·K (22)

We now consider the corresponding quantities when we
illuminate the source image sensor and the target image sen-
sor respectively. We use the subscript “src” for the quanti-
ties corresponding to the source image sensor and the sub-
script “tgt” for the quantities corresponding to the target im-
age sensor.

ysrc = (Nsrc + nsrc) · gsrc ·Ksrc (23)

where
Nsrc ∼ N (µsrc, µsrc) (24)

nsrc ∼ N (msrc, σ
2
src) (25)

therefore ysrc is gaussian with the following expectation and
variance,

E(ysrc) = (µsrc +msrc) · gsrc ·Ksrc, (26)

Var(ysrc) =
(
µsrc + σ2

src

)
· g2src ·K2

src. (27)

Similarly,

ytgt = (Ntgt + ntgt) · gtgt ·Ktgt (28)

where
Ntgt ∼ N (µtgt, µtgt) (29)

ntgt ∼ N (mtgt, σ
2
tgt) (30)

therefore ytgt is gaussian with the following expectation and
variance,

E(ytgt) = (µtgt +mtgt) · gtgt ·Ktgt, (31)

Var(ytgt) =
(
µtgt + σ2

tgt

)
· g2tgt ·K2

tgt. (32)

5.4. Simulating the target pixel value based on the
source image

We simulate the pixel value ỹtgt of an image that would
have been captured with the target image sensor, based on
the pixel value ysrc of the corresponding image that has
been captured with the source image sensor. We introduce
y∗src,

y∗src = (ysrc −msrc · gsrc ·Ksrc) ·
µtgt · gtgt ·Ktgt

µsrc · gsrc ·Ksrc
, (33)

α and β,

α =

(
1− µtgt

µsrc

)
· gtgt ·Ktgt, (34)

β =

(
σ2
tgt − σ2

src ·
µ2
tgt

µ2
src

)
· g2tgt ·K2

tgt, (35)

and assume µtgt ≤ µsrc and σsrc ≤ σtgt such that α ≥ 0
and β ≥ 0. We compute ỹtgt as follows,

ỹtgt = y∗src +
√
α ·max (y∗src, 0) · U1

+
√
β · U2 +mtgt · gtgt ·Ktgt, (36)

where U1 ∼ N (0, 1) and U2 ∼ N (0, 1) are two indepen-
dent standard gaussian variables.

Then, the expectations of ỹtgt and ytgt are equal,

E(ỹtgt) = E(ytgt), (37)

and, in the case where the probability P (y∗src < 0) is small,
their variances are also approximately equal,

Var(ỹtgt) ≈ Var(ytgt), (38)



and ỹtgt is approximately gaussian.
Equation (36) can effectively be used to simulate a pixel

value that would have been produced by the target image
sensor because it is based on known quantities. The random
variables U1 and U2 are sampled using a random number
generator. The quantities gsrc, σsrc, msrc, gtgt, σtgt, mtgt

are calibrated using standard procedures (see [1]). The cam-
era gain settings Ktgt and Ksrc are known camera settings
and ysrc is part of the dataset captured with the source image
sensor. Finally the ratio µtgt/µsrc is

µtgt

µsrc
=

ηtgt ·Atgt · ttgt
ηsrc ·Asrc · tsrc

, (39)

where the exposure times ttgt and tsrc are known camera
settings, and the quantum efficiencies ηtgt and ηsrc and the
pixel areas Atgt and Asrc are technical data given by the
image sensor manufacturer.

5.5. Derivation of the expectation and variance of
the simulated pixel value

The expectation of y∗src is

E(y∗src) = µtgt · gtgt ·Ktgt, (40)

Since y∗src and U1 are independent random variables,

E
(√

α ·max (y∗src, 0) · U1

)
= E

(√
α ·max (y∗src, 0)

)
· E(U1) = 0, (41)

because E(U1) = 0. Since E(U2) = 0, we deduce

E(ỹtgt) = µtgt · gtgt ·Ktgt +mtgt · gtgt ·Ktgt

= E(ytgt)
(42)

The variance of y∗src is

Var(y∗src) =
(
µsrc + σ2

src

)
·
µ2
tgt

µ2
src

· g2tgt ·K2
tgt (43)

Assuming P (y∗src < 0) is negligible, we can write

Var
(
y∗src +

√
α ·max (y∗src, 0) · U1

)
= Var

(
y∗src +

√
α · y∗src · U1

)
(44)

and,

Var
(
y∗src +

√
α · y∗src · U1

)
= Var(y∗src) + Var

(√
α · y∗src · U1

)
+

2 · Cov
(
y∗src,

√
α · y∗src · U1

)
. (45)

The covariance term is zero,

Cov
(
y∗src,

√
α · y∗src · U1

)
= E

(
(y∗src − E(y∗src)) ·

√
α · y∗src · U1

)
= E

(
(y∗src − E(y∗src)) ·

√
α · y∗src

)
· E(U1)

= 0

(46)

because E(U1) = 0. The second term of the right-hand side
of Equation (45) is

Var
(√

α · y∗src · U1

)
= E

(
α · y∗src · U2

1

)
−
(
E
(√

α · y∗src · U1

))2
, (47)

where

E
(√

α · y∗src · U1

)
= E

(√
α · y∗src

)
· E(U1) = 0. (48)

Thus,

Var
(√

α · y∗src · U1

)
= E

(
α · y∗src · U2

1

)
= α · E(y∗src),

(49)

since E
(
U2
1

)
= 1. We can deduce

Var
(
y∗src +

√
α · y∗src · U1

)
= Var(y∗src) + α · E(y∗src)

=
(
µsrc + σ2

src

)
·
µ2
tgt

µ2
src

· g2tgt ·K2
tgt

+

(
1− µtgt

µsrc

)
· µtgt · g2tgt ·K2

tgt

=

(
µtgt +

µ2
tgt

µ2
src

· σ2
src

)
· g2tgt ·K2

tgt

(50)

Now,
Var

(√
β · U2

)
= β, (51)

so that we can conclude

Var(ỹtgt) =

(
µtgt +

µ2
tgt

µ2
src

· σ2
src

)
· g2tgt ·K2

tgt + β

=
(
µtgt + σ2

tgt

)
· g2tgt ·K2

tgt.

= Var(ytgt)

(52)

6. Additional Evaluations
This section reports additional qualitative and quantitative
evaluations along with additional ablation experiments.



Table 1. HDR object detection evaluation for different neural ex-
posure fusion strategies compared to conventional HDR imaging
and object detection pipelines for an additional dataset of scenes
of entrances and exits of tunnels.

Classes
Method Point of Bike Bus Car Person Traffic Traffic mAP

Fusion & Truck & Van Light Sign

Shim et al. [10] (LDR) N/A 5.8 6.7 28.5 14.6 9.3 13.4 13.1
Onzon et al. [8] (LDR) N/A 13.1 22.5 74.2 40.7 25.0 39.8 35.9
Raw HDR Pre-ISP 11.5 24.5 79.2 44.2 25.9 39.4 37.5
Deep HDR [6] Post-ISP 12.8 23.2 79.1 39.8 25.4 37.0 36.2
Max Pooling Fusion (ours) Conv4 13.6 26.9 79.6 43.6 26.5 41.5 38.6
Conv 1 x 1 Fusion (ours) Conv4 12.0 20.8 76.6 33.9 21.8 37.1 33.7
Conv 3 x 3 Fusion (ours) Conv4 14.5 20.6 76.7 30.7 20.9 36.8 33.4
Late Fusion (ours) 2nd Stage 11.8 21.9 81.1 43.1 25.6 40.7 37.4
Local Cross Attention (ours) Conv4 14.0 27.1 80.2 45.6 27.0 42.0 39.3

Table 2. HDR object detection assessment for additional exposure
fusion strategies evaluated on the test set used in the main paper.
The results reported here complement those reported in Table 1 of
the main paper.

Classes
Method Point of Bike Bus Car Person Traffic Traffic mAP

Fusion & Truck & Van Light Sign

Late Fusion Standard Loss 2nd Stage 27.5 14.2 73.8 47.2 42.8 52.3 43.0
Late Fusion Keep Best Loss 2nd Stage 27.6 16.1 74.4 48.4 42.9 54.7 44.0
Late Fusion NMS Loss 2nd Stage 28.1 16.5 74.3 46.4 44.3 55.9 44.3
Local Cross Attention RPN RPN 28.2 15.7 74.7 47.7 44.9 54.5 44.3

6.1. Additional Quantitative Evaluation

We report additional evaluation results for a separate un-
seen dataset in Table 1. This additional dataset is com-
posed of challenging scenes of entrances and exits of tun-
nels. The dataset has been collected over three days of test
driving. The data has been subsampled to 1Hz and chal-
lenging HDR scenarios with entrances and exits of tunnels
have been manually selected, resulting in 418 test scenarios.

Table 1 further validates that our method Local Cross
Attention Fusion (last row) performs best overall in terms of
mAP. It also performs best for 4 out of 6 of the considered
object classes. This also validates the results in Table 1 of
the main paper. See Figure 2 for qualitative examples of the
proposed methods on the additional test dataset.

We note that our method performs better than the method
Deep HDR on this dataset of exits and entrances of tunnels,
although Deep HDR was the best-performing method on the
Tunnel subset of the main paper (see results reported in col-
umn 5 of Table 2 of the main paper). The discrepancy can
be explained by the fact that the tunnel subset of the main
paper not only contains challenging HDR scenes like en-
trances and exits of tunnels but also the inner regions which
are fairly temporally consistent.

6.2. Additional Ablation Experiments

As an additional ablation experiment, we train and test net-
works with the alternative fusion strategies described in
Section 3 on the same training set and test set as in the main
paper. We report these findings in Table 2. We note that
the method named “Late Fusion Standard Loss” in this ta-

Table 3. Ablation experiments with Local Cross Attention fusion
at different stages of the 28-layer ResNet variant.

Classes
Method Point of Bike Bus Car Person Traffic Traffic mAP

Fusion & Truck & Van Light Sign

Local Cross Attention (ours) Conv1 26.8 16.9 74.1 45.6 43.0 53.6 43.3
Local Cross Attention (ours) Conv2 26.4 16.7 74.2 46.7 44.0 55.6 43.9
Local Cross Attention (ours) Conv3 26.9 16.7 74.5 47.1 44.1 55.2 44.1
Local Cross Attention (ours) Conv4 26.8 16.6 74.3 47.0 44.4 56.3 44.2

ble corresponds with the method named “Late Fusion” in
Table 2 of the main paper. Results are repeated here to bet-
ter compare with the two other late fusion strategies with
modified training losses as described in Section 3.2. We
find that these modifications are effective at improving the
overall mAP by 1% and 1.3%. Moreover, the results re-
ported in Table 2 show that these enhanced training losses
also allow to improve the AP for most of the considered ob-
ject classes. The last row of Table 2 reports the results for
the method Local Cross Attention RPN Fusion. This find-
ing demonstrates that the use of our local cross attention
module proves effective across architectural variants.

As described in Section 6.3 of the main paper we also
perform an ablation study, where we evaluate fusing dif-
ferent exposure features at varying stages of the feature
extractor. Detailed evaluation results can be found in Ta-
ble 3. We follow the terminology of [5], where Conv1 refers
to the initial 7x7 convolution and Conv2/Conv3/Conv4 to
the following three residual blocks of the feature extractor.
Results validate that performance increases when fusing at
later stages, with diminishing returns, though.

6.3. Additional Qualitative Results and Videos

We provide video sequences that show the demosaiced raw
images for the first, second and third exposure as well as
the overlayed detections of our Local Cross Attention Fu-
sion model for challenging automotive HDR scenes. We
removed the contrast stretcher from the ISP for the images
shown in these videos to make the difference in exposure
between the three exposures more pronounced in the visu-
alization.

Figures 2 and 3 provide further qualitative results. The
compared baselines (Raw HDR and Deep HDR) are out-
performed by our proposed Local Cross Attention Fusion
method. Examples where the baselines fail are False Nega-
tives like the person in first row or the traffic sign in the sec-
ond row as well as False Positives like the bike detections in
the fourth row or falsely detected pedestrian in row five of
Figure 3. The highest margins in improvement are achieved
in scenes with large dynamic ranges, where conventional
HDR pipelines fail to maintain details in the task-relevant
image regions. Our approach differs from existing work as
we fuse exposures in feature instead of image space.

HDR imaging pipelines (e.g. Raw HDR and Deep HDR,
see main paper) are fusing the information of the different
exposures in image space. For a large range of luminances



in a given frame this can lead to under or overexposed re-
gions. Moreover the HDR imaging pipelines have to com-
press the dynamic range, which inevitably entails a loss of
contrast in at least some parts of the image. These effects
combine together and result in sub-optimal local detection
performances.

The proposed learned fusion approach avoids losing de-
tails during image fusion by moving it in feature space. Our
approach outperforms single exposure systems in two ways:
1) Details that are not visible in one stream can be recovered
by relying on features of streams that expose the observed
image region better. 2) Streams can collaborate by fusing
features with higher quality than each of them in isolation.

6.4. Conceptual Comparison of Evaluated Methods

Following the results of Table 2, we see that additional vari-
ations of the architecture and losses can lead to marginal
improvements compared to Local Cross Attention Fusion,
which we proposed in the main paper.

The proposed early fusion approach that aggregates fea-
ture maps from the different exposure streams using local
cross attention is independent of the used downstream ar-
chitecture and losses. This is not the case for the other
presented variants, which exploit architectural properties of
two-stage detectors (Local Cross Attention RPN) or require
an adaption of the task specific losses (Keep Best Loss,
NMS Loss). This allows our proposed method to be eas-
ily integrated into other downstream computer vision ar-
chitectures apart from object detection (e.g., segmentation),
avoiding the need of loss modifications.

Furthermore, our method is computationally efficient, as
discussed in the Section on runtime and complexity in the
main manuscript.
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Figure 2. Qualitative comparison of the proposed Local Cross-Attention Fusion with the baseline methods Raw HDR and Deep HDR [6]
on challenging scenes. Examples from the additional dataset of entrances and exits of tunnels, see supplemental text.



Deep HDR Raw HDR
Cross-Attention 

Exposure 1
Cross-Attention 

Exposure 2
Cross-Attention 

Exposure 3

Figure 3. Qualitative comparison of the proposed Local Cross-Attention Fusion with the baseline methods Raw HDR and Deep HDR [6]
on challenging scenes. Our neural fusion module recover features from separate exposure streams to support vision the downstream vision
task.
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