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This supplemental document provides additional imple-
mentation details, ablation studies, and qualitative com-
parisons to state-of-the-art methods to support the submis-
sion of “Single Depth-image 3D Reflection Symmetry and
Shape Prediction”.

1. Formal definitions of quantitative metrics
(CD and MD)

The Chamfer Distance (CD) [7] and mesh-to-mesh sym-
metric distance (MD) [1] are used to compare competing
methods quantitatively. For completeness, we provide the
mathematical definitions of these two metrics.

Given two 3D point sets X and Y , the CD is defined as:
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where NX and NY indicate the numbers of points in the
point sets X and Y , respectively.

Given two meshes S1 and S2, the MD is defined as:

MD(S1, S2) =
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e(p, S) = min
p′∈S

∥p− p′∥2, (3)

where NS1 and NS2 are the number of vertices in the mesh
S1 and S2, respectively; V S1 and V S2 are the set of vertices
from S1 and S2, respectively.

2. Implementation Details of the Viewpoint Se-
lection Module

*Co-corresponding authors.

Reinforcement Learning (RL) Agent The architecture
of the RL agent consists of an encoder, decoder, critic, and
actor heads. We adopt a commonly used 3D point en-
coder [3, 4] which extracts features from the input point
cloud for downstream processing by the actor and critic. In
particular, the actor head predicts a viewpoint defined by [θ,
ϕ] based on an input point cloud P with 8, 192 3D points.
Mathematically, the RL agent is defined as follows:

R̂ = ζbr256,1(FH(FV
2 )),

[θ, ϕ] = Tanh(ζbr256,2(SH(FV
2 ))),

FV
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br
3,64(P )))), (4)

where R̂ is the output of the critic head, estimating total re-
wards in the future based on current point cloud P ; The
functions FH(·) and SH(·) represent the first and second
half of an input vector; ζbrm,n is a linear layer with input
channel number m, output channel number n followed by
a Batch Normalization (BN;indicated with a b superscript)
and ReLU activation function (indicated with an r super-
script). MP(·) is a max-pooling function.

RL Agent Training The RL agent is trained by using
the actor-critic Proximal Policy Optimisation (PPO) algo-
rithm [6] with the following settings: T-horizon is set to
30, the clipping parameter is 0.2, the discount factor is 0.9
and 4 epochs in each PPO update. During the training, the
weights of other components of ISCNet are fixed, and we
only update the weights of the RL agent.

3. Implementation Details of the 2D Inpainting
Module

The 2D inpainting module comprises three components:
mask generation, normal map inpainting, and depth-map in-
painting. For completeness, we include the formal defini-
tions of each module:

Mask Generation The mask generation module’s main
component extracts silhouette information via a variant of
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the U-Net architecture [5]. Given an initial input depth map,
DI , and a symmetric depth map pair Di and D′

i, the silhou-
ette extraction component outputs a pair of silhouette maps
Ki and K ′

i. Formally, the process is defined as follows:
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1 ]),
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where [·, ·, ·] indicates a channel-wise concatenation opera-
tion. Intuitively, it has an encoder with two input heads,EM

and EM ′
, and two encoding blocks, ME

1 and ME
2 . On the

decoder side, it has a similar pattern, two decoding blocks,
MD

1 and MD
2 , and two output heads GM and GM ′

. Mathe-
matically, the components are defined as:

GM (·) := σ(ψ31(U (ψbr
31(U (ψbr
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MD
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52(ψ
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r
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where ψbr
ks is a k × k convolution layer with stride s fol-

lowed by a Batch Normalization (BN; indicated with a b su-
perscript) and ReLU activation function (indicated with an
r superscript); σ(·) is a SoftMax function; U (·) indicates
the up-sampling operation with stride 2. Note that GM and
GM ′

are identical in architecture but with different weights.
Idem for EM and EM ′

.

Normal Inpainting. As discussed in the main paper, the
normal inpainting submodule N takes as input a pair of
partial normal mapsNi andN ′

i corresponding to symmetric
viewpoints vi and v′i as well as their corresponding masks
Mi and M ′

i , and outputs a pair of completed normal maps
N̂i and N̂ ′

i respectively:
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′
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′
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The network N has similar architecture as the one used for
the mask generator and which is formally defined as:
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Unlike the mask generation module, the normal inpaint-
ing submodule N leverages partial convolution layers [2]
in both the encoder and decoder. Formally, the operators are
defined as:

GN (·) := ϕ31(U (ϕbr31(U (ϕbr31(U (·)))))), (12)

ND
x (·) := ϕbr31(U (ϕbr31(U (·)))), (13)
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r
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where ϕbrks is a k × k a partial convolution layer [2] with
stride s followed by a Batch Normalization (BN) and a
ReLU activation function. Note that GN and GN ′

are iden-
tical in architecture but with different weights. Idem forEN

and EN ′
.

Depth Inpainting. The depth inpainting submodule, D ,
takes as input a pair of partial depth maps Di and D′

i corre-
sponding to symmetric viewpoints vi and v′i as well as their
corresponding masks (Mi and M ′

i ) and inpainted normal
maps (N̂i and N̂ ′

i ), and outputs a pair of completed depth
maps D̂i and D̂′

i and corresponding confidence maps Ci

and C ′
i:
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′
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′
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]
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The architecture of D (similar to N ) uses a variant of U-
Net. Formally:

D̂i, Ci = Fo[:, 0, :, :], σ(Fo[:, 1, :, :]),

D̂′
i, C

′
i = F ′

o[:, 0, :, :], σ(F
′
o[:, 1, :, :]),

Fo = GD([FD
5 , F

D
1 , F

D′

1 ]),

F ′
o = GD′

([FD
5 , F

D
1 , F

D′

1 ]),

FD
5 = DD

2 ([FD
4 , F

D
2 ]),

FD
4 = DD

1 (FD
3 ),

FD
3 = DE

2 (F
D
2 ),

FD
2 = DE

1 ([F
D
1 , F

D′

1 ]),

FD
1 = ED(Di, N̂i, 1 −Mi]),

FD′

1 = ED′
([D′

i, N̂
′
i , 1 −M ′

i ]). (17)

In terms of architecture, all the layers of the depth inpainting
module are the same as for the normal inpainting module.
Finally, Fo and F ′

o have the same dimension, batch size ×
2× h× w. Fo[:, x, :, :] indicates the x channel of Fo.

4. Additional Qualitative Evaluation
Figure 2 and Figure 3 provide additional qualitative com-

parisons for shape completions obtained with ISCNet ver-
sus competing methods. These results confirm that ISCNet
offers the ‘cleanest’ shape completion for all eight tasks.

5. Additional Ablation Studies
We conduct two additional ablation studies to better un-

derstand the impact of the viewpoint selection and the num-
ber of iterations.

Impact of Viewpoint Selection. To demonstrate the ef-
fectiveness of the viewpoints selected by our RL agent,
we conduct the following two experiments: shape recon-
struction with four pairs of a). random reflection view-
points; b). pre-defined reflection viewpoints. For the first
experiment, we use four random viewpoints and their cor-
responding reflection viewpoints w.r.t. an estimated sym-
metry plane to replace the ones chosen by the RL agent.
The experimental results are reported in Table 2, denoted
by Random viewpoints Ix. The Ix means the iteration
x, or shape reconstruction with the (x%4)-th estimated
symmetry plane. In the second experiment, we pre-define
4 viewpoints which are defined by 4 pairs of θ and ϕ,
[45, 45], [135, 45], [45,−45], [135,−45]. We use the four
viewpoints and their corresponding reflection viewpoints
w.r.t. an estimated symmetry plane to replace the 4 pairs
of reflection viewpoints selected by our RL agent. The re-
sults are reported in Table 2, Pre-defined viewpoints Ix.

Based on Table 2, our RL-based viewpoint selection
method outperforms both random and pre-defined view-
points schemes. In addition, the results of randomly se-
lected viewpoints show that iterative refinement cannot im-
prove the reconstructive quality progressively, indicating
that viewpoint selection is essential for improving the sym-
metry plane estimation quality.

In Figure 4, we show one shape completion example
with pre-defined and our RL-based viewpoint selection
schemes, where the reconstruction results and 4 pairs of
masks are shown under the corresponding 4 pairs of view-
points. In each mask, the black color indicates the areas
that need to be reconstructed. As we can see, our RL-based
viewpoint selection scheme offers significantly better re-
construction quality than the one generated by pre-defined
viewpoints; CD and MD are improved by 0.17 and 0.12, re-
spectively. More experimental results with different view-
point selection schemes are provided in Figure 7; our ap-
proach constantly offers the best shape completion results.

Number of Refinement Iterations. We empirically de-
termine that 20 iterations strike a good balance between
computational cost versus gain in accuracy. In our main pa-
per, we report the error number of 1 to 20 iterations in Table
1 and Figure 6. For completeness, we include in Table 2,
Figure 5 and Figure 6 the errors for 21 to 28 iterations.

Based on Figure 5a, we can see that the sixth and sev-
enth symmetry plane estimate only offer marginally better
performance than the fifth one. In terms of CD and MD, as
shown in Figure 5b, the 20th iteration gives the best perfor-
mance; this is also reflected in Table 2. Note that, compared
to 20 iterations, the 8 extra iterations, i.e., two extra sym-
metry plane estimates, require an additional 23.6 seconds
of computations with little gain in accuracy. Figure 1b re-
ports that CD and MD improve with each iteration, except
briefly after each 4th-iteration reset. It is noteworthy that
the overall reconstruction results of the 4th iteration already
surpass those of all competing methods.

Figure 1. (a) The distribution of selected viewpoints. (b) Impact
of the number of iterations.



6. Time and Memory Statistics
We present a comprehensive analysis of inference time

and GPU memory usage for our method compared to other
benchmarked approaches, as detailed in Table 1. Notably,
our method allocates a substantial portion of inference time
toward the iterative generation of depth images and normal
maps.

Inf. time (s) GPU Mem. (MB)

PCN 0.17 1,035
MSN 0.67 1,249
PoinTr 0.67 7,315
VRCNet 0.06 1,149
SnowF 0.24 1,235
VE-PCN 0.05 1,661
IFNet 22.4 10,075
Front2Back 0.53 2,277
Ours (20 iterations) 81.2 3,972

⊢Networks 21.3 -
⊢Maps Generation 42.4 -

⊢ Point Cloud Merging
& Labeling 17.5 -

Table 1. Comparisons in inference time and GPU memory costs.



Figure 2. Additional visual comparisons of shape completions obtained with ISCNet versus prior work.



Figure 3. Additional visual comparisons of shape completions obtained with ISCNet versus prior work.



Figure 4. Visual comparisons of shape completions of ISCNet with
pre-defined and our RL-based viewpoint selection schemes. The
masks under different selected viewpoints are shown, where the
black color indicates the areas that need to be completed.

Figure 5. Impact of the number of iterations on (a) the accuracy
of the symmetry plane estimation, and (b) the shape reconstruction
MD/CD accuracy and average/median symmetry plane estimation
errors.

Figure 6. Impact of the number of iterations on the accuracy of the symmetry plane estimation for each shape in ShapeNet.

CD/MD(×102) Plane Cabinet Car Chair Lamp Sofa Table V essel Average
Random viewpoints I4 2.24/1.00 3.38/2.05 3.95/1.60 3.03/1.70 1.90/1.57 3.79/1.95 3.75/2.21 1.96/1.20 3.00/1.66
Random viewpoints I8 3.06/1.05 3.18/1.85 4.36/1.60 2.97/1.63 2.08/1.60 3.71/1.86 3.54/2.17 2.82/1.19 3.21/1.62
Random viewpoints I12 2.51/1.02 3.17/1.86 4.20/1.54 3.09/1.61 1.94/1.51 3.75/1.75 3.51/2.11 2.61/1.22 3.10/1.58
Random viewpoints I16 2.87/1.06 3.37/1.74 4.26/1.56 3.04/1.56 1.83/1.58 3.59/1.77 3.53/2.11 2.71/1.21 3.15/1.57
Random viewpoints I20 2.55/1.03 3.19/1.75 4.33/1.56 2.79/1.50 2.04/1.59 3.62/1.79 3.56/2.13 2.54/1.18 3.08/1.57
Pre-defined viewpoints I4 0.86/0.86 2.36/1.80 1.78/1.42 1.88/1.47 1.67/1.37 1.94/1.73 1.95/1.94 1.19/1.13 1.70/1.46
Pre-defined viewpoints I8 0.85/0.85 2.21/1.77 1.75/1.41 1.85/1.43 1.60/1.44 1.97/1.73 1.90/1.94 1.16/1.13 1.66/1.46
Pre-defined viewpoints I12 0.88/0.88 2.18/1.76 1.71/1.35 1.79/1.36 1.63/1.43 1.90/1.69 1.88/1.91 1.12/1.12 1.63/1.43
Pre-defined viewpoints I16 0.85/0.85 2.21/1.72 1.69/1.40 1.76/1.41 1.72/1.47 1.94/1.71 1.87/1.91 1.14/1.12 1.64/1.43
Pre-defined viewpoints I20 0.86/0.87 2.15/1.65 1.68/1.41 1.79/1.43 1.88/1.53 1.86/1.67 1.85/1.89 1.12/1.12 1.65/1.45
Iteration 20 (Ours) 0.82/0.84 2.04/1.63 1.56/1.35 1.54/1.39 1.30/1.34 1.84/1.53 1.67/1.54 1.04/1.00 1.48/1.33
Iteration 24 0.83/0.83 2.13/1.67 1.58/1.36 1.51/1.38 1.27/1.33 1.89/1.58 1.65/1.50 1.04/1.00 1.49/1.33
Iteration 28 0.82/0.83 2.08/1.61 1.58/1.36 1.53/1.38 1.32/1.41 1.83/1.54 1.67/1.55 1.04/1.02 1.48/1.34

Table 2. Additional ablation studies: ISCNet with random viewpoints, pre-defined viewpoints, and refinement with extra iterations. The
results show our RL-based viewpoint selection scheme offers the best performance, and extra refinement iterations do not lead to better
results.



Figure 7. Qualitative comparison of the ablation study: forgoing to align the shape to the symmetry plane, inpainting without providing the
symmetric counter-part, omitting the inpainted normals in the depth inpainting module, and replacing RL-agent with random viewpoints
and pre-defined viewpoints.
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