Inverse Neural Rendering for Explainable Multi-Object Tracking

Julian Ost* Tanushree Banerjee”

Yuval Bahat

Mario Bijelic Felix Heide

Princeton University

Abstract

Today’s most successful methods for image understand-
ing tasks rely on feed-forward neural networks. While this
approach has allowed for empirical accuracy, efficiency,
and task adaptation via fine-tuning, it comes with funda-
mental disadvantages. Existing networks often struggle to
generalize across different datasets, even on the same task.
Moreover, these networks ultimately reason about high-
dimensional scene features, which are challenging to an-
alyze. This is true especially when attempting to predict 3D
information based on 2D images. We propose to recast 3D
multi-object tracking from RGB cameras as an Inverse Ren-
dering (IR) problem, by optimizing through a differentiable
rendering pipeline over the latent space of pre-trained 3D
object representations that best represent object instances
in a given input image. To this end, we optimize an im-
age loss over generative latent spaces that inherently dis-
entangle shape and appearance properties. Our method is
not only a new take on tracking, but also enables examin-
ing the reconstructed objects, reasoning about failure situa-
tions, and resolving ambiguous cases. We validate the gen-
eralization capabilities of our method by training on syn-
thetic data only and assessing camera-based 3D tracking
on the nuScenes and Waymo datasets. Both these datasets
are completely unseen to our method and do not require
fine-tuning.

1. Introduction

Today’s most successful image understanding methods em-
ploy feed-forward neural networks for performing vision
tasks, including segmentation [11, |37, 41]], object detec-
tion [17 133} 139, 1571359, 91]], object tracking [9, 130} 153,
61, [72, 185, 190] and pose estimation [69, |80]]. Typically,
these approaches learn network weights using large labeled
datasets. At inference time, the trained network layers se-
quentially process a given 2D image to make a predic-
tion. Despite being a successful approach across disci-
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plines, from robotics to health, and effective in operating
at real-time rates, this approach also comes with several
limitations: (i) Networks trained on data captured with a
specific camera/geography generalize poorly, (ii) these net-
works typically rely on high-dimensional internal feature
representations which are often not interpretable, making
it hard to identify and reason about failure cases, and, (iii)
it is challenging to explicitly enforce 3D geometrical con-
straints, consistency, and priors in the predictions.

We focus on multi-object tracking as a task that must
tackle all these challenges. Accurate multi-object tracking
is essential for safe robotic planning. While approaches
using LiDAR point clouds (and camera image input) are
successful as a result of the explicitly measured depth
[13 30, 40, 1531 73, 181} I85)], camera-based approaches
to 3D multi-object tracking have only been studied re-
cently [9} 18} 23 144, 147, 154} [70L 76} 82, 90]. Monocular
tracking methods, typically consisting of independent de-
tection, 3D dynamic model, and matching modules, often
struggle as the errors in the distinct modules tend to accu-
mulate. Moreover, wrong poses in the detections can lead
to ID switches in the matching process.

We propose an alternative approach that recasts visual
inference problems as inverse rendering (IR) tasks, jointly
solving them at test time by optimizing over the latent
space of a generative object representation. Specifically,
we combine object reconstruction through the inversion of
an object class prior with a 3D object tracking pipeline.
This approach allows us to simultaneously reason about
an object’s 3D shape, appearance, and three-dimensional
trajectory from monocular image input only. The loca-
tion, pose, shape, and appearance parameters correspond-
ing to the anchor objects are then iteratively refined via test-
time optimization to minimize the distance between their
corresponding rendered objects and the given input image.
Rather than directly predicting scene and object attributes,
we optimize over an efficient representation to synthesize
an image that best explains the observed image.

Our method hinges on an efficient rendering pipeline and
generative object representation at its core. While the ap-
proach is not tied to a specific object representation, we



adopt GET3D [16] as the generative object prior, that is
only trained on synthetic data to synthesize textured meshes
and corresponding images with an efficient differentiable
rendering pipeline. Note that popular volumetric represen-
tations [55) 62] do not exploit class-specific priors and re-
quire expensive volume sampling.

Our proposed method builds on the strong implicit ge-
ometry priors embedded in our rendering forward model,
solving different prediction tasks simultaneously. For in-
stance, multi-object tracking, shape and texture retrieval,
and object pose estimation — typically considered disjoint
tasks — are jointly solved by our method by optimizing over
object rendering parameters such as 3D location and pose.
Our method outputs object pose as a byproduct, merely by
learning to represent objects of a given class. Recovering
object attributes as a result of inverse rendering also pro-
vides interpretability “for free”: once our proposed method
detects an object at test time, it can extract the parame-
ters of the corresponding representation alongside the re-
constructed input view. This ability allows for reasoning
about failure cases.

We validate that our method naturally exploits 3D ge-
ometry priors and generalizes across unseen domains and
unseen datasets. After training solely on simulated data,
we test on nuScenes [7] and Waymo [67] datasets, and al-
though untrained, we find that our method is on par with
existing 3D multi-object tracking methods [23, 70,72, 190]
on monocular image data.

In summary, we make the following contributions.

* We introduce an inverse rendering method for 3D-
grounded monocular multi-object tracking. Instead of
formulating tracking as a feed-forward prediction prob-
lem, we propose to solve it as an inverse image fitting
problem optimizing over the latent embedding space of
neural scene representations.

* We investigate the interpretability of our method using the
generated image produced by our method during test-time
optimization.

* Out method is only trained on synthetic data. We validate
the generalization capabilities of our method by evaluat-
ing on unseen automotive datasets.

Scope and Limitations While facilitating inverse ren-
dering, the iterative optimization in our method makes
it slower than classical object-tracking methods based on
feed-forward networks. We hope to address this limita-
tion in the future by accelerating the forward and backward
passes with adaptive level-of-detail rendering techniques.

2. Related Work

Object Tracking is a challenging visual inference task that
requires the detection and association of multiple objects.

Specific challenges include highly dynamic scenes with par-
tial or full occlusions, changes in appearance, and varying
illumination conditions [[66, (77, 84]]. In this section, we first
review classical methods as well as deep-learning-based de-
tection and association methods. Next, we discuss 3D scene
representations and inverse rendering.

3D Object Tracking. An extensively investigated line of
work proposes tracking by detection, i.e., to solve the task
by first detecting scene objects and then learning to find
the associations between the detected objects over multi-
ple frames [3} 15, 16l I8, 25 |74} [75]. In addition to as-
sociation, 3D tracking requires the estimation of object
pose. Since directly predicting 3D object pose is challeng-
ing [24], most existing 3D tracking methods rely on some
explicit depth measurements in the form of Lidar point
clouds [1} 15 [85], hybrid camera-lidar measurements [24]
or stereo information[[18| 51]. Weng et al. [[72] proposed a
generic tracking method that combines a 3D Kalman filter
and the Hungarian algorithm for matching on an arbitrary
object detector.

Only recent work [9} 23] 44, [76} 90] tackles monocular
3D tracking. Hu et al. [23] relies on similarity across differ-
ent viewpoints to learn rich features for tracking. DEFT [9]
jointly trains the feature extractor for detection and track-
ing using the features to match objects between frames. In
contrast, Marinello et al. [44]] use an off-the-shelf tracker
and enhance image features with 3D motion and bounding
box information. Zhou et al. [90] rely on a minimal input
of two frames and predicted heatmaps to perform simul-
taneous detection and tracking. Some 3D tracking meth-
ods rely on motion models [[12, 46, |60] such as the Kalman
Filter [26]]. Recent methods also make use of optical flow
predictions [42], learned motion models metrics [82], long
short-term memory modules (LSTM) [9} 23| 44] and more
recently transformer modules [54,[70]. All the above meth-
ods rely on a feed-forward image encoder backbone to pre-
dict object features. Departing from this approach, we pro-
pose a multi-object tracking method that directly optimizes
a consistent three-dimensional reconstruction of objects and
3D motion via an inverted graphics pipeline.

3D Scene Representations, Generation and Neural Ren-
dering. A growing body of work addresses joint 3D re-
construction and detection from monocular cameras. Ex-
isting methods have exploited different geometrical pri-
ors [43]] for this task, including meshes [2], points [34],
wire frames [21]], voxels [[79] CAD models or implicit func-
tions [52]] signed distance functions (SDFs) [87]. Early
approaches in neural rendering represent the scene explic-
itly by, e.g., encoding texture or radiance on the estimated
scene geometry [68]] or using volumetric pixels (Voxels)
[65]. Other methods represent 3D scenes implicitly. This
includes the successful NeRF method [45]] and variants that



have been extended to dynamic scenes [52, 56, 86]]. To al-
low the handling of semi-transparent objects, these repre-
sentation models refrain from explicitly representing object
surfaces. Signed distance fields represent surfaces of wa-
tertight objects as a zero level-set [14} 29| 55] modeling a
Signed Distance Function (SDF). Adding textures to sur-
face models allows for disentangling object shape from ap-
pearance [32, [78]]. In recent years ideas from generative
imaging models, such as GANs [27} 28], VAEs and dif-
fusion models [22, 48] have been applied to the 3D do-
main [14, 116, 20, 62]. Generative models can either be
used for pure generation [62] or provide prior knowledge
for downstream tasks. Starting from a good prior can dras-
tically improve the efficiency of inverse tasks, such as IR.
While Gina3D [62] provides a prior on in-the-wild objects
its volumetric rendering pipeline adds another layer of com-
plexity sampling the full volume. We therefore rely on
GET3D [16] generating a mesh as a prior object model and
renders through rasterization, profiting from from graphic
pipelines optimized over decades.

Inverse Rendering. Inverse rendering methods conceptu-
ally “invert” the graphics rendering pipeline, which gen-
erate images from 3D scene descriptions, and instead es-
timate the 3D scene properties, i.e., geometry, lighting,
depth, and object poses based on input images. Recent
work [38] [71 I83]] successfully achieved joint optimization
of a volumetric model and unknown camera poses from a
set of images merely by back-propagating through a ren-
dering pipeline. Another area of inverse rendering focuses
on material and lighting properties [19} 49, I50], to find a
representation that best models the observed image.

To the best of our knowledge, we present the first method
that employs an inverse rendering approach for multi-object
3D tracking, without any feed-forward prediction of object
features — only given 2D image input.

3. Tracking by Inverse Rendering

We cast object tracking as a test-time inverse rendering
problem that fits generated multi-object scenes to the ob-
served image frames. First, we discuss the proposed scene
representation we fit. Next, we devise our rendering-based
test-time optimization at the heart of the proposed tracking
approach. We employ an object-centric scene representa-
tion. We model the underlying 3D scene for a frame obser-
vation as a composition of all object instances without the
background scene.

Object Prior. To represent a large, diverse set of instances
per class, we define each object instance o as a sample from
a distribution O over all objects in a class, that is

O ~ f (o), &)

where f is a learned function over a known prior object dis-
tribution. Here, the prior distribution is modeled by a differ-
entiable generative 3D object model 0, = G (z,), that maps
a latent embedding z, to an object instance o,,, the object p.
In particular, the latent space comprises two disentangled
spaces zg and zp for shape S and texture 7'

Given an object-centric camera projection P, = K. T,
where K. is the camera intrinsic matrix, T. = [R.|t] is
composed of rotation R and translation t of the camera c,
a differentiable rendering method R (0,, ¢), such as rasteri-
zation for meshes or volumetric rendering for neural fields,
renders an image I. ,, a 2D observation of the 3D object
op. While our method is general, implementation details
of the generator and rendering method are provided in the
implementation section.

Scene Composition. 'We model a multi-object scene as a
scene graph composed of transformations in the edges and
object instances in the leaf nodes, similar to Ost et al. [52].
Object poses are described by the homogeneous transfor-
mation matrix T, € R%** with the translation t,, and orien-
tation R, in the reference coordinate system. The camera
pose T, € R*** is described in the same reference coor-
dinate system. The relative transformation of the camera c
and each object instance o can be computed through edge
traversal in the scene graph as

T, = diag (1) T,T.", )
Sp

where the factor s, is a scaling factor along all axes to al-
low a shared object representation of a unified scale. This
canonical object scale is necessary to represent objects of
various sizes, independent of the learned prior on shape and
texture. The object centric projection P.,, = K.T., is
used to render the RGB image 1., € R¥*"W>3 and mask
M, € [0,1]"*" for each object/camera pair.

Individual rendered RGB images are ordered by object
distance ||t ||, such that p = 1 is the shortest distance.
Using the Hadamard Product of the non-occluded mask -y,
all N,, object images are composed into a single image

I. = R(G (zsp,21,p),Pcp) 0 vp, Where
k=1

P
vp = max ((Mc,p - Z Mcyq> ,OHXW> ,
qg=1

where instance masks are generated in the same fashion.

3)

3.1. Inverse Multi-Object Scene Rendering.

We invert the differentiable rendering model defined in
Eq. 3| by optimizing the set of all object representations in
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Figure 1. Inverse Rendering for Monocular Multi-Object Tracking. For each 3D Detection, we initialize the embedding codes of
an object generator zgs for shape and zr for texture. This prior trained model is frozen and only the embedding representation of both
modalities together with the pose and size are optimized through inverse rendering to best fit the image observation. Inverse-rendered
embeddings and refined object locations are provided to the matching stage to match predicted states of tracked objects of the past and the
new observations. Matched tracklets are updated, unmatched detections and tracklets discarded before predicting states in the next step.

a given image I, with gradient-based optimization. We as-
sume that, initially, each object o, is placed at a pose ’i‘c,p
and scaled with 3, near its underlying location. We rep-
resent object orientations in their respective Lie algebraic
form so(3). We further sample an object embedding zg ,
and Z ), in the respective latent embedding space.

For in-the-wild images, .. is not just composed of sam-
pled object instances but other objects and the scene back-
ground. Since our goal for tracking is the reconstruction of
all object instances of specific object classes, a naive £5 im-
age matching objective of the form ||I, — I.||5 is noisy and
challenging to solve with vanilla stochastic gradient descent
methods. To tackle this issue, we optimize visual similarity
in the generated object regions instead of the full image. We
optimize only on rendered RGB pixels and minimize

I (1. = 1.) o M1, |2, with

min (Z M. p, 1) .

The mask of all foreground/object pixels M 1. 1s computed
as the sum over all object masks M, ,, in the frame rendered
by camera c. We employ a learned perceptual similarity
metric [88] (LPIPS) on image patches of each object, that is

LraB

with M,

Lperceptual = LPIPSpatch (Iw fc,p) . (4)
The combined loss function of our method is
»CIR = LRGB + )\*Cperceptuala (5)

which we optimize for shape and appearance latent codes,

position, rotation, and scale, that is

2S5y 28,ps Sptp, Rp = argmin (L1R) . (6)
Instead of using vanilla stochastic gradient descent meth-
ods, we propose an alternating optimization schedule of
distinct properties that includes aligning zg before zr, to
reduce the number of total optimization steps. A detailed
implementation and validation of all design choices of the
optimization are presented in the Supplementary Material.

3.2. 3D Tracking via Inverse Rendering

Next, we describe the proposed method for tracking mul-
tiple dynamic objects with the inverse rendering approach
from above. The approach tracks objects in the proposed
representation across video frames and is illustrated in
Fig.[I] For readability, we omit p and the split of z into
zs and z7 in the following.

Initial Object and Pose Estimation. Common to track-
ing methods, we initialize with a given initial 3D detec-
tion on image I, ;, and we initialize object location t; =
[z,y, 2], scale s, = max(wg,hg,1;) using the detected
bounding box dimensions and heading 1y, in frame k. We
then find an optimal representation zj, and a refined lo-
cation and rotation of each object o via the previously in-
troduced inverse rendering pipeline for multi-object scenes.
The resulting location, rotation, and scale together form the
observation vector

Vi = [tk, Sk, Vi) @)
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Figure 2. Tracking via Inverse Neural Rendering on nuScenes [7]. From left to right, we show (i) observed images from diverse scenes at
timestep k£ = 0; (ii) an overlay of the optimized generated object and its 3D bounding boxes at timestep k£ = 0, 1, 2 and 3. The color of the
bounding boxes for each object corresponds to the predicted tracklet ID. We see that even in such diverse scenarios, our method does not
lose any tracks and performs robustly across all scenarios, although the dataset is unseen.

Prediction. While not confined to a specific dynamics
model, we use a linear state-transition model A, for the ob-
jects state x, = [x,y, 2, $,0,w,h, 1,2,y 2], and a for-
ward prediction using a Kalman Filter [26], a vanilla ap-
proach in 3D object tracking [72]]. The predicted state in
frame k given the object tracked in k — 1 is

Kpjk—1 = AXj_1jp—1 and Py = AP,y AT+ Q

®)

is the predicted a priori covariance matrix modeling the
uncertainty in the predicted state.

Interpretable Latent Matching. In the matching stage,
all optimal object representations o, in frame £ are matched
with tracked and lost objects from k — 1. Objects are
matched based on appearance and location with a weighted
affinity score

A=wrouArov +w A, + weDeentroids )

where Aj,y is the ToU computed over the predictions of
tracked object predictions xj;—1 and refined observations.
Here, the object affinity A, is computed as the cosine dis-
tance of tracked object latent embeddings z. In addition
to that the Euclidean distance between the center D cpiroid
adds additional guidance. We add no score for unreasonable
distant tracked objects and detections.

We compute the best combination of tracked and de-
tected objects using the Hungarian algorithm [33]], again
a conventional choice in existing tracking algorithms.
Matched tracklet and object pairs are kept in the set of
tracked objects and the representation of the correspond-
ing detections is discarded, while unmatched detections are

added as new objects. Unmatched tracklets are set to lost
with a lost frame counter of one. Objects that were not de-
tected in previous frames are set to fracked and their counter
is reset to 0. Objects with a lost frame count higher than
lifespan Vy; ., or outside of the visible field, are removed.

Track and Embedding Update. In the update step, we
refine each object embedding z and motion model yy, given
the result of the matching step. Embeddings are updated
through an exponential moving average

. 2
2, EMA = Bzi+(1—B)zp—1,E0ma With B = T—1 (10)

over all past observations of the object, where 7" is the num-
ber of observed time steps of the respective instance. The
observation yy, is used to update the Kalman filter. The op-
timal Kalman gain

Ki = Py H' (HP_ H' + R)™1 (11)
is updated to minimize the residual error of the predicted

model and the observation. The observation y;, is used to
estimate the object state as

Xk = Xpjh—1 + Ki(yr — HXpjp—1) (12)

and with
Pr=Prpr1 — KiHPpp (13)

the a posteriori of the covariance matrix is updated.
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Figure 3. Without changing the model or training on the dataset, our proposed method can generalize well to the Waymo Open Driving
Dataset [67]]. Similar to Fig from left to right, we show (i) observed images from diverse scenes from the dataset at timestep & = 0; (ii)
an overlay of the closest generated object and predicted 3D bounding boxes at timestep k£ = 0, 1, 2 and 3. The color of the bounding boxes
for each object corresponds to the predicted tracklet ID. Our method does not lose any tracks even on a different unseen dataset in diverse

scenes, validating that the approach generalizes.

3.3. Implementation Details

Representation Model. We employ the GET3D [16] ar-
chitecture as object model G. Following StyleGAN
embeddings zp and zg are mapped to intermediate style
embeddings ws and wr in a learned W -space, which we
optimize over instead of Z-space. Style embeddings con-
dition a generator function that produces tri-planes repre-
senting object shapes as Signed Distance Fields (SDFs)
and textures as texture fields. We deliberately train our
generator on synthetic data only, see experiments below.
Differentiable marching tetrahedra previously introduced in
DMTet [63] extract a mesh representation and Images are
rendered with a differentiable rasterizer [36]].

Optimization. To solve Eq.[5] we propose an optimiza-
tion schedule, that first optimizes a coarse color, and then
jointly optimizes the shape and the positional state of each
object. As a backbone of the learned perceptual loss, we uti-
lize a pre-trained VGG16 [64] and utilize individual output
feature map similarities at different points of the optimiza-
tion. We find that color and other low-dimensional features
are represented in the initial feature maps and those are bet-
ter guidance for texture than high-dimensional features as
outputs of the later blocks. These features have a more in-
formative signal for shape and object pose. We use the av-
erage of the first and second blocks in the optimization for
zr, while the combined perceptual similarity loss guides
the optimization of zp and the pose.

We initialize all object embeddings with the same fixed
values inside the embedding space, take two optimization
steps solely on color utilizing the described loss, and then
freeze the color for the joint optimization of the shape and
pose. We regularize out-of-distribution generations with

avg

Lembed = arzr + (1 — ar)zy? + aszs + (1 — ag)zg
(14)

that minimizes a weighted distance in each dimension with
respect to the average embedding zs or z7 respectively. For
optimization, we use the ADAM optimizer [31]]. The final
loss function combines the RGB, perceptual cost[5]and the
regularizationwith A=10,ar =0.7and ag = 0.7. We
freeze color after two steps of optimization and optimize the
shape and scale for three more steps, adding translation and
rotation only in the last two steps.

4. Experiments

In the following, we assess the proposed method. Having
trained our generative scene model solely on simulated data,
we test the generalization capabilities on the nuScenes [[7]
and Waymo [67] — both datasets are unseen by the method.
We analyze generative outputs of the test-time optimiza-
tion and compare against existing 3D multi-object tracking
methods [23],[70] [72] on monocular image data.

4.1. Single-Shot Object Retrieval and Matching

Although trained only on ShapeNet [10], our method is
capable of fitting to observed objects in real datasets that
match the vehicle type, color, and overall appearance, ef-
fectively making our method dataset-agnostic. We analyze
the generations during optimization in the following.

Optimization. Given an image observation and coarse
detections, our method aims to find the best 3D representa-
tion, including pose and appearance, solely through inverse
rendering. In Fig. [d] we analyze this iterative optimization
process, following a scheduled optimization as described in
Sec.[3.3] We observe that the object’s color is inferred in
only two steps. Further, we can observe that even though
the initial pose is incorrect, rotation and translation are op-
timized jointly through inverse rendering together with the
shape and scale of the objects, recovering from sub-optimal



Method Modality | AMOTA 1 AMOTP (m)| RecallT MOTA 1 | No Training on Dataset
PF-Track [54] Camera 0.622 0.916 0.719 0.558 X
QTrack [82] Camera 0.692 0.753 0.760 0.596 X
QD-3DT [23] Camera 0.425 1.258 0.563 0.358 X
CenterTrack (Vision [89]) Camera 0.202 1.195 0.313 0.134 X
AB3DMOT + CP Camera 0.387 1.158 0.506 0.284 v
Inverse Neural Rendering (ours) + CP Camera 0.248 1.140 0.485 0.193 v

Table 1. Qualitative Evaluation for Camera-only Multi-Object Tracking. Quantitative results on “cars” in the test split of the nuScenes
tracking dataset [[7]]. IR-based rendering achieves comparable quality to AB3DMOT on all metrics, while outperforming Center-
Track and similar quality as QD-3DT [23]. Only very recent transformer-based methods, such as PF-Track [54] and the metric
learning approach of Q-Track achieve a higher score. However, these methods require end-to-end training on each dataset.

Input Frame Initial Guess

Texture Fitting

Object Pose Fitting

Shape Fitting

Figure 4. Optimization Process. From left to right, we show (i) the observed image, (ii) the rendering predicted by the initial starting
point latent embeddings, (iii) the predicted rendered objects after the texture code is optimized (iv) the predicted rendered objects after the
translation, scale, and rotation are optimized, and (v) the predicted rendered objects after the shape latent code is optimized. The ground
truth images are faded to show our rendered objects clearly. Our method is capable of refining the predicted texture, pose, and shape over
several optimization steps, even if initialized with poses or appearance far from the target — all corrected through inverse rendering.

initial guesses. The shape representation close to the ob-
served object is reconstructed in just 5 steps.

Our generative model does not predict specular textures
and instead is restricted to diffuse reflectance. As such, it
tends to reconstruct darker or lighter textures compensat-
ing for shadows from the environment and reflections of the
sky. Prediction of reflectance and the integration and recon-
struction of realistic environmental lighting is an exciting
topic for future work.

4.2. Evaluation

To provide a fair comparison of 3D multi-object track-
ing methods using monocular inputs, we compare against
existing methods by running all our evaluations with the
method reference code. We only evaluate methods, that
consider past frames, but have no knowledge about future
frames, which is a different task. While our method does
not store the full history length of all images, we allow such
memory techniques for other methods. We only consider
purely mono-camera-based tracking methods following a
two-staged detect and track approach. We note that, in con-
trast to our method, the baseline methods we compare to are
finetuned on the respective training set. For all methods,
we use CenterPoint [83]] as the detection method. We com-
pare to CenterTrack as an established learning-based
baseline, the very recent PFTrack [54], a transformer-based
tracking method, Qtrack [82] as a metric learning method,
and QD-3DT [23]] as an LSTM-based state tracker com-
bined with image feature matching. We also compare to

Input Frame IR 3D Generation IR BEV Layout

Figure 5. Layout Generation Through Inverse Rendering.
From left to right, we show (i) observed image from a single cam-
era, (ii) test-time optimized inverse rendered (IR) objects of class
“car”, and (iii) Bird’s Eye View (BEV) layout of the scene. In the
BEV layout, black boxes represent ground truth BEV boxes, and
the colored boxes represent our predicted BEV boxes. The bottom
shows a zoomed-in region at a 60 m distance (see BEV layout).
Even in this setting, our method accurately recovers the 3D loca-
tion, orientation, size, coarse appearance, and shape of the objects.

AB3DMOT [72] that builds on an arbitrary 3D detection
algorithm and combines it with a modified Kalman filter
to track the state of each object. This method is the most
similar to our method in the sense that the Kalman filter pa-
rameters are not tuned for each dataset.

Validation on nuScenes. Tab. [I] reports quantitative re-
sults on the test split of the nuScenes tracking dataset [7]
on the car object class for all six cameras. We list results
for the multi-object tracking accuracy (MOTA) [4] metric,
the AMOTA [[72] metric, average multi-object tracking pre-



cision (AMOTP) [72] and recall of all methods. Our IR-
based method achieves comparable results with the general
tracker AB3DMOT [72] on all metrics. Surprisingly, estab-
lished end-to-end trained baselines CenterTrack [90]], which
use the same vision-only detection backbone as in our ap-
proach, perform worse than our method in all metrics. Ad-
ditionally, learning-based methods such as the end-to-end
LSTM-based method QD-3DT [23] perform on par. Only
the most recent transformer-based methods such as PF-
Track [54] and the QTrack, which employ a quality-based
association model on a large set of learned metrics, such
as heatmaps and depth, achieve higher scores. Note again,
that these methods, in contrast to the proposed method, have
seen and trained on this dataset.

We visualize the rendered objects predicted by our track-
ing method in Fig. 2] We show an observed image from
a single camera at time step & = 0, followed by ren-
dered objects overlayed over the observed image at time
step k = 0,1, 2 and 3 along with their respective bounding
boxes, with color-coded tracklets. We see that our method
does not lose any tracks in challenging scenarios in diverse
scenes shown here, from dense urban areas to suburban traf-
fic crossings, and handles occlusions and clutter effectively.
By visualizing the rendered objects as well as analyzing the
loss values, our method allows us to reason about and ex-
plain success and failure cases effectively, enabling explain-
able 3D object tracking. The rendered output images pro-
vide interpretable inference results that explain successful
or failed matching due to shadows, appearance, shape, or
pose. For example, the blue car in the IR inference in Fig. 3]
top row was incorrectly matched due to an appearance mis-
match in a shadow region. A rendering model including
ambient illumination may resolve this ambiguity, see fur-
ther discussion in the Supplementary Material.

Fig[5] shows the inverse rendered scene graphs in isola-
tion and birds-eye-view tracking outputs on a layout level.
Our method accurately recovers the object poses, instance
types, appearance, and scale. As such, our approach directly
outputs a 3D model of the full scene, i.e., layout and object
instances, along with the temporal history of the scene re-
covered through tracking — a rich scene representation that
can be directly ingested by downstream planning and con-
trol tasks, or simulation methods to train downstream tasks.
As such, the method also allows us to reason about the scene
by leveraging the 3D information provided by our predicted
3D representations. The 3D locations, object orientations,
and sizes recovered from such visualizations can not only
enable us to explain the predictions of our object track-
ing method, especially in the presence of occlusions or ID
switches but also be used in other downstream tasks that
require rich 3D understanding, such as planning.

Method AMOTA 1+ Recallt MOTAT
No Schedule 0.102 0224 0.110
Lras - Eq. N/A N/A N/A
Lpereeptugl - B9 4] 0.100 0.251  0.101
Lir- Eq 0.103 0.236 0.112
L1r & Lembea - Eql14]| 0.112 0.264  0.113

Table 2. Ablation Experiments on Optimization Schedule and
Loss Components. Ablations were run on a small subset of the
nuScenes [7] validation set. Lrcp fails due to the optimizer fit-
ting objects to the background instead, increasing the size of each
object resulting in out of memory.

Validation on Waymo. Next, we provide qualitative re-
sults from the 3D tracking on the validation set of the
Waymo Open Driving Dataset [67] in Fig. The only
public results on the provided test set are presented in QD-
3DT [23]], achieving non-interpretable results. While the
size of the dataset and its variety is of high interest for all au-
tonomous driving tasks, Hu et al. [23] conclude that vision-
only test set evaluation is not representative of a test set de-
veloped for surround view lidar data on partial unobserved
camera images only. As such, we provide here qualitative
results in Fig. [3] which validate that the method achieves
tracking of similar quality on all datasets, providing a gen-
eralizing tracking approach. We show that our method does
not lose any tracks on Waymo scenes in diverse conditions.

4.3. Ablation Experiments

As ablation experiments, we analyze the optimization
schedule and loss function components, applying them to
a subset of scenes from the nuScenes validation set. We
deliberately select this smaller validation set due to its in-
creased difficulty. Our findings reveal a crucial insight: the
strength of our method lies not in isolated loss components
but in their synergetic integration. Specifically, the amal-
gamation of pixel-wise, perceptual, and embedding terms
significantly enhances AMOTA, MOTA, and Recall met-
rics. Moreover, the absence of an optimization schedule
led to less robust matching. However, the core efficacy of
our method remained intact, thanks to its reliance on con-
sistent distance and IoU criteria for object matching. This
nuanced understanding underscores the importance of com-
ponent interplay in our method.

5. Conclusion

We investigate inverse neural rendering as an alternative
to existing feed-forward tracking methods. Specifically,
we recast 3D multi-object tracking from RGB cameras as
an inverse test-time optimization problem over the latent
space of pre-trained 3D object representations that, when
rendered, best represent object instances in a given input
image. We optimize an image loss over generative latent



spaces that inherently disentangle shape and appearance
properties. This approach to tracking also enables exam-
ining the reconstructed objects, reasoning about failure sit-
uations, and resolving ambiguous cases — rendering object
layouts and loss function values provides interpretability
“for free”. We validate that the method has high general-
ization capabilities, and without seeing a dataset, performs
on par with existing tracking methods. In the future, we
hope to investigate not only object detection with inverse
rendering but broad, in-the-wild object classes via condi-
tional generation methods — towards unlocking analysis-by-

synthesis in vision with generative neural rendering.
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