
Neural Spline Fields for Burst Image Fusion and Layer Separation

Ilya Chugunov David Shustin Ruyu Yan Chenyang Lei Felix Heide

Princeton University

Abstract

Each photo in an image burst can be considered a sam-
ple of a complex 3D scene: the product of parallax, diffuse
and specular materials, scene motion, and illuminant vari-
ation. While decomposing all of these effects from a stack
of misaligned images is a highly ill-conditioned task, the
conventional align-and-merge burst pipeline takes the other
extreme: blending them into a single image. In this work,
we propose a versatile intermediate representation: a two-
layer alpha-composited image plus flow model constructed
with neural spline fields – networks trained to map input
coordinates to spline control points. Our method is able
to, during test-time optimization, jointly fuse a burst image
capture into one high-resolution reconstruction and decom-
pose it into transmission and obstruction layers. Then, by
discarding the obstruction layer, we can perform a range
of tasks including seeing through occlusions, reflection sup-
pression, and shadow removal. Tested on complex in-the-
wild captures we find that, with no post-processing steps
or learned priors, our generalizable model is able to out-
perform existing dedicated single-image and multi-view ob-
struction removal approaches.

1. Introduction

Over the last decade, as digital photos have increasingly
been produced by smartphones, smartphone photos have in-
creasingly been produced by burst fusion. To compensate
for less-than-ideal camera hardware – typically restricted
to a footprint of less than 1cm3 [7] – smartphones rely on
their advanced compute hardware to process and fuse mul-
tiple lower-quality images into a high-fidelity photo [11].
This proves particularly important in low-light and high-
dynamic-range settings [23,40], where a single image must
compromise between noise and motion blur, but multi-
ple images afford the opportunity to minimize both [27].
But even as mobile night- and astro-photography applica-
tions [17, 18] use increasingly long sequences of photos
as input, their output remains a static single-plane image.
Given the typically non-static and non-planar nature of the
real world, a core problem in burst image pipelines is thus
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Figure 1. Fitting our two-layer neural spline field model to a stack
of images we’re able to directly estimate and separate even severe,
out-of-focus obstructions to recover hidden scene content.

the alignment [33, 46] and aggregation [6, 65] of pixels into
an image array – referred to as the align-and-merge process.

While existing approaches treat pixel motion as a source
of noise and artifacts, a parallel direction of work [10,21,71]
attempts to extract useful parallax cues from this pixel mo-
tion to estimate the geometry of the scene. Recent work by
Chugunov et al. [9] finds that maximizing the photometric
consistency of an RGB plus depth neural field model of an
image sequence is enough to distill dense depth estimates
of the scene. While this method is able to jointly estimate
high-quality camera motion parameters, it does not perform
high-quality image reconstruction, and rather treats its im-
age model as “a vehicle for depth optimization” [9]. In con-
trast, work by Nam et al. [51] proposes a neural field fit-
ting approach for multi-image fusion and layer separation
which focuses on the quality of the reconstructed “canon-
ical view”. By swapping in different motion models, they
can separate and remove layers such as occlusions, reflec-
tions, and moiré patterns during image reconstruction – as
opposed to in a separate post-processing step [20, 55]. This
approach, however, does not make use of a realistic cam-
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era projection model, and relies on regularization penal-
ties to discourage its motion models from representing non-
physical effects – e.g., pixel tearing or teleportation.

In this work, we propose a versatile layered neural im-
age representation [51] with a projective camera model [9]
and novel neural spatio-temporal spline [69] parametriza-
tion. Our model takes as input an unstabilized 12-megapixel
RAW image sequence, camera metadata, and gyroscope
measurements – available on all modern smartphones.
During test-time optimization, it fits to produce a high-
resolution reconstruction of the scene, separated into trans-
mission and obstruction image planes. The latter of which
can be extracted to perform occlusion removal, reflection
suppression, and other layer separation applications. To this
end, we decompose pixel motion between burst frames into
planar motion, from the camera’s pose change in 3D space
relative to the image planes, and a generic flow component
which accounts for depth parallax, scene motion, and other
image distortions. We model these flows with neural spline
fields (NSFs): networks trained to map input coordinates to
spline control points, which are then interpolated at sample
timestamps to produce flow field values. As their output
dynamics are strictly bound by their spline parametrization,
these NSFs produce temporally consistent flow with no reg-
ularization, and can be controlled spatially through the ma-
nipulation of their positional encodings.
In summary, we make the following contributions:

• An end-to-end neural scene fitting approach which fits
to a burst image sequence to distill high-fidelity cam-
era poses, and high-resolution two layer transmission
plus occlusion image decomposition.

• A compact, controllable neural spline field model to
estimate and aggregate pixel motion between frames.

• Qualitative and quantitative evaluations which demon-
strate that our model outperforms existing single image
and multi-frame obstruction removal approaches.

Code, data, videos, and additional materials are available on
our project website: light.princeton.edu/nsf

2. Related Work
Burst Photography. A large body of work has explored
methods for burst image processing [11] to achieve high
image quality in mobile photography settings. During burst
imaging, the device records a sequence of frames in rapid
succession – potentially a bracketed sequence with vary-
ing exposure parameters [45] – and fuses them post-capture
to produce a demosaiced [59], denoised [16, 46], superre-
solved [33, 65], or otherwise enhanced reconstruction. Al-
most all modern smartphone devices rely on burst photog-
raphy for low-light [23, 40] and high dynamic range recon-
struction from low dynamic range sensors [14, 23]. While
existing methods typically use sequences of only 2-8 frames

as input, a parallel field of micro-video [26, 71] or “long-
burst photography” [9] research – which also encompasses
widely deployed Apple Live Photos, Android Motion Pho-
tos, and night photography [17, 18] – consumes sequences
of images up to several seconds in length, acquired naturally
during camera viewfinding. Though not limited to long-
burst photography, we adopt this setting to leverage the par-
allax [67] and pixel motion cues in these extended captures
for separation of obstructed and transmitted scene content.

Obstruction Removal and Layer Separation. While their
use of visual cues is diverse – e.g., identifying reflections
from “ghosting” cues on thick glass [55] or detecting lat-
tices for fence deletion [53] – single-image obstruction re-
moval is fundamentally a segmentation [32, 42] and image
recovery [15, 25] problem. In the most severe cases, with
fully opaque occluders, this image recovery problem be-
comes an in-painting task [12, 66] to synthesize missing
content. This is in contrast to approaches which rely on
multiple measurements such as multi-focal stacks [1, 54],
multi-view images [43, 52], flash no-flash pairs [34, 36], or
polarization data [35]. These methods typically treat ob-
struction removal as an inverse problem [5], estimating a
model of transmitted and occluded content consistent with
observed data [37]. This can also be generalized to an image
layer separation problem, an example of which is intrinsic
decomposition [8], where the separated layer is the obstruc-
tion. These methods typically rely on learned priors [15]
and pixel motion [51] to decompose images into multiple
components. Our work explores the layer separation prob-
lem in the burst photography setting, where pixel motion is
on a much smaller scale than in video sequences [44], and
a high-resolution unobstructed view is desired as an out-
put. Rather than tailor to a single application, however, we
propose a unified model with applications to reflection, oc-
clusion, and shadow separation.

Neural Scene Representations. A growing body of work
investigating novel view synthesis has demonstrated that
coordinate-based neural representations are capable of re-
constructing complex scenes [3,4] without an explicit struc-
tural backbone such as a pixel array or voxel grid. These
networks are typically trained from scratch, through test-
time optimization, on a single scene to map input coordinate
encodings [60] to outputs such as RGB [56], depth [10],
or x-ray data [57]. While neural scene representations re-
quire many network evaluations to generate outputs, as op-
posed to explicit representations which can be considered
“pre-evaluated”, recent works have shown great success in
accelerating training [49] and inference [70] of these net-
works. Furthermore, this per-output network evaluation is
what lends to their versatility, as they can be optimized
through auto-differentiation with no computational penal-
ties for sparse or non-uniform sampling of the scene [31].
Several recent approaches make use of neural scene rep-

2

https://light.princeton.edu/publication/nsf/


resentations in tandem with continuous motion estimation
models to fit multi-image [9] and video [39] data, po-
tentially decomposing it into multiple layers in the pro-
cess [28, 51]. Our work proposes a novel neural spline
field continuous flow representation with a projective cam-
era model to separate effects such as occlusions, reflections,
and shadows. In contrast to existing approaches, our flow
model does not require regularization to prevent overfitting,
as its representation power is controlled directly through en-
coding and spline hyperparameters.

3. Neural Spline Fields for Burst Photography
We begin with a discussion of the proposed neural spline
field model of optical flow. We then continue with our full
two-layer projective model of burst photography, its loss
functions, training procedure, and data collection pipeline.

3.1. Neural Spline Fields.

Motivation. To recover a latent image, existing burst pho-
tography methods align and merge [11] pixels in the cap-
tured image sequence. Disregarding regions of the scene
that spontaneously change – e.g., blinking lights or digi-
tal screens – pixel differences between images can be de-
composed into the products of scene motion, illuminant
motion, camera rotation, and depth parallax. Separating
these sources of motion has been a long-standing challenge
in vision [62, 63] as this is a fundamentally ill-conditioned
problem; in typical settings, scene and camera motion are
geometrically equivalent [22]. One response to this prob-
lem is to disregard effects other than camera motion, which
can yield high-quality motion estimates for static, mostly-
lambertian scenes [9, 26, 71]. This can be represented as

I(u, v, t) = [R,G,B] = f(ππ−1
t (u, v)), (1)

where I(u, v, t) is a frame from the burst stack captured
at time t and sampled at image coordinates u, v ∈ [0, 1].
Operators π and πt perform 3D reprojection on these coor-
dinates to transform them from time t to the coordinates
of a reference image model f(u, v) → [R,G,B]. To
account for other sources of motion, layer separation ap-
proaches such as [28, 51] estimate a generic flow model
∆u,∆v = g(u, v, t) to re-sample the image model

I(u, v, t) = f(u+ ∆u, v + ∆v). (2)

However, this parametrization introduces an overfitting risk,
the consequences of which are illustrated in Fig. 2, as
g(u, v, t) and f(u, v) can now act as a generic video en-
coder [39]. To combat this, methods often employ a form
of gradient penalty such as total variation loss [51]. That is

LTVFlow =
∑

∥Jg(u, v, t)∥1,
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Figure 2. Image and flow estimates for different representations of
a short video sequence of a swinging branch; PSNR/SSIM values
inset top-left. Depth projection alone is unable to represent both
parallax and scene motion, mixing reconstructed content, and an
un-regularized 3D flow volume g(u, v, t) trivially overfits to the
sequence. With an identical network, spatial encoding, loss func-
tion, and training procedure as g(u, v, t), our neural spline field
S(t;P = h(u, v)) produces temporally consistent flow estimates
well-correlated with a conventional optical flow reference [41].

where Jg(u, v, t) is the Jacobian of the flow model. During
training, this can prove computationally expensive, how-
ever, as now each sample requires its local neighborhood
to be evaluated to numerically estimate the Jacobian, or a
second gradient pass over the model. In both cases, a large
number of operations are spent to limit the reconstruction
of high frequency spatial and temporal content.
Formulation. We propose a neural spline field (NSF)
model of flow, a learned spatio-temporal spline [69] repre-
sentation which provides strong controls on reconstruction
directly through its parametrization. This model splits flow
evaluation into two components

∆u,∆v = g(u, v, t) = S(t;P = h(u, v)). (3)

Here h(u, v) is the NSF, a network which maps image coor-
dinates to a set of spline control points P. Then, to estimate
flow for a frame at time t in the burst stack, we evaluate the
spline at S(t;P). We select a cubic Hermite spline

S(t,P) = (2t3r − 3t2r + 1)P⌊ts⌋ + (−2t3r + 3t2r)P⌊ts⌋+1

+ (t3r − 2t2r + tr)(P⌊ts⌋ −P⌊ts⌋−1)/2

+ (t3r − t2r)(P⌊ts⌋+1 −P⌊ts⌋)/2

tr = ts − ⌊ts⌋, ts = t · |P|, (4)

as it guarantees continuity in time with respect to its ze-
roth, first, and second derivatives and allows for fast local
evaluation – in contrast to Bézier curves [9] which require
recursive calculations. We emphasize that the use of splines
in graphics problems is extensive [13], and that there are
many alternate candidate functions for S(t,P). E.g., if the
motion is expected to be a straight line, a piece-wise linear
spline with |P| = 2 control points would insure this con-
straint is satisfied irrespective of the outputs of h(u, v).
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Figure 3. Image fitting results for coordinate networks with Small
(Lγ=8) and Large (Lγ=16) multi-resolution hash encodings and
identical other parameters; PSNR/SSIM values inset top-left. Un-
like a traditional band-limited representation [68], the Small reso-
lution network is able to fit both low-frequency smooth gradients
and sharp edge mask images, but fails to fit a high density of either.
This makes it a promising candidate representation for scene flow
and alpha mattes which are comprised of smooth gradients and a
limited number of object edges.

Where the choice of S(t,P) and |P| determines the tempo-
ral behavior of flow, h(u, v) controls its spatial properties.
While our method, in principle, is not restricted to a specific
spatial encoding function, we adopt the multi-resolution
hash encoding γ(u, v) presented in Müller et al. [49]

h(u, v) = h(γ(u, v; paramsγ); θ)

paramsγ = {Bγ ,Sγ ,Lγ ,Fγ ,Tγ}, (5)

as it allows for fast training and strong spatial controls given
by its encoding parameters paramsγ : base grid resolution
Bγ , per level scale factor Sγ , number of grid levels Lγ , fea-
ture dimension Fγ , and backing hash table size Tγ . Here,
h(γ(u, v); θ) is a multi-layer perceptron (MLP) [24] with
learned weights θ. Illustrated in Fig. 3 with an image fitting
example, the number of grid levels Lγ – which, with a fixed
Sγ , sets the maximum grid resolution – provides controls
on the maximum “spatial complexity” of the output while
still permitting accurate reconstruction of image edges.

3.2. Projective Model of Burst Photography

Motivation. With a flow model g(u, v, t), and a canonical
image representation f(u, v) in hand, we theoretically have
all the components needed to model an arbitrary image se-
quence [28,51]. However, handheld burst photography does
not produce arbitrary image sequences; it has well-studied
photometric and geometric properties [9,10,21,65]. This, in
combination with the abundance of physical metadata such
as gyroscope values and calibrated intrinsics available on
modern smartphone devices [9], provides strong support for
a physical model of image formation.
Formulation. We adopt a forward model similar to tradi-
tional multi-planar imaging [22]. We note that this departs
from existing work [9,10], which employs a backward pro-

jection camera model – “splatting” points from a canonical
representation to locations in the burst stack. A multi-plane
imaging model allows for both simple composition of mul-
tiple layers along a ray – a task for which backward pro-
jection is not well suited – and fast calculation of ray in-
tersections without the ray-marching needed by volumetric
representations like NeRF [48]. For simplicity of notation,
we outline this model for a single projected ray below. We
also illustrate this process in Fig. 4. Let

c = [R,G,B]⊤ = I(u, v, t) (6)

be a colored point sampled at time t in the burst stack at
image coordinates u, v ∈ [0, 1]. Note that these coordi-
nates are relative to the camera pose at time t; for example
(u, v) = (0, 0) is always the bottom-left corner of the im-
age. To project these points into world space we introduce
camera translation T (t) and rotation R(t) models

T (t) = S(t,PT), R(t) = RD(t) + ηRS(t,P
R)

PT
i =

 x
y
z

, PR
i =

 0 −rz ry

rz 0 −rx

−ry rx 0

. (7)

Here S(t,P) is the same cubic spline model from Eq. (4),
evaluated element-wise over the channels of P. We note
there are no coordinate networks employed in these mod-
els. Translation T (t) is learned from scratch, PT initialized
to all-zeroes. Rotation R(t) is learned as a small-angle ap-
proximation offset [26] to device rotations RD(t) recorded
by the phone’s gyroscope – or alternatively, the identity ma-
trix if such data is not available. With these two models, and
calibrated intrinsic matrix K from the camera metadata, we
now generate a ray with origin O and direction D as

O=

Ox

Oy

Oz

=T (t), D=

Dx

Dy

1

=
R(t)K−1

Dz

 u
v
1

, (8)

where D is normalized by its z component. We define our
transmission and obstruction image planes as ΠT and ΠO,
respectively. As XY translation of these planes conflicts
with changes in the camera pose, we lock them to the z-axis
at depth Πz with canonical axes Πu and Πv . Thus, given
ray direction D has a z-component of 1, we can calculate
the ray-plane intersection as Q = O + (Πz − Oz)D and
project to plane coordinates

uΠ, vΠ = ⟨Q, Πu⟩/(Πz −Oz), ⟨Q, Πv⟩/(Πz −Oz), (9)

scaled by ray length to preserve uniform spatial resolution.
Let uT, vT and uO, vO be the intersection coordinates for the
transmission and obstruction plane, respectively. We alpha
composite these layers along the ray as
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Figure 4. We model an input image sequence as the alpha composition of a transmission and obstruction plane. Motion in the scene is
expressed as the product of a rigid camera model, which produces global rotation and translation, and two neural spline field models, which
produce local flow estimates for the two layers. Trained to minimize photometric loss, this model separates content to its respective layers.

ĉ = (1− α)cT + αcO

cT = f T(uT +∆uT, vT +∆vT), ∆uT,∆vT = S(t;hT(uT, vT))

cO = f O(uO +∆uO, vO +∆vO), ∆uO,∆vO = S(t;hO(uO,vO))

α = σ(τσf
α(uO +∆uO, vO +∆vO)), (10)

where ĉ is the composite color point, the weighted sum by α
of the transmission color cT and obstruction color cO. Each
is the output of an image coordinate network f(u, v) sam-
pled at points offset by flow from an NSF h(u, v). The sig-
moid function σ=1/(1+e−x) with temperature τσ controls
the transition between opaque α=1 and partially translu-
cent α=0.5 obstructions. This proves particularly helpful
for learning hard occluders – e.g., a fence – where large τσ
creates a steep transition between α=0 and α=1, which
discourages fα(u, v) from mixing content between layers.

3.3. Training Procedure

Losses. Given all the components of our model are fully
differentiable, we train them end-to-end via stochastic gra-
dient descent. We define our loss function L as

L = LP + ηαRα (11)
LP = |(c− ĉ)/(sg(c) + ϵ)|, Rα = |α|,

where LP is a relative photometric reconstruction loss [9,
47], and sg is the stop-gradient operator. Shown in Fig. 5,
when combined with linear RAW input data this loss proves
robust in noisy imaging settings [47], appropriate for in-
the-wild scene reconstruction with unknown lighting con-
ditions. Regularization term Rα with weight ηα penalizes
content in the obstruction layer, discouraging it from dupli-
cating features from the transmission layer.
Training. Given the high-dimensional problem of jointly
solving for camera poses, image layers, and neural spline
field flows, we turn to coarse-to-fine optimization to avoid
low-quality local minima solutions. We mask the multi-
resolution hash encodings γ(u, v) input into our image, al-
pha, and flow networks, activating higher resolution grids

Single Frame Proposed ReferenceNaive Average

Figure 5. Reconstruction results for noisy, low-light conditions;
exposure time 1/30, ISO 5000. The proposed model is able to
robustly merge frames into a denoised image representation.

during later epochs of training:

γi(u, v) =

{
γi(u, v) if i/|γ| < 0.4 + 0.6(sin epoch)
0 if i/|γ| > 0.4 + 0.6(sin epoch)

sin epoch = sin(epoch/max epoch), (12)

This strategy results in less noise accumulated during early
training as spurious high-resolution features do not need to
be “unlearned” [9, 38] during later stages of refinement.

4. Applications
Data Collection. To collect burst data we modify the open-
source Android camera capture tool Pani to record contin-
uous streams of RAW frames and sensor metadata. Dur-
ing capture, we lock exposure and focus settings to record
a 42 frame, two-second “long-burst” of 12-megapixel im-
ages, gyroscope measurements, and camera metadata. We
refer the reader to Chugunov et al. [9] for an overview of
the long-burst imaging setting and its geometric properties.
We capture data from a set of Pixel 7, 7-Pro, and 8-Pro de-
vices, with no notable differences in overall reconstruction
quality or changes in the training procedure required. We
train our networks directly on Bayer RAW data, and apply
device color-correction and tone-mapping for visualization.
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Figure 6. Occlusion removal results and estimated alpha maps for a set of captures with reference views; comparisons to single image,
multi-view, and NeRF fitting approaches. See video materials for visualization of input data and scene fitting.
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Figure 7. Layer separation results in unique real-world cases en-
abled by our generalizable two-layer image model: (a) orange
planter, (b) fenced garden, (c) stickers on balcony glass.
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Figure 8. Qualitative and quantitative obstruction removal results
for a set of synthetic scenes with paired ground truth, camera mo-
tion simulated from real measured hand shake data [10]. Evalua-
tion metrics formatted as PSNR/SSIM.
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Figure 9. Reflection removal results and estimated alpha maps for a set of captures with reference views; comparisons to single image,
multi-view, and NeRF fitting approaches. See video materials for visualization of input data and scene fitting.

(a)

(c)(c)

(c)(b)

Scene Transmission Alpha

Obstruction

Figure 10. Layer separation results for additional example appli-
cations: (a) shadow removal, (b) image dehazing, and (c) video
motion segmentation (see video materials for visualization).

Implementation Details. During training, we perform
stochastic gradient descent on L for batches of 218 rays per
step for 6000 steps with the Adam optimizer [29]. All net-
works use the multi-resolution hash encoding described in
Eq. (5), implemented in tiny-cuda-nn [50]. Trained on a
single Nvidia RTX 4090 GPU, our method takes approx-
imately 3 minutes to fit a full 42-frame image sequence.
All networks have a base resolution Bγ=4, and scale fac-
tor Sγ=1.61, but while flow networks hT and O are pa-
rameterized with a low number of grid levels Lγ=8, net-
works which represent high frequency content have Lγ=12
or Lγ=16 levels. These settings are task-specific, and full
implementation details and results for short (4-8 frame) im-
age bursts are included in the Supplementary Material.

Occlusion Removal. Initializing the obstruction plane
closer to the camera than the transmission plane, that is
ΠO

z < ΠT
z , we find that the f O(u, v) naturally reconstructs

foreground content in the scene. Given a scene with con-
tent hidden behind a foreground occluder – e.g., imaging
through a fence – we can then perform occlusion removal
with the proposed method by setting α = 0. We report re-
sults in Fig. 6 for a set of captures collected with reference
views using a tripod-mounted occluder. We compare here
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to the multiview plus learning method presented in Liu et
al. [43], the neural radiance field approach OCC-NeRF [72],
the flow + homography neural image model NIR [51], and
the single image inpainting method Lama [58] as these
methods demonstrate a broad range of techniques for oc-
clusion detection and removal with varying assumptions
on camera motion. We find that in this small baseline
burst photography setting, existing multi-view methods fail
to achieve meaningful occlusion removal; as the occluder
maintains a high level of self-overlap for the whole image
sequence. While the single-image method, Lama is able to
in-paint occluded regions based on un-occluded content, it
cannot faithfully recover lost details such as the carvings in
the Door scene. Furthermore, Lama does not produce an al-
pha matte, and rather requires a hand-annotated mask as in-
put. Illustrated in Fig. 11, even otherwise robust mask seg-
mentation networks such as the Segment Anything Model
(SAM) [30] fail to correctly detect complex occluders. In
contrast, our approach distills information from all input
frames to accurately recover temporarily occluded content,
and jointly produces a high-quality alpha matte. In Fig. 10
we present additional layer separation results for real in-the-
wild scenes with complex occluders, which demonstrate the
versatility of the obstruction image model f O(u, v).
Reflection Removal. We show in Fig. 9 how by flipping the
plane depths ΠO

z > ΠT
z , our model is also able to separate re-

flected from transmitted content. Here, we compare again to
Liu et al. [43] and NIR [51], as well as the reflection-specific
neural radiance approach NeRFReN [19] and single-image
reflection removal network DSR-Net [25]. Similarly to oc-
clusion removal, we observe that given small-baseline in-
puts the multi-view methods fail to achieve meaningful
layer separation, and NeRFRen struggles to converge on
a sharp reconstruction. Only DSR-Net is able to suppress
even small parts of the reflection such as the car in the Hy-
drant scene. In contrast, the proposed method not only esti-
mates nearly reflection-free transmission layers, but is also
able to recover hidden content – such as the flowerpot high-
lighted in Pinecones – in the reflection layer.
Synthetic Validation. Given in-the-wild captures do not
have perfectly aligned reference images, to further vali-
date our method we construct a set of rendered scenes with
paired ground truth data. Quantitative and qualitative results
in Fig. 8 and the Supplementary Material align with our
findings from real-world captures, with significant PSNR
and SSIM improvements across all scenes.
Image Enhancement through Layer Separation. In ad-
dition to occlusion and reflection removal, a wide range
of other computational photography applications can be
viewed through the lens of layer separation. We showcase
several example tasks in Fig. 7, including shadow removal,
image dehazing, and video motion segmentation. The key
relationship between all these tasks is that the two effects

Proposed AlphaScene SAM MasksRAFT Flow

Figure 11. Learned flow estimator RAFT [61] and segmentation
model SAM [30] struggle to produce meaningful outputs for a
small-motion scene with an out-of-focus occluder. SAM success-
fully segments some objects behind the occluder (e.g., the statues
on the building) but does not correctly segment the occluder itself.

undergo different motion models – e.g., photographer-cast
shadows move with the cellphone, while the paper target
stays static. By grouping color content with its respective
motion model, f T(u, v) with hT(u, v) and f O(u, v) with
hO(u, v), just as in the occlusion case, we can remove the
effect by removing its image plane. Fig. 7 (c), which fits
our two-layer model for an image sequence of a moving
tree branch, also highlights that our method does not rely
solely on camera motion. Scene motion itself can also be
used as a mechanism for layer separation in image bursts,
similar to approaches in video masking [28, 44].

5. Discussion and Future Work
In this work, we present a versatile representation of burst
photography built on a novel neural spline field model of
flow, and demonstrate image fusion and obstruction re-
moval results under a wide array of conditions. In future
work, we hope this generalizable model can be tailored to
specific layer separation and image fusion applications:
Learned Features. Video layer separation works [28, 44,
69] make use of pre-trained segmentation networks and op-
tical flow estimators to help guide reconstruction. However,
shown in Fig. 11, we found these could not be directly ap-
plied to small-motion data with large obstructions, as this
is far outside the domain of their training data. Adapting
these models to complex burst photography settings could
potentially help disambiguate image layers in areas without
reliable parallax or motion information.
Physical Priors. Our generic image plus flow represen-
tation can accommodate task-specific modules for applica-
tions where there are known physical models, such as chro-
matic aberration removal or refractive index estimation.
Beyond Burst Data. There exist many other sources of
multi-image data to which the method can potentially be
adapted – e.g., microscopes, telescopes, and light field,
time-of-flight, or hyperspectral cameras.
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Supplementary Material
In this supplementary material, we provide implementation
details, additional results, ablation studies, and experimen-
tal analysis in support of the findings of the main text. The
structure of this document is as follows:

• Section A: Details on data generation, model imple-
mentation, and training procedure.

• Section B: Additional obstruction removal results with
comparison methods and synthetic validation. Analy-
sis of challenging reconstruction settings.

• Section C: Additional analysis on manipulating model
and training parameters. Includes reconstruction re-
sults for subsampled and short burst sequences.

A. Implementation Details
Data Acquisition To acquire paired obstructed and unob-
structed captures, we construct two tripod-mounted rigs as
illustrated in Fig. 1 (a-b). We begin by capturing a still of
the scene without the obstruction, before rotating the tri-
pod into position to capture a 42-frame obstructed long-
burst [10] of 12-megapixel RAW frames. As the rig is only
used to hold the obstruction – i.e., the smartphone is not
attached to it – it does not affect natural hand motion dur-
ing capture. For accessible natural occluders, such as the
fences in Fig. 3, we acquire reference views by position-
ing the phone at a gap in the occluder – though this some-
times cannot perfectly remove the occluder as in the case of
Fig. 3 Pipes. We collect data with our modified Pani cap-
ture app, illustrated in Fig. 1 (c), built on the Android cam-
era2 API. During capture, we also record metadata such as
camera intrinsics, exposure settings, channel color correc-
tion gains, tonemap curves, and other image processing and
camera information during capture. We stream gyroscope
and accelerometer measurements from on-board sensors as
≈100Hz, though we find accelerometer values to be highly
unreliable for motion on the scale of natural hand tremor,
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(a) (b)

Occluder Setup Reflector Setup

(d)
App Interface

(c)

TransmissionObstructionCamera

Handshake
Path

Figure 1. (a) Tripod-mounted occluder setup for capturing paired
occlusion removal data. (b) Tripod-mounted reflector setup for
capturing paired reflection removal data. (c) Capture app interface
with the extended settings menu. (d-e) Example 3D scene with
simulated occluder, camera frustum highlighted in orange.

and so disregard these measurements for this work. We ap-
ply minimal processing to the recorded 10-bit Bayer RAW
frames – only correcting for lens shading and BGGR color
channel gains – before splitting them into a 3-plane RGB
color volume. We do not perform any further demosaic-
ing on this volume, as these processes correlate local signal
values, and instead input it directly into our model for scene
fitting. For visualization, we apply the default color correc-
tion matrix and tone-curve supplied in the capture metadata.

Synthetic Data Generation Capturing aligned ground-
truth data for obstruction removal is a long-standing prob-
lem in the field [64], greatly exacerbated by the requirement
in our setting of a sequence of unstabilized frames with its
base frame aligned to an unobstructed image. Thus, to help
validate our method, we turn to synthetic captures created
through image reprojection. We use 61-megapixel digital
camera (Sony A7RIV) captures to simulate the transmission
layer, and either hand-segmented occluders or a second 61-
megapixel “reflection” image to simulate the obstruction.
These are simulated as 3D planes in space at depths ΠO

z and
ΠT

z respectively – ΠO
z < ΠT

z for occluders and ΠO
z > ΠT

z for
reflectors – and apply a random tilt to the planes with angle
θ ∈ [−20◦, 20◦]. To generate realistic camera motion, we
record samples of natural hand tremor with a pose-capture

application built on the Apple ARKit library [10]. We then
apply this motion path to a projective camera model, re-
sample the image planes, and alpha-composite the outputs
to produce the simulated burst stack. We emphasize that
this data does not capture all the imaging effects present in
real burst photography – e.g., lens distortion, scene defor-
mation, motion blur, chromatic aberrations, or sensor and
microlens defects – and use it as a tool for validating correct
layer separation rather than a benchmark for overall perfor-
mance. Reconstruction results for these simulated bursts are
shown in Fig. 7 and Fig. 8.
Implementation Details While the overarching model
structure is held constant between all applications – iden-
tical projection, image generation, and flow models for all
tasks – elements such as the neural spline field h(u, v) en-
coding parameters paramsγ can be tuned for specific tasks:

h(u, v) = h(γ(u, v; paramsγ); θ)

paramsγ = {Bγ ,Sγ ,Lγ ,Fγ ,Tγ}. (13)

By manipulating the parameters of Eq. 13 as defined in
Tab. 1 we construct four different “sizes” of network en-
codings: Tiny, Small, Medium, and Large. Image fitting re-
sults in Fig. 2 illustrate what scale of features each of these
configurations is able to reconstruct, with larger encoding
reconstructing denser and higher-frequency content. Then,
assembling together multiple image and flow networks with
varying encoding sizes as defined in Tab. 1, we are able to
leverage this feature scale control for layer separation tasks
such as occlusion, reflection, or shadow removal.

For tasks such as video segmentation, it is important that
both the transmission layer and obstruction layer are able
to represent high-resolution images, as the purpose here is
to divide and compress video content into two canonical
views, alpha matte, and optical flow. Hence for the video
segmentation task in Tab. 1 both layers have Large network
encodings. Conversely, for a task such as shadow removal
we want to minimize the amount of color and alpha infor-
mation the shadow obstruction layer is able to represent – as
shadows, like the mask example in Fig. 2, are comprised of
mostly low-resolution image features. Correspondingly, the
shadow removal task in Tab. 1 has a Tiny image color encod-
ing and only a Medium size alpha encoding. We keep these
parameters constant between all tested scenes for clarity of
presentation, however we emphasize that these model con-
figurations are not prescriptive; all neural scene fitting ap-
proaches [48] have per-scene optimal parameters. Given
the relatively fast training speed of our approach, approxi-
mately 3mins on a single Nvidia RTX 4090 GPU, in settings
where data acquisition is costly – e.g., scientific imaging
settings such as microscopy – it may even be tractable to
sweep model parameters to optimally reconstruct each indi-
vidual capture.
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base scale levels feat. table
Size Bγ Sγ Lγ Fγ Tγ

Tiny (T) 4 1.61 6 4 12
Small (S) 4 1.61 8 4 14

Medium (M) 4 1.61 12 4 16
Large (L) 4 1.61 16 4 18

Table 1. Multi-resolution hash-table encoding parameters for dif-
ferent “sizes” of network, with larger encodings intended to fit
higher-resolution data. Note that we only vary the number of grid
levels Lγ , and match the backing table size Tγ accordingly to
avoid hash collisions. The base grid resolution Bγ , grid per-level
scale Sγ , and feature encoding size Fγ are kept constant.

occlusion removal:
flow h |h| rgb f fα depth Πz ηαR

Tr: T 11 L 1.0 0.02
Ob: T 11 M M 0.5

reflection removal:
flow h |h| rgb f fα depth Πz ηαR

Tr: T 11 L 1.0 0.0
Ob: T 11 T L 2.5

video segmentation:
flow h |h| rgb f fα depth Πz ηαR

Tr: S 15 L 1.0 0.002
Ob: S 15 L M 2.0

shadow removal:
flow h |h| rgb f fα depth Πz ηαR

Tr: T 11 L 1.0 0.0
Ob: T 11 T M 2.0

dehazing:
flow h |h| rgb f fα depth Πz ηαR

Tr: T 11 L 1.0 0.01
Ob: T 11 T S 0.5

image fusion:
flow h |h| rgb f fα depth Πz ηαR

Tr: S 31 L 1.0 0.0

Table 2. Network encoding, flow, and loss configurations used for
several layer-separation applications, separated into rows individ-
ually defining transmission Tr and obstruction Ob layers. Encod-
ing parameters are defined by the corresponding (T,S,M,L) row
of Tab. 1. Flow size |h| indicates the number of spline control
points used for interpolation of the corresponding neural spline
field S(t, h(u, v)).

B. Additional Reconstruction Results

In this section, we provide additional quantitative and qual-
itative obstruction removal results, comparing our proposed
model against a range of multi-view and single-image meth-
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Figure 2. Image fitting results for network encoding configurations
as described in Tab. 1, other training and network parameters held
constant: 5-layer MLP coordinate networks, hidden dimension 64,
ReLU activations. PSNR/SSIM values inset top-left.

ods. We include discussion of challenging imaging settings
and potential directions of future work to address them.
Occlusion Removal We include a set of additional occlu-
sion removal results in Fig. 3 with natural environmen-
tal occluders such as fences and grates. We evaluate our
results against the multi-image learning-based obstruction
removal method Liu et al. [43], the NeRF-based method
OCC-NeRF [72], the flow plus homography neural image
representation NIR [51], and the single image inpainting
approach Lama [58] – to which we provide hand-drawn
masks of the occlusion. We find that, as observed in the
main text, the multi-image methods struggle to remove sig-
nificant parts of the obstruction. Though in some scenes,
the multi-image baselines are able to decrease the opacity
of the occluder to reveal details behind it. Nevertheless,
in all cases the obstruction is still clearly visible after ap-
plying each baseline. Given the small camera baseline set-
ting of our input data, the volumetric OCC-NeRF approach
struggles to converge on a cohesive 3D scene representa-
tion, producing blurred or otherwise inconsistent image re-
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Figure 3. Occlusion removal results and estimated alpha maps for a set of captures with reference views, with comparisons to single image,
multi-view, and NeRF fitting approaches. See video materials for visualization of input data and scene fitting.

constructions – as is the case for the Church scene. We find
that the the homography-based NIR method also struggles
in this small baseline setting, often identifying the entire
scene as the canonical view rather than partly obstructed.
Given hand annotated masks, single image methods such as
DALL·E and Lama [58] can successfully inpaint sparse oc-
cluders such as the fence in the Pipes scene, but struggle to
recover content behind dense occluders such as in Alexan-
der and Church in Fig. 3. As they have no way to aggre-
gate content between frames, they “recover” hidden content
from visual priors on the scene, which may not be reliable
when the scene is severely occluded.

In contrast, our method automatically distills a high-
quality alpha matte for the obstruction and reconstructs the
underlying transmission layer using information from mul-
tiple views. This mask is of similar quality regardless of
whether the scene is obstructed by a dense occluder or a
sparse occluder, so long as there is sufficient parallax be-
tween the two layers. The depth-separation properties of
our alpha estimation are showcased in the River example,
where the obstruction layer isolated not only the grid of the
fence, but also the branches and leaves weaved through the
fence. Our method reconstructs the transmitted layer be-

hind the occlusion with favorable results compared to all
baseline methods.
Reflection Removal For reflection removal, we com-
pare with the reflection-aware NeRF-based method NeR-
FReN [19] in addition to NIR [51], Liu et al. [43], and the
single-image reflection removal method DSRNet [25]. We
show reflection removal results in Fig. 4. We observe results
with a similar trend to those in the obstruction removal task.
The volumetric method NeRFReN struggles to reconstruct
a high-fidelity scene representation, as Liu et al. and NIR
also struggle with the small baseline of the camera motion.
The single-image method DSRNet performs best among the
baselines, as it has no priors on image motion. However,
without the ability to draw information from multiple views,
DSRNet uses learned priors to disambiguate reflected and
transmitted content. This appears not to be very effective
for high opacity reflections, such as the Leaves example and
the phone in the Plaque scene. Our method achieves the
highest-quality reconstruction and layer separation among
all methods tested, across all scenes, with our estimated ob-
struction revealing the detailed structure of the scene being
reflected. In Fig. 6 we also showcase our model’s perfor-
mance on challenging, in-the-wild scenes where we do not
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Figure 4. Reflection removal results and estimated alpha maps for a set of captures with reference views, with comparisons to single image,
multi-view, and NeRF fitting approaches. See video materials for visualization of input data and scene fitting.

Transmission AlphaScene
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Figure 5. Shadow removal results under different lighting condi-
tions: (a) partially diffuse, (b) multiple point, (c) single point.

Transmission ObstructionScene

(b)

(a)

(c)

Figure 6. Reflection removal results for challenging in-the-wild
scenes: (a) storefront window, (b) poster, (c) museum painting.

15



NIR ReferenceProposed Alpha + TransmissionLamaLiu et al.OCC-NeRFScene

G
ee

se
Ve

nd
in

g
Pi

ge
on

Be
ar

Si
gn

Bu
tte

rfl
y
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Geese 19.49/0.578 32.24/0.970 20.89/0.696 21.96/0.760 41.80/0.986 Vending 18.05/0.550 15.10/0.754 17.96/0.625 17.42/0.591 39.62/0.981
Pigeon 18.60/0.691 15.17/0.725 18.74/0.691 21.55/0.753 40.33/0.965 Bear 23.72/0.696 26.32/0.930 23.28/0.746 23.84/0.815 40.88/0.980
Sign 24.34/0.870 24.11/0.952 22.84/0.905 28.57/0.932 48.63/0.994 Butterfly 17.67/0.674 15.43/0.828 18.25/0.750 17.89/0.722 39.53/0.980

Figure 7. Qualitative and quantitative occlusion removal results for a set of 3D rendered scenes with paired ground truth. Evaluation
metrics formatted as PSNR/SSIM.
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Figure 8. Qualitative and quantitative reflection removal results for a set of 3D rendered scenes with paired ground truth. Evaluation
metrics formatted as PSNR/SSIM.
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have the ability to acquire reference views. We observe ro-
bust reflection removal, matching the reconstruction quality
observed for scenes acquired with our tripod setup.

Validation on Synthetic Scenes We generate synthetic
scenes as described in Sec. A, and compare our obstruction
removal results to the same baselines outlined in the previ-
ous sections, including: OCC-NeRF [72], NeRFReN [19],
Liu et al. [43], NIR [51], Lama [58] and DSRNet [25]. We
show quantitative and qualitative results for occlusion re-
moval and reflection removal in Fig. 7 and Fig. 8 respec-
tively. We also provide NeRF-based methods with ground
truth camera poses, which results in higher fidelity NeRF-
based reconstruction than on real-world data. Overall, we
observe similar trends to the real-world examples, with
most multi-image based methods failing to remove the ma-
jority of the obstructions for the majority of scenes. This
is with the exception of Liu et al. [43] for the Geese, Vend-
ing and Butterfly scenes in Fig. 7, where it succeeds at re-
moving a large portion of the fence occluders. We believe
this is a strong indication that this method relies heavily on
visual cues to identify the occluder (e.g., gray mostly-in-
focus fences), and helps to explain its failure to identify and
remove other categories of obstructions such as the black
hexagonal grids in Fig. 3. Lama [58], when provided with
a ground-truth occlusion mask, is able to reconstruct a rel-
atively coherent transmission layer. However, upon closer
inspection the results are missing details in the ground-truth
transmission layer, such as the distorted text in Sign and
missing beak of Pigeon in Fig. 7. We observe that both
multi-image methods and DSRNet [25] fail to effectively
remove reflections in Fig. 8, with DSRNet [25] accidentally
enhancing the reflected content in the Sealions scene. These
observations are supported by quantitative results, with our
method achieving the highest PSNR and SSIM across all
scenes tested. We observe an average PSNR increase of
more than 10db, with near-perfect reconstruction of both
obstructions and obstructed content; though emphasize that
these results represent a validation of the models in a sim-
plified imaging setting, and are not fully representative of
performance across diverse in-the-wild scenarios.

Shadow Removal In Fig. 5 we demonstrate shadow re-
moval results for scenes with disparate lighting conditions:
(a) a book illuminated by a diffuse overhead lamp, (b) a
poster illuminated by an array of LEDs, and (c) a bust illu-
minated by a strong point light source. We note that the grid
of LEDs act as a set of point light sources, producing mul-
tiple copies of the shadow to be overlayed on the scene. In
all settings we are able to extract the shadow with the same
obstruction network defined in the shadow removal appli-
cation in Tab. 2, further reinforcing the our image fitting
findings from Fig. 2. Namely that coordinate networks with
low-resolution multi-resolution hash encodings are able to
effectively fit both scenes comprised of smooth gradients,
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Figure 9. Challenging image reconstruction cases including vary-
ing scales of camera motion, overlap between occluder and trans-
mission colors, and residual signal left on scene content in low-
texture regions. Areas of interest highlighted with dashed border.

as in the diffuse shadow case, and limited numbers of im-
age discontinuities, as in the multiple point source case.
In (c) we furthermore see that while the photographer-cast
shadow is successfully removed from the bust, the shadows
cast by other light sources are left intact. This reinforces
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Figure 10. Visualization of the effects of gradient loss LG on im-
age reconstruction at 25x zoom. Inset bottom left is the radius of
perturbation at epoch 40 and epoch 100, the end of training.

that our proposed model is separating shadows based not
only on their color, but on the motion they exhibit in the
scene; as the other shadows cast on the bust undergo the
same parallax motion as the bust itself.
Challenging Settings We compile a set of challenging
imaging settings in Fig. 9 which highlight areas where our
proposed approach could be improved. One limitation of
our work is that it cannot generate unseen content. While
this means it cannot hallucinate features from unreliable im-
age priors, it also means that it is highly parallax-dependent
for generating accurate reconstructions. This is highlighted
in Fig. 9 (a-c), where with hand motion on the scale of 1cm
is only enough to separate and remove the topmost branch
of the occluding plant. Motion on the scale of 10cm is
enough to remove most of the branches, but larger motion
on the scale of half a meter in diameter causes the recon-
struction to break down. This is likely due to the small
motion and angle assumptions in our camera model, as it
is not able to successfully jointly align the input image data
and learn its multi-layer representation. Thus work on large
motion or wide-angle data for large obstruction removal –
e.g., removing telephone poles blocking the view of a build-
ing – remains an open problem. Fig. 9 (d) demonstrates
the challenge of estimating an accurate alpha matte when
the transmitted and obstructed content are matching colors.
In this case, although the obstruction is “removed”, we see
that the alpha matte is missing a gap around the black object
in the scene behind the occluder. In this region the model
does not need to use the obstruction layer to represent pix-
els that are already black in the transmission layer – in fact,
the alpha regularization term Rα would penalize this. Thus
the alpha matte is actually a produce of both the actual al-
pha of the obstruction and its relative color difference with
what it is occluding. Fig. 9 (e) highlights a related prob-
lem. In regions where the transmission layer is low-texture,
and lacks parallax cues, it is ambiguous what is being ob-

structed and where the border of the obstruction lies. Thus
ghosting artifacts are left behind in areas such as the sky of
the Textureless scene. What is noteworthy, however, is that
these are also exactly the regions in which in-painting meth-
ods such as Lama [58] are most successful, as there are no
complex textures that need to be recovered from incomplete
data, leaving a hybrid model as an interesting direction for
future work.

C. Additional Experiments and Analysis
Gradient Loss A significant challenge posed by the task
of aggregating long-burst data is the so-called problem of
“regression to the mean”. When minimizing a metric such
as relative mean-square error, which penalizes small color
differences significantly less than large discrepancies, the
final reconstruction is encouraged to be smoother than the
original input data [2]. Thus, in developing our approach we
explored – but ultimately did not use – a form of gradient
penalty loss:

LG = |(∆c− ∆ĉ)/(sg(∆c) + ϵ)|2.

Rather than sample a grid of points around uO, vO and uT, vT

or perform a second pass over the image networks [51] to
compute Jacobians, we compute color gradients ∆c by pair-
ing each ray with an input perturbed in a random direction

∆c = I(u, v, t)− I(ũ, ṽ, t) (14)
ũ, ṽ = u+ rcos(ϕ), v + rsin(ϕ), ϕ ∼ U(0, 2π),

where r determines the magnitude of the perturbation. The
estimated color gradient ∆ĉ is similarly calculated for the
output colors of our model. Illustrated in Fig. 10, by re-
ducing radius r from multi-pixel to sub-pixel perturbations
during training, we are able to improve fine feature recov-
ery in the final reconstruction via gradient loss LG without
significantly impacting training time – as perturbed sam-
ples are also re-used for regular photometric loss calcula-
tion Lp. However, as we do not apply any demosaicing or
post-processing to our input Bayer array data, we find this
loss can also lead to increased color-fringing artifacts – the
red tint in the bottom row of Fig. 10. For these reasons, and
poor convergence in noisy scenes, we did not include this
loss in the final model. However, there may be potentially
interesting avenue of future research into a jointly trained
demosaicing module to robustly estimate real color gradient
directly from quantized and discretized Bayer array values.
Alpha Regularization Ablation In Fig. 12, we visualize
the effects of alpha regularization weight ηα on reconstruc-
tion. The primary function of this regularization is remove
low-parallax content from the obstruction layer, as there is
no alpha penalty for reconstructing the same content via the
transmission layer. As seen in the Pipes example, without
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Figure 11. Ablation study on the effects of the number of input frames or duration of capture on transmission layer reconstruction and
estimated alpha matte. Total number of frames input into the model denoted by the number in parentheses– e.g., (10) = ten frames.
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Figure 12. Ablation study on the effects of alpha regularization weight ηα on transmission layer reconstruction and estimated alpha matte.
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Figure 13. Ablation study on the effects of flow encoding size (Tab. 1) on transmission layer reconstruction and estimated alpha matte.

Scene Edited Transmission

Figure 14. Demonstration of user-interactive scene editing facil-
itated by layer separation. Only the user-selected region of the
obstruction, highlighted in red, is removed without affecting sur-
rounding scene content, see text.

alpha regularization the obstruction layer is able to freely
reconstruct part of the transmitted scene content such as the
sky, the pipes, and the walls of the occluded buildings. A
small penalty of ηα = 0.01 is enough to remove this un-
wanted content from the obstruction layer, while ηα = 0.1
is enough to also start removing parts of the actual obstruc-
tion. Contrastingly, in the case of reflection scenes such
as Pinecones, even a relatively small alpha regularization
weight of ηα = 0.01 removes part of the actual reflec-
tion – leaving behind a grey smudge in the bottom right
corner of the reconstruction. As reflections are typically
partially transparent obstructions, and can occupy a large
area of the scene, removing them purely photometrically
is ill-conditioned. There is no visual difference between a
gray reflector covering the entire view of the camera and
the scene actually being gray. Thus ηα can also be a user-
dependent parameter tuned to the desired “amount” of re-
flection removal.
Frame Count Ablation Thusfar we have used all 42 frames
in each long-burst capture as input to our method, but we

highlight that this is not a requirement of the approach. The
training process can be applied to any number of frames –
within computational limits. In Fig. 11 we showcase recon-
struction results for both subsampled captures, where only
every k-th frame of the image sequence is kept for train-
ing, and shortened captures, where only the first n frames
are retained. Similar to the problem of depth reconstruc-
tion [9], we find that obstruction removal performance di-
rectly depends on the total amount of parallax in the input.
Sampling the first 10 frames – approximately 0.5 seconds
of recording – results in diminished obstruction removal for
both the Digger and Gloves scenes as the obstruction ex-
hibits significantly less motion during the capture. In con-
trast, given a five frame input sampled evenly across the
full two-second capture, our proposed approach is able to
successfully reconstruct and remove the obstruction. This
subsampled scene also trains considerably faster, converg-
ing in only 3 minutes as less frames need to be sampled per
batch – or equivalently more rays can be sampled from each
frame for each iteration. This further validates the benefit of
a long burst capture.
Flow Encoding Size Ablation A key model parameter
which controls layer separation, as discussed in Section A,
is the size of the encoding for our neural spline flow fields.
In Fig. 13 we illustrate the effects on obstruction removal
of over-parameterizing this flow representation. When the
two layers are undergoing simple motion caused by paral-
lax from natural hand tremor, a Tiny flow encoding is able
to represent and pull apart the motion of the reflected and
transmitted content. However, high-resolution neural spline
fields, just like a traditional flow volume h(u, v, t), can
quickly overfit the scene and mix content between layers.
We can see this clearly in the Large flow encoding exam-
ple where the reflected phone, trees, and parked car appear
in both the obstruction alpha matte and transmission image.
Thus it is critical to the success of our method to construct
a task-specific neural spline field representation appropriate
for the expected amount and density of scene motion.
Applications to Scene Editing In Fig. 14 we showcase
the scene editing functionality facilitated by our proposed
methods layer separation. As we estimate an image model
for both the transmission and obstruction, we are not limited
to only removing a layer but can independently manipulate
them. In this example we rasterize both layers to RGBA im-
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ages and input them into an image editor. The user is then
able to highlight and delete a portion of the occlusion while
retaining its other content. Thus we can create physically
unrealizable photographs such as only the fence appearing
to be behind the Digger, or selectively remove the photog-
rapher’s hand and parked car from the Hydrant scene.
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