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OUTLINE
This supplementary document provides further description and additional results to support the findings from

the main manuscript. The document is organized as follows.

Section A: Additional details on the reconstruction algorithm presented in the main manuscript.

Section B: Further details on the fabrication of the prototype metasurface optics in this section.

Section C: To facilitate the reproducibility of the results presented in this work, this section lists additional

details on the setup and experimental capture protocols.

Section D: Additional details on the generation of the synthetic dataset. We also list additional samples of the

dataset used to train and evaluate our approach.

Section E: This section provides additional synthetic results in support of the findings in the main manuscript.

Section F: This section provides additional experimental results that further validate the findings of the main

document. Additional experimental in-the-wild captures and captures of a monitor with a sparse

spectral response are presented as results in addition to the results from the main paper.

A ADDITIONAL DETAILS ON THE IMAGE RECONSTRUCTION METHOD
In this section, we provide additional details on the proposed nanophotonic phase optimization and probabilistic

image deconvolution method for the on-sensor array camera.
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A.1 Closed-Form Solution for Data Fidelity Term
As described in Sec. 4.1 of the main manuscript, the linear data fidelity term of the alternating optimization

objective

I𝑡+1 = arg min

I

1

2

����I ⊗ k − S
����2 + 𝜇𝑡

2

����I − z𝑡
����2, (1)

can be solved in closed form assuming a circular convolution, with the following inverse filter update

I𝑡+1 = F †

(
F ∗ (k)F (S) + 𝜇𝑡F (I𝑡 )

F ∗ (k)F (k) + 𝜇𝑡

)
, (2)

where F (·) denotes the Fast Fourier Transform (FFT), F ∗ (·) denotes the complex conjugate of FFT, and F † (·)
denotes the inverse FFT. We derive the solution here.

Primer. Typical filtering in image processing is represented in three forms:

• Matrix form Ax = b denoted by the matrix multiplication of a filter A and vectorized images x and b,
• Filter form 𝐴 ⊗ 𝑋 = 𝐵 denoted by convolution of a filter kernel A and images X and B, and
• Using a fast Fourier transform (FFT) F (A) ◦ F (X) = F (B) where F (·) is the FFT and ◦ denotes the

Hadamard pixel-wise product.

In the case of convolution with circular boundary conditions, the above three representations are equivalent, i.e.

Ax = b ↔ 𝐴 ⊗ 𝑋 = 𝐵 ↔ F (A) ◦ F (X) = F (B) (3)

Similarly,

A𝑇x = b ↔ 𝐴
′ ⊗ 𝑋 = 𝐵 ↔ F ∗ (A) ◦ F (X) = F (B) (4)

where 𝐴
′
is the 180

◦
rotated mirror kernel of 𝐴.

Now, the ℓ2 objective in Eq. (1) can be expressed in matrix form as

I𝑡+1 = arg min

I

1

2

����Ki − s
����2 + 𝜇𝑡

2

����i − z𝑡
����2, (5)

whose solution can be obtained by setting the first-order derivate w.r.t. i to zero. Therefore,

K𝑇 (Ki − s) + 𝜇𝑡 (i − i𝑡 ) = 0 (6)

Given the circular boundary condition, following Eq. (3) and Eq. (4), the above Eq. (7) is equivalent to

F ∗ (k)
{
F (I𝑡+1)F (k) − F (S)

}
+ 𝜇𝑡 (F (I𝑡+1) − F (I𝑡 )) = 0 (7)

which can be rearranged to Eq. (2) for calculating I𝑡+1
as a closed-form solution.

A.2 Diffusion Models
Background on Diffusion Probabilistic Models. While different variations of diffusion models exist, we implement

a canonical one [Ho et al. 2020; Sohl-Dickstein et al. 2015]. From a data distribution 𝑞(x), we denote a sampled

datapoint as 𝑥0, and iteratively add small Gaussian noise to obtain 𝑥1, 𝑥2 ...𝑥𝑇 , until 𝑥𝑇 approximates an isotropic

Gaussian. This forward step is a Markovian fixed process [Ho et al. 2020; Song and Ermon 2019] and can be

defined as

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1), 𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ) (8)
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where 𝛽𝑡 is a variance schedule. In practice, we sample 𝑥𝑡 using a closed-form parameterization

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖 (9)

where 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =
∏𝑡

𝑖=1
𝛼𝑖 , and 𝜖 ∼ N(0, 𝐼 ).

The goal of each training iteration is to train a model 𝑝𝜃 , often represented by a neural network, that inverts

the forward diffusion (i.e., learns the reverse diffusion process):

𝑝𝜃 (𝑥0:𝑇 ) = 𝑝 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) (10)

and

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) (11)

The reverse process is also Markovian, and we fix the variances Σ𝜃 . The reverse conditional probability is tractable
when conditioned on 𝑥0:

𝑞(𝑥𝑡−1 |𝑥𝑡 , 𝑥0) = N(𝑥𝑡−1; 𝜇̃ (𝑥𝑡 , 𝑥0), ˜𝛽𝑡 𝐼 ) (12)

We apply Bayes’ rule to rearrange the terms and obtain

𝜇̃ (𝑥𝑡 , 𝑥0) =
√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
𝑥𝑡 +

√
𝛼𝑡−1𝛽𝑡

1 − 𝛼𝑡
𝑥0 (13)

The closed form parameterization of 𝑥𝑡 yields

𝜇̃𝑡 =
1

√
𝛼𝑡

(
𝑥𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝑡

)
(14)

when we represent 𝑥0 as

𝑥0 =
1

√
𝛼𝑡

(
𝑥𝑡 −

√
1 − 𝛼𝑡𝜖𝑡

)
(15)

by rearranging Eq. (9). Thus, we can train our model to predict 𝜇̃𝑡 , or alternatively, 𝜖𝑡 by rearranging the terms.

This work predicts 𝜇̃𝑡 for generating samples.

During test time, our diffusion model performs generation iteratively. In the vanilla DDPM [Ho et al. 2020],

generation is performed as follows

𝑧0 = (𝑓 ◦ ... ◦ 𝑓 ) (𝑧𝑇 ,𝑇 ), 𝑓 (𝑥𝑡 , 𝑡) = Ω(𝑥𝑡 ) + 𝜎𝑡𝜖, (16)

where 𝑧𝑇 ∼ N(0, 𝐼 ), 𝜎𝑡 is the fixed standard deviation at the given timestep, Ω is the model, and 𝜖 ∼ N(0, 𝐼 ).
However, this results in long sampling times. Instead, we follow DDIM [Song et al. 2021], which proposes a

non-Markovian diffusion process to reduce the number of sampling steps. Furthermore, DDIM has a "consistency"

property that allows us to manipulate the initial latent variable to guide the generated output. As a result, 𝑓 (𝑥𝑡 , 𝑡)
from Eq. (16) can be defined as

𝑓 (𝑥𝑡 , 𝑡) =
√
𝛼𝑡−1

(
𝑥𝑡 −

√
1 − 𝛼𝑡Ω(𝑥𝑡 )√
𝛼𝑡

)
+

√︃
1 − 𝛼𝑡−1 − 𝜎2

𝑡 · Ω(𝑥𝑡 ) + 𝜎𝑡𝜖. (17)

Importantly, from Eq. (12), we have

˜𝛽𝑡 = 𝜎2

𝑡 =
1 − 𝛼𝑡−1

1 − 𝛼𝑡
· 𝛽𝑡 . (18)

We let 𝜎2

𝑡 = 𝜂 ˜𝛽𝑡 so that we can adjust 𝜂 to control sampling stochasticity. In a special case when 𝜂 = 0, the forward

process becomes deterministic except for 𝑡 = 1, and the added random noise during generation becomes zero.
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Implementation. For the architecture of our diffusion model, we follow DDPM [Ho et al. 2020] and use a

UNet [Ronneberger et al. 2015]. The first input layer takes as input a tensor with 15 channels, where each input

condition in Eq. (20) of the main paper has 3 channels. There are 4 downsampling and 4 upsampling layers, with

dimensions 64, 128, 256, 512. Each layer contains two ResNet blocks with the corresponding dimensions and

self-attention. For the timestep, we employ a sinusoidal positional embedding followed by a 2-layer MLP.

We fix our forward variances 𝛽 using a cosine schedule, following [Nichol and Dhariwal 2021]. [Ho et al. 2020]

set their variances to be a sequence of linearly increasing constants between [0.0001, 0.02], but the authors of
[Nichol and Dhariwal 2021] found that the end of the forward noising process was too noisy and could not

contribute much to sample quality. Thus, they employed a cosine schedule so that there is a near-linear drop in

the middle of the training timesteps and small changes around 𝑡 = 0 and 𝑡 = 𝑇 .

𝛽𝑡 = clip

(
1 − 𝛼𝑡

𝛼𝑡−1

, 0.999

)
, 𝛼𝑡 =

𝑓 (𝑡)
𝑓 (0) , 𝑓 (𝑡) = cos

(
𝑡/𝑇 + 𝑠

1 + 𝑠 · 𝜋
2

)
2

. (19)

𝛽𝑡 is clipped at 0.999 to prevent singularities near 𝑡 = 𝑇 and the offset 𝑠 prevents excessively small values of 𝛽𝑡
near 𝑡 = 0.
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B ADDITIONAL DETAILS ON NANOPHOTONIC OPTICS FABRICATION
Here we describe the fabrication details of our on-chip metalens array. In detail, for the fabrication of the meta-

optic we first deposited a thin film of 700 nm SiN via plasma-enhanced chemical vapor deposition on top of a

300 µm quartz wafer (purchased from University Wafer). This deposition was performed in a SPTS DELTA LPX

using a mix of Silane and Ammonia. After deposition, the wafer was diced into square pieces with a side width of

2 cm. Then, we performed ultrasonication in Acetone and IPA to remove residues from previous steps, followed

by a short (30 s) plasma cleaning step using a barrel etcher in O2. Then, a layer of ZEP 520-A was spin-coated

on top of the sample with a thickness of 400 nm and baked at 180 C. This was followed by spin-coating a thin

layer (DisCharge H2O) of discharging polymer to reduce charging effects during the following lithography step.

The optimized phase profiles were transferred into GDS file formats (Figure 1) using custom python scripts and

subsequently converted into a specialized file format through GeniSys beamer software, including large scale

proximity correction to account for varying pillar sizes and varying doses.

Electron beam lithography was then performed in a JEOL-JBX6300FS EBL system using a 100 kV, 8 nA electron

beam. After patterning, the discharging layer was removed in IPA and the polymer was developed in Amyl Acetate

for 2 min under gentle agitation. After developing the resist, we performed a short descum step (10 s) using a

barrel etcher with O2 plasma. Then, a 65 nm thick layer of Alumina was deposited on top using a home-built

e-beam evaporation system with Al2O3 crystals as the evaporation source. The layer was then lifted off in heated

(110 C) NMP overnight. After copious rinsing with water and IPA, the sample was further plasma-cleaned in a

barrel etcher for 30 s to remove organic residues. We then used inductively coupled plasma reactive ion etching

(Oxford Instruments, PlasmaLab100) with SF6 and C4F8 in a 1:2 ratio to etch the SiN layer. An aperture layer

was then fabricated on the sample by first using laser direct writing in a Heidelberg-DWL66 with a negative

resist. Subsequently, a layer of Cr (5 nm) and gold (150 nm) was deposited and subsequently lifted off in acetone

overnight. Optical microscope images after the etching process of the 3 by 3 MO array are shown in Figure 2.

Table 1. Fitted polynomial coefficients for the inverse, phase-to-structure mapping.

Coefficient 𝑏0 𝑏1 𝑏2

Value −0.1484 0.6809 0.2923

Table 2. Fitted polynomial coefficients for the forward, structure-to-phase mapping. Note that 𝑐12, 𝑐21, 𝑐22 are all zero.

Coefficient 𝑐00 𝑐01 𝑐10 𝑐02 𝑐11 𝑐20

(nm
−1 ) (nm

−2 ) (nm
−1 )

Value 6.051 −2.03 × 10
−2

2.26 1.37 × 10
−5 −2.95 × 10

−3
0.797
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Fig. 1. A quarter of the phase profile for the optimized meta-optic in units of 2𝜋 . From the phase profile, the corresponding
scatterer was calculated based on the equations mentioned in the main manuscript.
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Fig. 2. Optical microscope images of the fabricated array optics. Images at higher magnification of the center, bottom, and
bottom right MO are shown in the second column. Further magnified images of the center MO and the bottom right MO are
shown in the very right column.
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C ADDITIONAL EXPERIMENTAL SETUP DETAILS
In this section, we provide additional details on the experiment prototype, including the hardware design and

build, PSF measurements and in-the-wild dataset capture.

C.1 Metalens Array Layout
For the metalens array camera, we employ an Allied Vision GT1930 C sensor, which has 11.34 mm sensor width

and 7.13 mm sensor height with 5.86 micron pixel pitch. We design the layout and prismatic wedge angles of

the metalens array elements based on the sensor size and the target FoV such that the effective FoV from all the

metalens elements in the array can be captured in the same frame. We target a per-element FoV of 40
◦
width and

40
◦
height, which translates to images of 1.82 mm width and 1.82 mm height on the sensor plane. Additional

spacing between two adjacent metalens elements is introduced to account for potential FoV overlapping due

to the difference between the designed and fabricated device. In the final design, the metalens elements have

1 mm diameter and 2.5 mm focal length, and the center-to-center spacing between adjacent metalens elements is

2.42 mm.

C.2 Experimental Camera Prototype
In the experiment prototype, we employ a plate beam splitter that splits world light into two optical paths such

that paired experimental data (metalens array camera captures and ground truth captures) can be acquired.

However, this approach comes with many design trade-offs. Assuming that the camera optical center is exactly

on the plate beam splitter, the theoretical maximum FoV (Field of View) would be 90
◦
horizontally and vertically.

Given the total mechanical length of the conventional off-the-shelf lens used for the reference camera, the distance

between the camera optical centers and the plate beam splitter needs to be sufficiently large in order to align

the optical centers of both cameras and ensure that the FoV of both cameras is not impacted by the edge of the

beam splitter or the mechanical structure of the off-the-shelf lens. However, increasing the distance between the

optical centers and the beam splitter would reduce the maximum achievable FoV. While a larger beam splitter

would help achieve a larger FoV, it would also make the prototype bulkier and increase the difficulty of mounting

it securely. With all those constraints, the experiment prototype that we design and build achieves a maximum

FoV around 70
◦
horizontally and vertically for both cameras, which is similar to the FoV of the metalens array

camera. We employ an off-the-shelf 10.75” x 8.75” plate beam splitter with 70% transmission and 30% reflection

coating on one side and anti-reflective coating on the other side to prevent ghosting.

We employ an Allied Vision GT1930 C sensor for the metalens array camera such that the effective FoV

(Field-of-View) from all the metalens elements in the array can be captured in the same frame. The same sensor

is employed for the reference camera, which has a wide FoV low-distortion lens with a 3.5 mm focal length

from Edmund Optics (stock number #68-669) such that we can achieve a FoV larger than the full FoV of the

metalens array camera in the “ground truth” captures. We use Precision Time Protocol (PTP) to synchronize the

two cameras such that the captures are taken at the same timestamps with sub-millisecond precision.

To allow for fine alignment, the metalens array camera sensor is mounted on a 3D translation stage. After we

align the sensor parallel to the fabricated metalens array, we use the 3D translation stage to precisely shift the

sensor position such that the sensor captures the effective FoV of all the metalens array elements and the images

are focused on the sensor plane. Next, we align the optical center and optical axis of the central element from

the metalens array camera to those of the reference camera. We use a collimated laser and pinhole apertures

to make sure the beam splitter is positioned at a 45
◦
tilting angle. Then, we set up the position of the metalens

array camera and adjust the laser beam height such that the transmission path is incident on the center metalens

element. The center of the reference camera is positioned in the reflection beam path and the distance between

the beam splitter and the reference camera sensor is adjusted to the same as that between the beam splitter

ACM Trans. Graph., Vol. 42, No. 6, Article 252. Publication date: December 2023.
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Fig. 3. Experiment data acquisition setup. In our capture setup, we employ a plate beam splitter, which splits world light into
two optical paths by 70% transmission and 30% reflection such that the setup can simultaneously capture real-world scenes
with one camera in the transmission path that employs the designed metalens array and another camera in the reflection
path that employs a conventional off-the-shelf lens (GT camera). The setup is mounted on a tripod with rollers, so that it can
be moved around indoors and outdoors for acquiring a diverse dataset.

and the metalens array camera. We achieve more accurate alignment by observing a reference target with both

cameras simultaneously until both cameras are aligned. After the alignment is completed, the setup is mounted

on a tripod with rollers, as shown in Figure 3, so that it can be moved around indoors and outdoors for acquiring

a diverse dataset. The entire setup is put in an enclosure to make sure the reference camera only captures scenes

from the desired light path but not the other transmission light path from the ceiling.

C.3 Metalens Array Camera PSF Calibration
After the alignment, we conduct PSF measurements of the individual metalens elements in the array. The light

sources that we use are red, green, and blue fiber-coupled LEDs from Thorlabs (M455F3, M530F2, and M660FP1).

The fiber has a core diameter of 800 microns and the fiber tip is placed 340 mm away from the metalens array so

that it can be seen as a point source with the same angular resolution as that of a pixel in the captured metalens

images (∼8 arc-min, given a 2.5 mm focal length and a 5.86 micron pixel pitch). The PSFs of all the metalens

elements are captured in the same frame. By turning on and off each individual color LED, we can acquire the

PSFs of different colors. When alternating between colors, we change the input of the fiber without introducing

mechanical shifts to the output of the fiber such that the position of the point light source is fixed. Figure 4

shows the setup for PSF measurement and Figure 5 shows the red, green, and blue PSFs for all the metalens array

elements.

ACM Trans. Graph., Vol. 42, No. 6, Article 252. Publication date: December 2023.
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Fig. 4. PSF measurement setup. The light sources that we use are red, green, and blue fiber-coupled LEDs from Thorlabs
(M455F3, M530F2, and M660FP1). The fiber has a core diameter of 800 microns and the fiber tip is placed 340 mm away from
the metalens array so that it can be seen as a point source with the same angular resolution as that of a pixel in the captured
metalens images (∼ 8 arc-min, given a 2.5 mm focal length and a 5.86 micron pixel pitch). The PSFs of all the metalens
elements are captured in the same frame.

Fig. 5. Red, green, and blue PSFs for all the metalens array elements.

C.4 Camera Calibration and Homography Alignment
To find the per-pixel mapping between the reference camera and metalens array camera, we have both cameras

capture red, green and blue checkerboard patterns shown on a large LCD screen and then calibrate the distortion

coefficients of the two cameras per color channel. Figure 6 shows some of the captured images of blue, green, and

red checkerboards displayed on a LCD screen viewed by the reference camera from different poses.

After the image acquisition, we perform image rectification for the captures from both cameras. Then, to

account for the difference in camera FoV and the difference in viewing perspectives between each metalens

array element and the reference camera, we perform homography-based alignment to map the reference camera

captures to the captures from all the metalens array elements.

ACM Trans. Graph., Vol. 42, No. 6, Article 252. Publication date: December 2023.
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Fig. 6. Calibration patterns of the reference camera. Blue, green, and red checkerboards are displayed on a LCD screen and
captured by the reference camera from different poses.

ACM Trans. Graph., Vol. 42, No. 6, Article 252. Publication date: December 2023.
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D SIMULATION
Training the probabilistic image recovery network described in the main paper requires a large and diverse

set of paired data, which is challenging to acquire in the wild. Therefore, we simulate the nanophotonic array

camera with the corresponding metalens design parameters to create a large synthetic dataset of paired on-sensor

and groundtruth measurements. We use this large synthetic dataset for training alongside a smaller real-world

dataset for fine-tuning. Each metalens in the array camera has a focal length of 2 mm and covers an FoV of

60
◦
for a broadband illumination, with the center-to-center distance between the on-chip metalenses being

2.42 mm. Due to the circular aperture of each meta-optic, the sensor measurements suffer from vignetting at

higher eccentricities. We describe the detailed simulated process in the following.

We first crop an image into smaller images to match the number of metalens array camera measurement.

Specifically, for a given groundtruth image with a 1080 × 1080 spatial resolution, we first crop 9 images that

correspond to the final 3×3 metalens array camera measurement, with each metalens measurement corresponding

to 60
◦
FoV and the groundtruth image corresponding to a total of 90

◦
FoV. Specifically, we sweep the full image

from top to bottom with a step size of 135 pixels. The resolution of cropped image is 810 × 810. There are

overlapping areas between all cropped images.

We then resize and arrange each cropped image into a 3 × 3 array to simulate the nanophotonic sensor

capture. To this end, we first compute homographies between the 9 local image patches as measured by the real

nanophotonic array camera and the ground truth compound optic camera, such as described in Sec. 5.2 of the

main paper, in order to transform the ground truth image to map that of the sensor capture. The resolution of the

local image patches on the sensor is 360 × 360. We then utilize these homography transforms to project each of

the 9 simulated metalens measurements onto the appropriate local patch on the sensor

p̂𝑔𝑡𝑚𝑛 → H𝑚𝑛p𝑠𝑚𝑛, (20)

where p̂𝑔𝑡𝑚𝑛 denotes the coordinates in the ground truth image corresponding to the FoV as captured by the

(𝑚,𝑛)-th metalens in the array camera, p𝑠𝑚𝑛 denotes the sensor coordinate corresponding to the (𝑚,𝑛)-th metalens

measurement and H𝑚𝑛 denotes the corresponding homography.

We then simulate the vignetting of real-world measurements. Each of the 9 images are subjected to vignetting

where we model the vignetting mask as a fourth-order Butterworth filter with a linear intensity fall-off, given by

V =

(
1 +

(
| |𝑤 | |2

𝑓 2

𝑐

)
4

)−1

(21)

where | | · | |2 denotes the squared magnitude,𝑤 is the spatial frequency and 𝑓𝑐 is the cutoff frequency of the filter.

All parameters are matched to the experimental setting. Note that we apply this filter on each individual metalens

measurement only as an intensity mask to the sensor image, with a cutoff frequency that corresponds to 45
◦
of

the metalens FoV. The vignetted images are convolved with the simulated PSFs on the sensor by Eq. (7) of the

main manuscript.

Finally, we corrupt the vignetted images by adding simulated sensor noise. The sensor noise added is as

determined by the parameters Csensor = {𝜎𝑔, 𝑎𝑝 } which we set to 𝜎𝑔 = 1 × 10
−5

and 𝑎𝑝 = 4 × 10
−5

using the

calibration method as described in Foi et al. [Foi et al. 2008]

𝜂sensor (X) = 𝜂𝑝 (X, 𝑎𝑝 ) + 𝜂𝑔 (𝜎𝑔), (22)

where X is the clean image, 𝜂𝑝 a Poissonian signal-dependent component, and 𝜂𝑔 a Gaussian signal-independent

component. The detailed information for the two function can be found in [Foi et al. 2008]. The final sensor

measurement is computed as

S𝑚𝑛 = (H−1

𝑚𝑛I ∗ V) ⊗ k𝑚𝑛 + 𝜂sensor, (23)

ACM Trans. Graph., Vol. 42, No. 6, Article 252. Publication date: December 2023.



Thin On-Sensor Nanophotonic Array Cameras
Supplementary Information • 252:13

Fig. 7. Synthetic data samples. We present 100 synthesized images (10 columns, 10 rows) obtained from our simulated
pipeline. Zoom in on the electronic version of this document for details.

S =
∑︁
𝑚,𝑛

S𝑚𝑛 𝑠 .𝑡 . (𝑚,𝑛) ∈ {0, 1, 2}; 𝑚 + 𝑛 ≤ 2, (24)
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where S𝑚𝑛 denotes the (𝑚,𝑛)-th array measurement on the sensor, S is the final sensor measurement, and H−1

𝑚𝑛

and k𝑚𝑛 are the corresponding inverse homography and PSF, respectively.

To generate the full synthetic dataset, we randomly sample 10,000 images from a combination of ImageNet [Deng

et al. 2009] and MIT 5K [Bychkovsky et al. 2011] datasets for groundtruth images. For the ImageNet dataset, our

training, validation, and test splits respectively contain 8000, 1000, and 1000 images. For the MIT 5K dataset,

our training, validation, and test splits contain 4000, 500, and 500 images. Figure 7 presents 100 examples of our

simulated data on MIT 5K dataset.

E ADDITIONAL SYNTHETIC RESULTS
We present additional synthetic evaluation results that validate the proposed deconvolution method and camera

design described in the main manuscript.

Additional Validation of Probabilistic Deconvolution Method. In Figure 8, we provide additional results in support

of the probabilistic deconvolution method presented in the main manuscript. Similar to Sec. 6.1 in the main

manuscript, instead of considering all 9 sub-apertures of the proposed meta-optic, we consider only the central

portion. Doing so allows us to compare the proposed reconstruction method with a single PSF and image.

The additional results confirm the trend from the findings in the main paper: the conventional deconvolution

approaches (Wiener [1949] and Richardson-Lucy [1972]) suffer from severe reconstruction artifacts while the

learned predictions from Flatnet [Khan et al. 2020] and Multi-Wiener-Net [Yanny et al. 2022] are overly smooth

with fine details missing. The proposed probabilistic method recovers fine details in the reconstructions, in line

with the quantitative evaluations from the main manuscript.

Validation of Thin Imager Design. In Figures 9 and 10, we provide additional results that further validate the

proposed thin camera design in simulation. Similar to Sec. 6.1 in the main manuscript, we use the synthetic

dataset with all 9 sub-apertures on the sensor and the full proposed reconstruction method, including the

blending network. The additional supplementary results confirm the findings from the main manuscript. While

FlatCam [2017] and DiffuserCam [2017] sensing allows the capture of rays from a large cone of angles, spatial and

color information are entangled in PSFs with support of the entire sensor, making the recovery of high-frequency

content challenging independently of the FoV. The proposed metasurface array imager is able to image fine

details across almost the entire field of view. The learned reconstruction methods FlatNet [Khan et al. 2020] (for

FlatCam observations) and Kingshott et al. [2022] (for DiffuserCammeasurements) are improving on conventional

reconstruction algorithms in both cases but cannot match the quality of the proposed camera design.

F ADDITIONAL EXPERIMENTAL RESULTS
We present additional experimental evaluation results that validate the proposed method.

Additional Validation on Images in the Wild. Figures 11 and 13 provide additional experimental results that

validate the proposed camera design for in-the-wild captures. Specifically, we acquire scenes in typical indoor

and outdoor scenarios. We provide sensor measurements, image reconstructions and corresponding compound

lens captures captures for a variety of scenes. The proposed thin imaging system is capable of recovering the

scene with accurate color reproduction. The center region of the recovered images has high image quality and

preserves fine detail. The reconstructed images suffer from no apparent chromatic aberrations. We also provide

sensor measurements and reconstruction using the metasurface optic proposed by Tseng et al. [Tseng et al. 2021].

This method fails to accurately reconstruct the captured in-the-wild scenes, and especially for outdoor captures,

the recovered images remain hazy and do not match the quality of our results.
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Fig. 8. Additional qualitative assessment of diffusion-based deconvolution. These additional results confirm the findings
from the main manuscript. The two conventional deconvolution approaches (Wiener [Wiener et al. 1949] and Richardson-
Lucy [Richardson 1972]) suffer from apparent reconstruction noise, and the predictions from Flatnet [Khan et al. 2020] and
Multi-Wiener-Net [Yanny et al. 2022] are overly smooth with high-frequency details missing. The proposed probabilistic
reconstruction method is capable of recovering fine details.

Additional Validation with Screen Captures. We also assess the proposed imager in a controlled setting where the

scene is displayed on an LCD monitor. Specifically, we capture images on the screen with black lab surrounding,

as shown in Figure 13. Different from scenes captured in the wild that require recovery over the full visible

spectrum, the monitor has a sparse spectral response. Hence, it is easier for designs optimized for these sparse

spectral responses to reconstruct the scene, that is both for proposed method and the method from Tseng et

al. [2021]. Following Tseng et al. [2021], for this experiment, we capture images and randomly split into training

set, validation set and test set. We retrain our reconstruction network and the method from Tseng et al. on

the training dataset of screen images. Both methods perform well for this controlled setting, preserving color

fidelity and spatial detail. This validates the challenge of generalizing imaging in lab-controlled environments

to real-world outdoor/indoor scenes outside of the lab as demonstrated in the main manuscript and in the

experimental findings in the previous section.
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Proposed FlatCam [2017] FlatNet [2020] DiffuserCam [2017]
Kingshott et
al. [2022]

Ground Truth

Measurement MeasurementMeasurement

Fig. 9. Additional synthetic assessment of thin cameras. Alternative thin sensing approaches in FlatCam [2017] and Diffuser-
Cam [Kuo et al. 2017] mix spatial and color information in PSFs with support of the entire sensor, see insets. This makes the
recovery of fine detail challenging, even for learning-based methods [Khan et al. 2020; Kingshott et al. 2022].
ACM Trans. Graph., Vol. 42, No. 6, Article 252. Publication date: December 2023.
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Proposed FlatCam [2017] FlatNet [2020] DiffuserCam [2017]
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al. [2022]

Ground Truth

Measurement MeasurementMeasurement

Fig. 10. Additional synthetic assessment of thin cameras. Alternative thin sensing approaches in FlatCam [2017] and
DiffuserCam [Kuo et al. 2017] mix spatial and color information in PSFs with support of the entire sensor, see insets. This
makes the recovery of fine detail challenging, even for learning-based methods [Khan et al. 2020; Kingshott et al. 2022].
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Fig. 11. Additional Real-world Assessment of Thin Cameras on In-the-wild Captures. The proposed nanophotonic array optic
with the probabilistic deconvolution method reconstructs the underlying latent image robustly in broadband lit environments,
outperforming Tseng et al. [2021] especially in outdoor scenes.
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Fig. 12. Additional real-world assessment of thin cameras on in-the-wild captures. The proposed nanophotonic array optic
with the probabilistic deconvolution method reconstructs the underlying latent image robustly in broadband lit environments,
outperforming Tseng et al. [2021] especially in outdoor scenes.
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Fig. 13. Additional experimental assessment for narrow-band screen captures. The proposed design and Tseng et al. [2021]
both perform well in this controlled setting. The reconstructions from Tseng et al. were measured on a sensor of smaller size
compared to the compound lens ground truth and our thin metalens camera (see Section 5 of the main manuscript).
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