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The here presented supplementary material provides additional details for the results shown in the main doc-
ument. In Section 1, we derive the Koschmieder fog equivalence and the NeRF rendering equation in Section 3.1
of the main document. Section 2 introduces the made approximations used in Section 3.2 of the main document
to solve the integral form of the rendering Equation (10) in the main document. Section 3 provides additional
training details for ScatterNeRF and further details on training and evaluation of baseline methods. Section 4
outlines network details of ScatterNeRF. Qualitative results for altering fog densities and color can be found in
Section 5. In Section 6 and Section 7, we present further qualitative comparisons with baseline methods for scene
reconstruction and descattering, respectively. Finally, in Section 8, additional details on the In-the-Wild and
controlled environment dataset are shown.
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1. Equivalence of Volumetric Rendering and Koschmieders Model

An overview figure of the neural rendering process is given in Figure 1. Following the volume rendering equation
used in [14], the expected color C for each pixel (traversed by a ray (r)) is computed as,

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t))dt , (1)
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Figure 1: Schematic visualization of the neural rendering approach. For a camera position, the scene is integrated
along one camera ray r (gray) at the sampled red positions. Hereby, the interactions along the ray model the
scene’s appearance in the image.

where,

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
, (2)

and ri = [xi;di] ∈ R5 is modeled by the position along the ray x ∈ R3 and direction d ∈ R2.
Assuming the presence of a media with volume density σp(r(t)) and color cp(r(t)) from the camera origin until

a distance D , we can separate the integral of the expected color in,

C(r) =

∫ D

tn

T (t)σp(r(t))cp(r(t))dt +

∫ tf

D

T (t)σ(r(t))c(r(t))dt. (3)

In an ideal clear-weather setting, it can be assumed for the clear scene Cc to have

σp(r(t)) = σp = 0,

hence bringing to zero the first defined integral on the right side of equation (3):

Cc(r) =

∫ tf

D

T (t)σ(r(t))c(r(t))dt. (4)

We now consider the presence of participating media in the scene (instead of clear scene) CF .
Adopting the simplifications used in the Koschmieder model, we assume constant attenuation coefficient σp(r(t)) =
σp, constant airlight color cp(r(t)) = cp and so we can simplify Equation 3 to,

CF (r) =

∫ D

tn

T (t)σpcpdt +

∫ tf

D

T (t)σ(r(t))c(r(t))dt, (5)

= σpcp

∫ D

tn

exp

(
−
∫ t

tn

σpds

)
dt +

∫ tf

D

exp

(
−
∫ t

tn

σ(r(t))ds

)
σ(r(t))c(r(t))dt, (6)

= σpcp

∫ D

tn

exp

(
−σp

∫ t

tn

ds

)
dt +

∫ tf

D

exp

(
−
∫ D

tn

σpds−
∫ t

D

σ(r(t))ds

)
σ(r(t))c(r(t))dt. (7)

For simplification, we have the ray starting from the origin, i.e. tn = 0,

CF (r) = σpcp

∫ D

0

exp (−σpt) dt +

∫ tf

D

exp

(
−σp

∫ D

0

ds−
∫ t

D

σ(r(t))ds

)
σ(r(t))c(r(t))dt, (8)
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= σpcp

[
exp (−σpt)

−σp

]D
0

+

∫ tf

D

exp (−σpD) exp

(
−
∫ t

D

σ(r(t))ds

)
σ(r(t))c(r(t))dt, (9)

= −cp (exp (−σpD)− 1) + exp (−σpD)

∫ tf

D

exp

(
−
∫ t

D

σ(r(t))ds

)
σ(r(t))c(r(t))dt. (10)

Substituting the last part of the above formulation according to equation (4) we get:

CF (r) = cp (1− exp (−σpD)) + exp (−σpD)Cc(r) (11)

which is equal to the Koschmieder model in [11],

CF = lCc + (1− l)Cp, (12)

where cp is the airlight, the transmittance map is l = exp (−σpD) and the fog attenuation coefficient is σp.

2. Derivation of the Neural Radiance Model

Starting from Equations (7,8) in the main paper, which were defined as follows,

CF (r) =

∫ tf

tn

TF (t)(σp(r(t))cp(r(t))

+ σc(r(t))cc(r(t)))dt,

(13)

with,

TF (t) = exp

(
−
∫ t

tn

(σc(r(s)) + σp(r(s)))ds

)
, (14)

TF (t) = Tp(t)Tc(t), (15)

we have to find numerical approximations to solve the integral. Hereby, we define that the scattering volume and
scene are separable and additive. Hence the integrated ray in a hazed scene can be written as,

CF (r) =

∫ tf

tn

TF (t)(σp(r(t))cp(r(t)) + σc(r(t))cc(r(t)))dt, (16)

with,

TF (t) = exp

(
−
∫ t

tn

(σc(r(s)) + σp(r(s)))ds

)
. (17)

To solve the integral, we approximate it as a Riemann sum, considering σp(r(t)), cp(r(t)), σc(r(t)), and cc(r(t))

as a piece-wise constant for small segments δi = tt+1 − ti. Therefore, we get ĈF as,

ĈF (r) =

N∑
i

(∫ ti+1

ti

(σpi
cpi

+ σcicci)TF (t)dt

)
, (18)

=

N∑
i

(
(σpi

cpi
+ σcicci)

∫ ti+1

ti

TF (t)dt

)
, (19)

where tn = t0 and tN = tf .
Further simplifying TF (t) from Eq. (17) we rewrite it by splitting the integral in ti ∈ (tn, t) as,

TF (t) = exp

(
−
∫ ti

tn

(σpi(r(s)) + σci(r(s)))ds

)
exp

(
−
∫ t

ti

(σpi + σci)ds

)
, . (20)
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Then the integral until ti can be approximated as,

TF (ti) = exp

−
i−1∑
j=1

(σp(ri) + σc(ri)) δi

 , (21)

leaving us with,

TF (t) = TF (ti) exp

(
−
∫ t

ti

(σpi
+ σci)ds

)
, (22)

= TF (ti) exp (−(σpi
+ σci)(t− ti)) . (23)

Finally, plugging Eq. (22) in Eq. (18) yields,

ĈF (r) =

N∑
i

(σpi
cpi

+ σcicci)TFi

∫ ti+1

ti

exp (−(σpi
+ σci)(t− ti)) dt, (24)

=

N∑
i

σpi
cpi

+ σcicci
σpi + σci

TFi

(
exp (−(σpi

+ σci)(t− ti))
∣∣∣ti
ti+1

)
, (25)

=

N∑
i

σpi
cpi

+ σcicci
σpi + σci

TFi
(1− exp (−(σpi

+ σci)δi)), (26)

which maps to Eq. (12) of the main paper,

CF (r) =

N∑
i

wF (r(ti))cF (r(ti)), (27)

with,

wF (ri) = TF (ri)(1− exp ((σp(ri) + σc(ri)) δj) , (28)

TF (ri) = exp

−
i−1∑
j=1

(σp(ri) + σc(ri)) δi

 , (29)

cF (ri) =
σc(ri)cc(ri) + σp(ri)cp(ri)

σp(ri) + σc(ri)
. (30)
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3. Additional Training Details

This section contains information regarding the loss and training details.

3.1. Additional Loss Details

The total loss used to train the three MLPs fccoarse
,fcfine

,fp is,

Ltot = ψ1LrgbF + ψ2LA + ψ3Lec + ψ4LeF + ψ5Ldepth. (31)

Here, the chosen weighting loss parameters ψ1,...,5 are ψ1 = 2.5, ψ2 = 0.5, ψ3 = 10−3, ψ4 = 10−4 and ψ5 = 10−1 .
The training is performed for 250’000 steps and batch size of 4096 rays, using as optimizer ADAMW [13] with
β1 = 0.9, β2 = 0.999, learning rate 5 · 10−4 and weight decay factor of 10−2. The implementation is based on
Pytorch [16], training the model on four NVIDIA RTX A6000.

3.2. Sampling Procedure

To perform volume rendering, NeRFs must be evaluated across many sampled positions for each pixel to approx-
imate best the volumetric rendering integral in Eq. (1) [14]. Since it is reasonable to assume that in clear weather
conditions most of the space will contribute negligibly to the final pixel color due to close to null air density, in
[14] as well as many subsequent works [3, 4, 26] it is chosen to bias the learning and rendering procedure by first
sampling a rough geometry from a coarse network fcoarse and use it to guide the selection of an additional set of
points closer to the surfaces of the solids in the scene.
This scheme, named hierarchical sampling, usually involves selecting, for each ray, a set of points Ncoarse with
stratified sampling. Then, for each location in Ncoarse, fcoarse provides a density σcoarse used to compute the
weights w. The weights are normalized as,

ŵi =
wi∑Ncoarse

j=1 wj

(32)

to obtain a discretized probability distribution, which informs a second round of sampling of a point set Nfine.
Finally, the pixel color is the result of volumetric rendering over the set of points (Ncoarse ∪ Nfine) of a second
network ffine.

However, as shown in Fig. 2, the presence of a scattering media undermines the assumption behind hierarchical
sampling since the scattering media occupies the usually-empty portions of space and contribute to the final pixel
color. On the other hand, we are interested in allocating as much of the network fc capacity as possible toward
reconstructing details at the surfaces of the clear scene, while we expect the fog to be intrinsically more coarse.
Therefore, we do not use wF to guide the fine sampling procedure, but we use wc instead. Moreover, we do not
use separate coarse and fine networks to model the fog, but we use just one evaluated once in (Ncoarse ∪Nfine).

3.3. Training and Evaluation Details of Reconstruction Baseline Methods

This section provides additional details for the training and evaluation of the baseline scene reconstruction
methods.

We compare the proposed ScatterNeRF with NeRF [14]; Mip-NeRF [3]; Ref-NeRF [23], a variant of Mip-NeRF
with better ability for modeling reflective surfaces; voxel-based methods [9, 21], famous for their improved training
and inference speed; methods for unbounded scenes [4, 26]; and two NeRFs with auxiliary regularizations [6, 7],
supposed to converge faster and generalize better with fewer training views.

All baselines are trained with the same image resolution as ScatterNeRF and according to their original paper
implementations. The training of the reference methods was conducted on an NVidia Geforce RTX 3090Ti GPU.
All methods are trained for 250’000 steps for each In-the-Wild and controlled environmental sequence, similar to
the training procedure of ScatterNeRF. The batch size was set to 5000 for Plenoxels [9], to 4096 for Aug-NeRF [6],
Mip-NeRF [3], and Mip-NeRF360 [4], and to 2048 for DVGO [21], NeRF [14], NeRF++ [26], Ref-NeRF [23], and
DS-NeRF [7]. We extend ScatterNeRF to Neural Scene Graphs [15] by adding the scattering media module fp in
the global frame coordinates. We follow [15] and evaluate the sampled ray points inside the dynamic bounding
boxes in local normalized coordinates. In contrast, we query fp for the participating media in global coordinates
and compose the overall density and color per the NSG approach. We find that this straightforward integration is
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Figure 2: After the first stage of hierarchical sampling, using both the clear (in red) and scattering media (in blue)
densities to compute the sampling probability for the second stage leads to drawn points (in violet) spread both in
the scattering media and close to the object’s surface. However, sampling only with clear scene densities corrects
this behavior and yields points (in green) concentrated near the surface.

enough to learn the scattered scene and provide a disentangled representation. The overall training loss remains
the same as ScatterNeRF, outlined in Section 3.1
All models are supervised by the mean-square image reconstruction error between ground-truth and reconstructed
haze image. In addition, the scene representation of DS-NeRF [7] is supervised with a ground-truth depth predicted
by [12]. For fair comparison to NeRF methods relying on two MLPs, for coarse and fine sampling, we reduced the
number of layers of Mip-NeRF360 from three to two.
Furthermore, we can expand the Mip-NeRF360 in an analogous manner to ScatterNeRF and ScatterNSG, by
querying an MLP fp for the media radiance and volume density on the first and last sets of sampled points. As
Mip-NeRF 360 already has a regularization for the weights wc, we drop the regularization loss Lec while keeping
the other losses to guide fp as well. These changes allow ScatterMipNeRF360 to reach a PSNR of 42.15 dB over
the In-the-Wild subset, an improvement of 3.0% over the original Mip-NeRF360.
We rely on three commonly used image reconstruction metrics for quantitative evaluation: PSNR, SSIM, and
LPIPS. While PSNR calculates per-pixel errors between ground-truth and reconstructed image, SSIM and LPIPS
perform patch-wise comparisons. SSIM is able to compare the luminance, contrast, and structure of the images,
and LPIPS compares internal activations of trained CNNs. For the SSIM metric, we use a window size of 11, and
for LPIPS, we use AlexNet, which was trained on ImageNet.

3.4. Training Details of Dehazing Baseline Methods

All baseline methods [2, 17, 10, 20, 24] are trained according to the original paper implementations. PFF-Net [2]
and EPDN [17] are trained on a variety of simulated fog scenes covering a wide spectrum of outdoor scenes, wide
field of view areal imaginary, automotive street scenes. Both methods have to overcome the challenging synthetic
to real-world generalization challenge and therefore cause a magnitude of visual artifacts visible as flickering in the
supplemental video. ZeroScatter [20] is trained on a mixture of real and simulated foggy automotive scenes and
uses multi-modal feedback from a gated camera and geometric constraints from temporal and stereo multi-view
cues. Therefore, ZeroScatter achieves some of the most consistent dehazing results among the reference methods.
Nonetheless, the method also models an ISP to predict good weather conditions. This leads to a similar ”bright”
color tone, not taking into account the true illumination conditions within the scene. ZeroRestore [10] runs a test-
time optimization on every image independently. Therefore, per design, the method is reinitialized for each image
separately, leading to flickering in illumination and the amount of dehazing if the optimization process is stuck in
a local minimum. Hence, it has to be noted that ZeroRestore does not have to perform any generalization task
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in the sense of generalizing to prior unseen scenes, novel views, or different fog types. The test-time optimization
stops as soon as the self-consistency is reached. In terms of implicitly wrongly predicted scene depth, which is an
arduous task to be learned from one single image, the fog effects can be projected onto the scene itself, causing the
optimization to stop early. Furthermore, the optimization is performed statistically, such that a single enhancement
might change with a different seed for a particular optimization run.
Lastly, MAP-Net [24] is trained using 3’500 videos with synthetic haze, collected and processed from multiple
automotive datasets. By using a memory-based physical prior guidance module to enhance the scene radiance
recovery and a recurrent multi-range scene radiance recovery module to capture long-range temporal haze and
scene clues from the adjacent frames, this method reaches the best results among the baselines. However, as it is
still a forward model which does not optimize one scene for all the frames, its results have still some inaccuracies and
inconsistencies. Furthermore, such method is being trained using automotive videos, and hence can not function
properly in case of other scenes or when there is only a set of sparse images (like for the scenes in the fog chamber).

4. Networks Details

For the network implementation, we follow [14]. First, the positional arguments are encoded through higher-
order spherical harmonics and fed into the radiance field. In practice, such positional encoding is a non-learnable
transformation from R to R2L in the form,

γ(x) = [sin(x), cos(x), ..., sin(2L−1x), cos(2L−1x)]T , (33)

where L is a hyperparameter controlling the bandwidth of the projection [22]. Positional encoding is applied to
each component of the ray position r both 3D position x and direction d, allowing the network to capture higher
frequency details and rapid changes in the scene. We set L to 10 for γ(x) and 4 for γ(d), thus n posx = 20 and
n posx = 8.

Clear Scene network fc

Layer # Layer Activation Input Shape Output Shape

0 Linear ReLu 3 · n posx 256

1 Linear ReLu 256 256

2 Linear ReLu 256 256

3 Linear ReLu 256 256

4 Concat+Linear ReLu 256 + 3 · n posx 256

5 Linear ReLu 256 256

6 Linear ReLu 256 256

7 Linear ReLu 256 256

8 Linear / 256 256

9a Linear ReLu 256 1

9b Concat+Linear ReLu 256 + 3 · n posd 128

10 Linear Sigmoid 128 3

Table 1: Detail for the clear scene MLP fcclear
and fcfine

, replicating the architecture used in [14]
.

Participating media network fp

Layer # Layer Activation Input Shape Output Shape

0 Linear ReLu 3 · n posx 128

1 Linear ReLu 128 128

2 Linear+Concat ReLu 128 + 3 · n posx 128

3 Linear / 128 128

4a Linear ReLu 128 1

4b Concat+Linear ReLu 128 + 3 · n posd 128

6 Linear Sigmoid 64 3

Table 2: Detail for the participating media fp. The architecture is similar to fc but with fewer layers and half the
layer width. This prevents any overfitting on the participating media and lowers the computational requirement
for this additional network.
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5. Rendering Different Fog Densities and Colors

(a) Reduction of the fog density from σ′
p = σp to σ′

p = 0.

(b) Increase of the fog density from σ′
p = σp to σ′

p = 2σp

Figure 3: The proposed method allows a simple change of the fog density. By increasing or decreasing σp, images
with different physically correct rendered fog levels are generated. Please note how buildings and objects in far
distances appear and disappear when varying the fog density.

Based on our rendering pipeline, we can not only remove the fog as presented in the main document but also
alter it arbitrarily, as shown in Figure 3. Changing the fog density can be achieved by scaling the predicted
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(a) Changing the fog color to an orange tone allows us to generate images captured in sunrise or sunset conditions.

(b) Lowering the brightness and changing the fog color to a blue tone allows us to generate images captured in dawn or
twilight conditions.

Figure 4: The proposed method allows re-rendering the scenes with a change of the fog’s brightness and color. This
is achieved by varying the RGB values of the airlight cp = [R,G,B] with the formula (R,G,B) = ϵp(R+ωp,G,B−ωp).
Please note that, especially in sky regions, the color change of the airlight is visible, representing the light source

scattering volume density σp by a factor α. Our new fog density σ′
p can be written as,

σ′
p = ασp, (34)

with α ∈ R+ . By plugging in the new σ′
p in the rendering formulas, the effect of the scattering media can be

re-weighted, and we can render a realistic scene in higher or lower fog densities compared to the ground-truth
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sequence while using the learned true fog distribution within the scene. Figure 3 shows an example of changing
the fog density.
Furthermore, also the airlight color and scene illumination can be changed as shown in Figure 4. We experiment
with cp = [R,G,B] ∈ R3 with R being the red, G the green, and B the blue color channel. All three channels are
R,G,B ∈ [0, 1] and can be rescaled using two parameters for color balance ωp and brightness ϵp,R′

G′

B′

 = min

max

ϵp
R+ ωp

G
B − ωp

 , 0
 , 1

 . (35)
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6. Additional Qualitative Comparison for Scene Reconstruction

Figure 5: Qualitative comparison of ScatterNSG and baseline NSG for the foggy scene. The white car in the
background is rotated, as indicated by the dashed white line in the cutouts. The ScatterNSG is able to learn a
more consistent representation of the car compared to the baseline NSG. Defoggification results for ScatterNSG
are provided on the right.

In this section, we provide additional qualitative results for scene reconstruction and compare them with different
baselines.

As indicated by Fig. 6, ScatterNeRF learns a disentangled representation of fog and scene. This becomes evident,
for example, in the first and second row of Fig. 6 for the In-The-Wild dataset. ScatterNeRF clearly separates the
car and house from the fog and does not produce a blurred result as, for instance, Plenoxels, Aug-NeRF, or DVGO.
Methods like NeRF++, Mip-NeRF, or Mip-NeRF360 do not suffer as much from blurring. Nevertheless, details
like the rear of the blue van still are increasingly blurry compared to ScatterNeRF. Furthermore, ScatterNeRF
learns that fog is a semi-homogeneous scattering media and subsequently avoids grey floating artifacts on objects
in the fog. This can, for instance, be seen in the third and fourth row of Fig. 6 on the trash can. Additionally, it
can be seen that the color of colorful objects, like the cones in the fourth and fifth row of Fig. 6 are not cast on
solid surfaces as the road. ScatterNeRF distinguishes well between the different surfaces and learns sharp contours
and rich contrast for these objects, whereas other baseline methods only produce blurry reconstructions.

Qualitative results for ScatterNSG can be found in Fig. 5. Here, the scene is altered by rotating the compact
white car in the back, as visible in the cutouts. ScatterNSG learns a better representation and details, while the
car rendered by the baseline NSG blends in with the fog and surroundings. Additionally, ScatterNSG provides the
opportunity to defog the scene and preserve these details.
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Figure 6: Qualitative comparison of the proposed ScatterNeRF and state-of-the-art scene reconstruction methods.
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7. Comparison to State-of-the-Art Descattering Algorithms

In this Section we illustrate additional qualitative descattering results in Figure 8a, Figure 8b, Figure 7,
9 and Figure 10. Figure 8a and Figure 8b show the temporal consistency of image enhancement results. The
learning of the scene representation explicitly enforces multiple views to be consistent with one another which
enforces temporal consistency for our ScatterNeRF approach. This is not the case for reference methods such as
ZeroRestore [10], PFF [2] and EPDN [17] which suffer heavily from such distortions. ZeroRestore [10] gets stuck
in local optimization minima and leads to different degrees of removed fog, causing brightness flicker as explained
in Section 3. PFF [2] and EPDN [17] suffer from blacked out areas, which are propagating through the scene. For
a better illustration of the temporal flickering see the supplemental video.

Figure 7, Figure 9, and Figure 10 show the qualitative performance of the proposed ScatterNeRF approach
in comparison to ZeroScatter [20], EPDN [17], D4 [25], ZeroRestore [10] and PFF [2]. We illustrate the image
enhancement performance for the full scene and zoom ins in long distances. In Figure 7 ScatterNeRF is the only
method to reconstruct the tree, rooftop and side buildings fully. In Figure 9, only ScatterNeRF and ZeroScatter [20]
are able to reconstruct the building in the long distance while for the other methods, the building is darkened to
much. ZeroScatter is additionally able to reconstruct the windows on the building but misses due to the predefined
ISP the true colortone of the scene. In Figure 10 similar performances as in the previous two Figures can be
observed.

Figure 7: Qualitative comparison of the proposed ScatterNeRF and state-of-the-art dehazing methods. ScatterN-
eRF is able to remove fog while preserving colors much better than the other methods.
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(a) PFF and EPDN are not able to learn a consistent representation of the road, resulting in randomly appearing black
spots on the road.

(b) ZeroRestore is a zero-shot single image-based dehazing method that is not able to predict the same ambient light for
consecutive frames, visible through color changes for the same objects in different frames.

Figure 8: ScatterNeRF learns a representation of the entire sequence and is consistent across consecutive frames.
In contrast, other descattering methods rely upon single images and are affected by flickering effects. For further
comparison, please have a look at the supplementary video.

8. ScatterNeRF Datasets

This section provides additional details on the In-the-Wild and controlled environment sequences captured to
train and evaluate this method.

8.1. Pose Estimation

For estimating camera poses, we choose to perform Hierarchical Localization with hloc [18], and SuperGlue [19]
on every sequence of the ScatterNeRF dataset due to the proven [19, 1] reliability of the method under challenging
conditions. At first, we extract features from each image in the dataset with SuperPoint [8]. We use configuration
settings already present in the open sourced code, namely the superpoint aachen configuration for the In-the-Wild
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Figure 9: Qualitative comparison of the proposed ScatterNeRF and state-of-the-art dehazing methods. PFF,
EPDN and D4 tend to predict foggy areas too dark, while ZeroScatter has a yellow cast, leading to unrealistic
looking defogged colors.

Figure 10: Qualitative comparison of the proposed ScatterNeRF and state-of-the-art dehazing methods.

dataset and the superpoint inloc for the controlled environment dataset. Then, we perform exhaustive feature
matching using SuperGlue [19] and reconstruct a 3D model of the sequence and reference poses. For In-the-Wild
sequences, the reconstruction is performed with all the available rectified frames due to their visual consistency,
and we use our calibrated pinhole camera model as prior. On the other hand, the 3D model for the controlled
environment sequences is reconstructed from clear images alone, and we let the algorithm estimate a unified
camera model with simple radial distortion. We then undistort the haze-free and foggy images with the estimated
parameters and perform localization on the hazed images with Hierarchical Localization [18]. Fig. 11 provides an
example of the estimated poses for the controlled environment dataset.

8.2. In-the-Wild Dataset

For the In-the-Wild dataset, we capture 9 different sequences in real fog conditions with an Aptina-0230 camera
stereo pair mounted behind the car windshield, running at 20 Hz. The sequences are collected on different days

15



(a) Toyota (b) Car Accident

Figure 11: Distribution of camera poses in the controlled environment dataset. The position and heading of the
camera is visualized with red frustums. For visualization purposes we show the camera poses in context of the
sparse point cloud estimated by hloc.

and in different locations around Germany, ensuring a diverse dataset with different fog conditions. Furthermore,
we select frames from urban and suburban scenarios to create scenes with diverse backgrounds suitable for our
evaluations. An overview of the number of collected frames is provided in Tab. 3.

Sequence Tram Station Farm Intersection Suburb Speed Control Road Fork Adds Construction Countryside

Num. frames 228 376 254 212 390 302 280 214 422

Table 3: Number of captured frames per In-the-Wild sequence.

For each frame, the ground-truth depth is estimated with a pretrained stereo algorithm introduced in [12]. We
employ the open-sourced model trained on a large datasets ensemble without any fine-tuning, as we found the
generated depth maps to be sufficient for the necessary depth guidance. These results can be seen in Fig. 12-14,
where ground-truth depths are shown with their respective RGB image.

8.3. Controlled Environment Dataset

The controlled environment dataset is captured in the fog chamber of the Japan Automobile Research Institute
(JARI)1. The chamber is 200m long, 15m wide and can reproduce adverse weather effects ranging from rain to
strong oncoming sunlight and fog. The fog visibility can be controlled from 10m to 80m and we kept it to 20m for
the Toyota sequence and 40m for the Car Accident sequence. Furthermore, we set the scene illumination of the
ceiling lights to 800 Lux to ensure comparable lighting conditions for foggy and clear reference sequences.

As Camera we use a Nikon D5200 DSLR camera with fixed exposure 20 ms, aperture f/10, ISO 800 and focal
length 18 mm.
In contrast to the In-the-Wild scenes, we are able to obtain for each fog scene captured in the controlled environment
its corresponding clear reference. This allows to compare dehazed images directly to their clear reference equivalent.
For this, we used a Leica ScanStation P30 to obtain dense depth maps and warp clear reference images to a foggy
image. This procedure is illustrated in details in Fig. 15. Similar to the In-the-Wild dataset, we use hloc to estimate
the camera poses as well as the camera intrinsics [18]. We opt to use the clear reference images as database images
since we find that this improves the quality of the estimated poses for both clear and hazed captures significantly.
From the clear reference images, hloc is able to generate a sparse point cloud. We effectively replace this point
cloud with a dense laser scan produced by the Leica scanner. An example of a dense scan can be seen in Fig. 15,
where the color of the points encodes the distance. Laser scans are performed from multiple positions in the fog
chamber and we overlay multiple scans to produce high-resolution scans that suffer from little occlusions. Next,
we use the Iterative-Closest-Point (ICP) algorithm [5] to estimate the transform consisting of scale, rotation and

1https://www.jari.or.jp
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Figure 12: Examples of our In-the-Wild dataset. We show RGB image and estimated ground-truth depth.

translation - between dense laser scan coordinates and hloc coordinates. An example overlay of sparse hloc point
cloud and dense laser scan can be found in Fig. 15. The transformed dense laser scan in combination with the
estimated camera intrinsics allows us to produce dense depth maps for arbitrary camera poses. In order to produce
depth maps for foggy images, we query hloc with the foggy image to obtain the respective camera poses and
subsequently produce the corresponding depth map.
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Figure 13: Examples of our In-the-Wild dataset. We show RGB image and estimated ground-truth depth.

For evaluation purposes, clear reference images for every foggy image are advantageous. To this end, we warp
the closest clear reference images to foggy camera poses using the previously generated dense depth maps. An
example image can be found in Fig. 15.

We use this procedure to generate two different sequences as described by Tab. 4. Furthermore, Fig. 11 illustrates
the diverse poses captured for both sequences. Fig. 16 and Fig. 17 show clear reference and foggy images with
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Figure 14: Examples of our In-the-Wild dataset. We show RGB image and estimated ground-truth depth.

their respective depth maps.
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Sequence Toyota Car Accident

Num. frames 187 195

Table 4: Number of captured frames per controlled environment sequence.

Figure 15: Depth maps for foggy images are obtained by projecting a dense laser scan to the repective camera
poses. Camera poses are estimated by hloc. Clear reference images can be warped to a foggy pose to allow better
evaluation of dehazing algorithms.
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Figure 16: Examples of our proposed controlled environment dataset for the Toyota scene. For both scenes, we
capture foggy and clear reference images to allow image enhancement evaluation.
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Figure 17: Examples of our proposed controlled environment dataset for the Car Accident scene. For both scenes,
we capture foggy and clear reference images to allow image enhancement evaluation.
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