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1 EXECUTIVE PAPER SUMMARY

This research paper contributes to advancing the field
of near-eye holography by addressing an important gap
in the current literature: It is the first to identify accurate
3D-ocular parallax-and defocus as a gap in current near-
eye holography research and hence introduces a solution
for optimizing holograms with accurate 3D-ocular parallax
and focus cues. Our core idea is to enforce radiometric
consistency between refocused light field and holographic
display. The paper’s contributions include developing novel
CGH algorithms based on this approach and addressing the
problem of providing accurate 3D-ocular parallax, which
is a necessary step toward building practical holographic
displays.

2 ALGORITHM RECAP

Our algorithm optimizes for a phase-only holograms to
produce high-fidelity LF-reconstructions with a uniform
energy distribution across the eyebox. The core idea is a
novel intensity-based reconstruction loss where the projec-
tion operators for the light fields and the Wigner-function
are matched. The Wigner projection for the coherent field
is implemented as a memory-efficient convolutional image
formation model based on the angular spectrum method [1].
The corresponding light field projections are synthesized on
the fly from the underlying light field representation [2].
By stochastically sampling different pupil states in each
iteration, a phase-only hologram is optimized that provides
accurate depth cues within a large eye-box.

In addition to the main paper, we show the flow of our
algorithm in Fig. 1 as well as an algorithm block in 1.
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Fig. 1: Algorithm Flow A schematic that sketches the al-
gorithm flow of stochastic light field holography. At each
iteration in the algorithm, a random set of pupils are
stochastically sampled. Both light field and Wigner projec-
tion operators are computed on-the-fly to compute the loss-
function that depends on the sampled pupil state. Then,
the loss is back-propagated until the SLM-pattern. Note that
only the coherent forward model needs to be differentiable.

ALGORITHM 1: Stochastic-Light Field Holography (SLFH)

Input: Image Sampler S, regularization parameters λ,
learning rate η, phase initialization variance σ

Output: Model parameters Θ = (ϕ, s); Phase pattern ϕ,
intensity scale s

ϕ ∼ N (0, σ), s← 1; repeat
(p, q, z, a)← SampleRandomAperture();
Itarget ← ComputeRefocusedImage(p,q,z,a);
Imodel ← ComputeForward(Θ; p,q,z,a);
Θ← Θ− η

(
∂
∂Θ

L(Itarget, Imodel)
)

;
until stopping criterion is not met;
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Fig. 2: A more detailed schematic that explains our loss-function. At the core is the random sampling of pupils which gives rise
to the projection geometry for both the coherent (Wigner projection) and incoherent (light field projection) light transport.
At each iteration new projection are generated which then defined the photo-consistency loss (l2). Auto-differentiation of
this loss through the coherent forward model gives the update rule for the phase-only SLM pattern.

3 IMPLEMENTATION DETAILS

The algorithm is implemented in PyTorch [3], and all gradi-
ents are computed via auto-differentiation using Wirtinger
derivatives [4]. All code will be made available open-
source (at date of publication) using easy-to-run Jupyter
notebooks to enhance reproduction of our results.

3.1 Used Metric for Loss

As a general metric for our loss-function, we chose L2 for
simplicity and a fair comparison among different exper-
iments. We acknowledge that more sophisticated metrics
to measure image similarity, such as perceptual losses [5],
are likely leading to slight performance improvements at
the cost of larger computing. However, we argue that the
majority of improvement comes in engineering more sophis-
ticated losses that target the actual content and model.

3.2 Global scale optimization

As we are optimizing for random phase-only patterns, the
integrated (total) energy contained in the holographic field
is constant at all times as no energy is absorbed. Our goal
is to optimize for an eye-box with roughly uniform energy
distribution as there shouldn’t be any preference for pupil
positions. In other words, independent of where we sample
the holographic field, we should get roughly consistent
intensities in the eye-box if each pupil as has the same
pupil diameter. However, it is also important to note that
the image intensity scales quadratically with the pupil radius.
Fortunately, if done correctly, light field refocusing correctly
accounts for the pupil radius and the refocused/synthesized
target images should scale in intensity accordingly.

However, as the SLM is phase-only, we still have to learn
a scale variable [6] representing the product of exposure
time and laser-power to correctly balance out the intensities
of each color-channel. For this reason, we introduce two
learning rates: One for the SLM (lrSLM = 0.1) and one for
the scale (lrscale = 1.0).

3.3 Optimizer
As an optimizer, ADAM [7] is used for faster convergence
compared to gradient descent. Convergence is typically
achieved within a few hundred iterations. However, as with
most gradient descent algorithms, the exact convergence
rates depend heavily on the chosen learning rate and the
specific image content to be learned.

4 LIGHT FIELD REFOCUSING

This section outlines more details on how the Light Field
refocusing is performed.

4.1 Light Field Resolution
Our Light Fields are originally rendered with different num-
bers of views. E.g. the DeepSpaces dataset [8] consists of
9x9 views and the robot scene is a 7x7 scene. For a fair
companion with STFT, we sub-sample our light fields to
a 7x7 light field as memory constraints for STFT limit the
achievable angular resolution. E.g., a 9x9 light field was
already too much to fit into a 48GB GPU when the STFT-
algorithm was used. Furthermore, we want to stress that
this is not a limitation of our approach, as our algorithm is
agnostic to the angular resolution of the light field.

The spatial resolution of each light field was matched to
the resolution of the SLM (1080 · 1920). However, as our
sampled pupils are much smaller than the full aperture,
the expected resolution during play-back is actually smaller
than the chosen light field resolution. This is because the
pupil effectively band-limits our signal.

E.g. if we would like to encode 10 · 10 view (100 views),
the maximal information that we could potentially encode
into each view cannot be larger than 108 · 192 pixels.

4.2 Defocusing/Aliasing Artifacts
Our paper uses the shift-and-add algorithm [9] to synthe-
size novel views from the given light fields. This algorithm
is a commonly used method for refocusing images from a
light field dataset. This algorithm involves shifting the sub-
aperture images in the light field along their corresponding
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epipolar lines and adding them together to form a final
refocused image. However, this process can lead to aliasing
artifacts in the final image.

Aliasing artifacts occur when the sub-aperture images
are undersampled or when the sampling rate is too low. This
can happen when the pixel size of the sub-aperture images
is larger than the Nyquist frequency of the light field data.

When the pixel size of the sub-aperture images is too
large, high-frequency information is lost, and the shift-and-
add algorithm cannot recover it. This can lead to aliasing
artifacts such as moiré patterns or jagged edges in the
final refocused image. These artifacts occur because the
sub-aperture images are not accurately sampled and recon-
structed.

The easiest solution to avoid aliasing artifacts would
be to use a Light Field with a larger angular resolution.
However, this is not possible using the STFT approach due
to memory limitations.

In addition to a fair comparison with STFT, we wanted to
fix the angular resolution to something reasonable, as many
views are not always attainable due to practical constraints.

Interestingly, even though some of the synthesized target
images are aliased, the optimized hologram often doesn’t
exhibit the same aliasing artifacts when the image is recon-
structed (both in simulation and experiment).

Future investigations on the importance of avoiding
these aliasing artifacts are warranted but out of the scope
of this submission. There are many approaches that tackle
angular aliasing in Light Field refocusing which are poten-
tial directions to look into in future work. Among those
are removing angular aliasing [10], directly synthesizing
refocused images using neural-networks [8], super-resolve
in angular resolution using prior information [11] or fast
neural-radiance fields [12] storing a highly compressed
light-field.

4.3 Geometry for Light Field projections

4.3.1 Wigner Projection (Coherent light)
In order to match the incoherent and coherent projection op-
erator, we need to set the geometry correctly. The projection
geometry is defined in physical world coordinates. For the
coherent model, the aperture plane coordinate is defined by
the eyebox size given by

sizeeyebox(λ) =
λ · f
dx

, (1)

where λ corresponds to wavelength (660nm, 520nm, 440nm
for our laser module), f to the focal length of the first
lens, and dx the SLM-pixel spacing. Hence, the size of the
eye-box depends on the wavelength. In the experimental
setup, an arbitrary, physical aperture with a finite size d at
a location s = (x, y) is sampling the eye-box to generate
different views. This has implications for how the frequency
space (in normalized coordinates) has to be sampled for
each wavelength. In Fig. 5, we show the effects of this
wavelength dependence. First, as predicted in Eq. 1, the size
of the employed aperture change with wavelength. Second,
and this is slightly less intuitive, the shift of the physical
apertures also corresponds to different spatial frequency
coordinates. In other words, the sampled ASM-kernels do

not have only different sizes for each wavelength but are
also centered at different locations.

We confirm this behavior in an experiment by capturing
images of the eye-box using a second arm in our experiment.
For this, we compute a Fourier-CGH (in Far-Field Holo-
gram) of two calibration targets and display them for each
color channel, see Fig. 6. Note how the calibration target
changes in size with changing wavelengths. The second row
shows circles of different sizes that reflect the behavior seen
in Fig. 5.

As a consequence, the SBP of the red and green channels
cannot efficiently be used, as the maximal eye-box that
can be employed for an RGB-images is defined by the
smallest wavelength (blue). The ratio between the largest
(red, 660nm) and the smallest (blue, 440nm) wavelength is
0.66, which actually means that only 44% = 0.662 of the red
eye-box size can actually be used.

4.3.2 Light field projection geometry
In order to match the projection geometries for both Wigner
and light field, we need to establish the correct coordinate
systems. While the aperture coordinates for the Wigner-
projection were wavelength dependent, the light field itself
does not depend on the wavelength. This is because, in
practice, each rendered/captured RGB-image in the LF-
scene was captured from the same viewpoint.

However, this is at odds with the coherent model: If
we would sample pupils with the same normalized-spatial
frequency coordinates, as it was e.g. done in [13] or is done
inherently in STFT approaches, we would create a mismatch
with the light field projection.

The geometry for the light field needs to be defined
for both the coordinate system in the (s,t)-plane and the
aperture plane (u,v). Here, we list the parameters defined
by those values:

• Base-line spacing (u,v): spacing between rendered
view-points

• Plane Spacing: Distance between aperture and image
plane

• Pixel spacing (s,t): The pixel spacing of the light-field
resolution

For our setup, the imaging lens corresponds to a 200mm
lens which will define the plane spacing between the two
geometries. The baseline spacing is defined by the render-
ing aperture. In our implementation, we roughly match it to
the eye-box size for the blue channel.

Let us consider the following example: For a 22mm
eyebox, the baseline spacing is defined by

dxbaseline =
sizeeyebox(blue)
Nviews − 1

(2)

where Nviews defines the number of views horizontally. The
baseline spacing in vertical direction textdy is computed
accordingly.

The pixel spacing is matched to the size of the FoV of
the SLM. If the SLM has a height of sizeSLM = 8um ∗
1080(pix) ≈ 8mm, the pixel spacing is simply defined as

dxlightfield =
sizeSLM ;x

Nlightfield;x
(3)
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Fig. 3: A simple downsampling operation of the light field
will result in wrong pupil centers. This is here visualized via
the green centers which are mismatched with the blue pupil
centers in the interpolated coordinate grid.

where Nlight field;x corresponds to number of spatial pixels in
the light field.

4.3.3 Resampling Light Fields to different angular resolu-
tions

Typically a light field is given with a specific angular resolu-
tion, e.g. a 9x9 light field. In normal vision applications, one
typically interpolates the angular resolution to upsample or
downsample the light field. Downsamplig/Upsampling of
light fields, works without artifacts as long as the baseline is
small enough to ensure that the light field doesn’t alias. We
already discussed aliasing artifacts earlier in Sec. 4.2.

However, in the case of holography, one cannot simply
apply a cropping or downsampling operation to the light
field. This is because the geometry is defined by the holo-
graphic field, and the center of the rendered images is not
aligned with the edges of the physical aperture. In Fig. 3,
we visualize the center positions that the Wigner projections
assume for a 3x3 and a 5x5 light field. If the interpolation
is not done correctly, conversions between different sub-
sampled light fields lead to view inconsistencies.

This makes it particularly hard (or at least cumbersome)
if one would like to train holograms using STFT optimiza-
tion with different-sized angular light field resolutions. This
becomes even more problematic when light fields with large
baselines are used, where aliasing occurs quickly.

4.4 STFT and light fields

In the main paper, we discussed how the short-time-Fourier-
transform [14], [15] is used to compute a light field from a
complex field. The STFT, together with the window func-
tion, inherently defines the pupil that is applied in Fourier
domain. Furthermore, by nature, the STFT always samples
a grid of different pupil positions. We show examples of the
effective pupil function for a 5x5 and a 9x9 7. Note that the
pupil function is effectively close to a Gaussian. In reality,
a pupil/iris would be close to a binary aperture function.
However, a binary aperture function cannot be used in an
STFT approach as it contains high frequencies that would
require a huge window function, drastically increasing the
required memory space.

5 COMPARISON TO SMOOTH PHASE-HOLOGRAMS

5.1 Comparison to Point-Integration Methods
One might argue that the point integration method, such as
those proposed by Maimone et al. [16], is designed in a way
that they are insensitive to pupil movement. However, this
is not the case, as we will argue now. A single quadratic
phase point (or plane wave) would indeed be pupil insen-
sitive. However, this breaks down in an image with many
interfering quadratic phase points. To understand this bet-
ter, let us revisit how [16] works. Each point in the 3D object
is projected onto the SLM-image plane using a quadratic
phase with a depth-dependent slope. For a 3D object, we
can control the phase of each object point. Let us first study
the case where the object carries a constant phase. Here, the
intensity in the eyebox resembles the Fourier transform of
the image. I.e., the vast majority of the energy is contained
in the very center of the eyebox for natural images, and high
frequencies are contained in the edge of the eyebox, and are
very low energy. If the eye moves around so that it does
not consume the whole eyebox, various image frequencies
will be lost, making the system effectively pupil insensitive.
Mathematically, the point-wise integration method is the
convolution of the target image I with the quadratic phase
function QP , described as

F (F{I} ∗ F{QP}) , (4)

In the scenario of using a lens to direct rays to the eyebox
as in Maimone’s work, which approximates a Fourier trans-
former, the distribution in the eyebox can be approximated
as:

F{I} · F{QP} (5)

If the phase of the image is constant, F{image} will be the
Fourier transform of the real target image, which tends to be
highly concentrated in the low-frequency regions for natural
images. Consequently, the distribution

F{ I} · F{QP} (6)

will also have a high concentration of energy in low fre-
quencies, which is in the center of the eyebox when Fourier
is transformed by the lens. While one could potentially
try to assign a random phase to each object point, each
wavelet will now start to interfere with neighboring points.
Essentially a speckle field will be created, and the resulting
complex wavefront could potentially be used to display a
3D wavefield. However, as of today, we do not have access
to a complex modulator; hence it is unclear how to display
such a wavefront. Hence, to the best of our knowledge,
the pointwise integration method of by [16] can only work
with a smooth-phase approximation, such that DPAC can
be efficiently used to encode the complex-wavefront into a
phase-only modulation.

5.2 DPAC-modulation
The DPAC method, e.g. used by [16], encodes the com-
plex field using a phase-only field that is then propagated
from the target plane onto the SLM plane. In DPAC, a
high-frequency checkerboard pattern allows the complex
encoding into the phase-only modulation. However, it also
requires a physical aperture to low-pass filter the image
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such that neighboring pixels can interfere and form the de-
sired complex number. The low-pass filter effectively filters
out the higher-order signal copies that are created at the
edges of the eye-box by the employed checkerboard pattern.
Since we typically assume a zero phase on the target, the
propagated field will be smooth. As a consequence, the
field’s Fourier spectrum will be concentrated around the
zero domain. It is possible to introduce phase noise into
the target plane to broaden the spectral domain. However,
this will quickly cause the image quality of DPAC-created
holograms to deteriorate. This is because the more noise is
introduced into the field, the bandwidth of the holograms
becomes larger. The peaks are created by the checkerboard
pattern overlap and reduce image quality.

5.2.1 Comparisons to recent 3D holograms
In recent years, many 3D holographic algorithms similar
to [17], [18] have been proposed. Most of these algorithms
create holograms that are based on the assumption of a
smooth object smooth phase. The goal of those papers is
to show outstanding image quality; hence they don’t have
any consideration or discussion of whether their holograms
are smooth-phase or random-phase. Recent studies, such as
[19] investigated smooth-phase vs random-phase holograms
and concluded, that smooth-phase holograms might not
be able to drive accommodation for the human perceptual
vision system. We hence do not compare algorithms that
produce a smooth phase to our method, which assumes a
random phase for the object phase.

To prove our claim that these methods produce random
phase, we have implemented [17] for a layered focal-stack
scene and report qualitative results obtained by a simulation
in Fig. 4 We evaluate the hologram for front and back focus
and then move the pupil slightly outside of the eyebox. For
pupils that fully sample the DC-peak, image quality is great
for both focus positions. However, once the pupil moves,
the low-frequencies are no longer sampled. This will greatly
reduce image quality to a point, where the image cannot
be recognized anymore at all; second, the image intensity
drops drastically as almost light is centered around the DC
term.

In summary: Smooth phase holograms are able to pro-
duce best-of-class image quality for the center view, which is
basically indistinguishable from the ground truth. However,
they can only do that as long as the center view is sampled,
and once the pupil slightly moves away, they completely
lose all image contrast. For this reason, smooth-phase holo-
grams are a somewhat orthogonal research direction, and
we do not consider them in our evaluation.We acknowl-
edge, though, that further perceptual studies are required
to analyze the perceptual response between smooth-phase
and random-phase holograms beyond existing work such
as [19].

6 EYE-BOX SIZE AND PRACTICAL ISSUES IN
LCOS-BASED SLMS

This section focuses on a practical issue of light distribution
within the eye box that we discussed shortly in the main
paper. Many recent studies on holography do not address
this issue, and it is often assumed that the eye box is

solely determined by the system Etendue, which defines
the maximum diffraction angle given by the SLM-pixel
pitch. However, for most near-field hologram algorithms,
the light distribution in the eye-box is non-uniform and
heavily concentrated around the DC-term. This concentra-
tion of spectral energy leads to a significant reduction in the
”effective eye-box size”.

In addition to the limitation of a small eyebox, there is
another compelling argument against the use of smooth-
phase holograms. This is due to the susceptibility of a tiny
eyebox to floaters caused by scattering particles within the
human eye, as well as other factors such as strong ringing
artifacts from eyelashes. While previous work has demon-
strated exceptional quality using smooth-phase holograms,
their practicality is questionable. It is imperative that the
effective eyebox be larger than a concentrated peak to avoid
these issues, and randomized modulation is the only viable
solution. There is a series of papers employing random-
phase holograms, such as the works dealing with expansion
setups [20], [21], [22]. However, it is important to notice
that their image quality is also of significantly lower visual
quality than papers such as those presented by [6], [18],
[23], [24]. However, we emphasize again that the random
phase hologram is required to unlock the true powers of
holographic display. Hence, future research will have to
tackle the problem of of how comparable image quality is
achieved with random phase holograms.

6.1 Eye-Box using DPAC
6.2 Eye-Box using Gradient Descent
Similar characteristics are observed when computing CGHs
based on gradient-descent style algorithms. The optimized
hologram depends heavily on the chosen initial values. If
we start with a constant phase or relatively small noise
perturbation around zero, the optimized SLM patterns also
tend to be smooth phases. A significant increase in the
initial noise at the initial phase patterns leads to more
random-looking SLM patterns, which have wider support
in their Fourier Spectrum. If a wide eye box is a goal, one
would hence optimize their holograms using a fully random
initialization. This would inherently allow computing pupil-
invariant 2D images. However, a noise-free image can only
be computed if the full-aperture is sampled. Once smaller
pupils sample the eye-box, speckle inherently starts to occur.
To the best of our knowledge, temporal multiplexing [14] is
currently the only way to effectively reduce speckle in this
content. Partial coherence [23] could potentially be used to
reduce speckle, but it likely comes at the cost of significant
low-pass filtering of the displayed image.

6.3 Field-Fringing limits image quality
Here we discuss the important problem of field-fringing
which comes with SLM based on LCOS-technology. Phase-
SLMs based on LCOS-technology often exhibit strong field-
fringing artifacts which drastically reduces image quality
for holographic displays, especially when high-frequency
content is displayed.

Field-fringing, also known as cross-talk, is a phe-
nomenon that occurs naturally due to the crystalline ma-
terial used in LCOS technology, which causes a phase shift
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Fig. 4: Simulation: An example of a focal-stack hologram generated by [17]. When the pupil location is centered, one can
focus on both the front and back of the hologram without artifacts. However, [17] achieves this by enforcing a smooth
phase at the propagated hologram plane for each focal plane. This leads to smooth-phase holograms, which in turn leads
to a highly localized eyebox. Note that the eyebox is heavily localized even in log-visualization, meaning almost all energy
is centered at one peak. This again has catastrophic consequences when they pupil doesn’t sample this DC-peak anymore.
The image is directly lost. In fact, it’s not just the image contrast that is gone, also because almost all of the hologram’s light
energy is centered at the DC, the image at off-center pupils is going to have barely any energy. The total energy is many
magnitudes smaller than for the center pupils.

based on the applied voltage to the crystal. Several papers
have investigated field-fringing in more detail and found
that approximate models, such as convolutional models, can
provide sufficient results [25], [26], [27].

One unique aspect of field-fringing is that it acts as
a convolution in the phase domain rather than the com-
plex domain. This results in non-linear behavior in the
wavefront-domain that can sometimes introduce frequen-
cies that are not present in the original phase pattern. This
can be problematic for gradient-descent optimization for
random-phase holograms, which is required for a wide eye-
box. Field-fringing can destroy the information encoded in
random-phase holograms, leading to artifacts such as in-
correct contrast, unwanted point sources because of phase-
wrapping, and in general strong speckles in the resulting
images.

Recent papers based on neural-holography style system
calibration [6], have mainly focused on other aspects than
field-fringing. As a result, these papers typically use high-
capacity neural networks to model and compensate for
its effects. Yet, they allow smooth-phase holograms, which
drastically reduce the effects of field-fringing. Note that we
can label any hologram as smooth phase where image content
is still visible on the optimized SLM-pattern. Likewise, we
consider a phase hologram to be random phase hologram, if
the holograms has uniform phase-distribution over 2pi and
the optimized patterns basically looks like high-frequency
noise.

We believe that investigating field fringing and its com-
pensation models are exciting interesting work, as this is
likely required to increase the perceived image quality per-
formance on LCOS-based holographic displays with uni-
form eyebox. We believe that the image quality of all our
implemented algorithms could be drastically increased if
proper forward model calibration is performed. However,
this is out-of-scope of this paper and left for future work.
Alternatively, [14] uses fast, low-bit-depth modulators that

13 mm 10 mm 10 mm

Fig. 5: Eye-box The eye-box size depends on the wave-
length. When the eye-box is sampled by a pupil at a specific
physical location, this pupil hence corresponds to a different
spatial frequency for each wavelength. This means, that
center of the pupil are at different spatial frequency locations
and the size of the pupil also changes with wavelength.

induce the phase change using small mirrors which do not
suffer from field-fringing. Unfortunately, we didn’t have
access to this technology at the time of writing but believe
that this offers great opportunities to further increase the
image fidelity of our algorithms.

7 IMPLEMENTATION

Here we provide further implementation details regarding
the experimental setup which was used in our main paper.

7.1 Experimental Setup
We assess our SLFH-algorithm using a near-eye holographic
prototype. For this, we followed the conventional design
for near-eye holographic display as outlined in [6], [18]. A
simplified rendering of our setup is shown in Fig. 8.

The FISBA Ready Beam Laser (450nm, 520nm, 660nm)
with low temporal coherence is used as the light source.
The large temporal bandwidth blurs the image and reduces
the amount of speckle and interference (e.g. fringes due to
reflections). To clean up the beam of the fisba-laser (coming
out roughly at an 8deg angle), we use a 30mm lens to ex-
pand the beam and a 200mm for subsequent collimation. To
ensure that the SLM functions in phase-only mode, we use
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Fig. 6: Eye-box in experiment: We first compute Fourier-
CGH holograms for two calibration targets. The images
of the aperture were captured by adding a second path
to the setup focused on the aperture. In this experiment,
we opened our aperture to roughly 22mm. The eye-box
size depends on the wavelength. For the red wavelength
,the eye-box is maximal, for the bule it is the smallest.
The white peak in the center is the DC-term which stems
from unmodulated light (SLM fill-factor ¡ 1) as well as light
coming from the unmodulated boundaries of the SLM.
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Fig. 7: When using STFT the window function (here, ham-
ming window) implicitly defines the sampled pupil (left
with 9x9 LF, right 5x5 LF). The STFT also defines the grid
where the pupils are located. As the effective support of
each pupil is slightly larger than the spacing between pupil
locations, there will be pupil-wrapping at the outermost
pupils leading to artifacts.

Fig. 8: Rendering of the experimental setup. We build
a conventional near-eye holographic display. Defocus is
measured by moving the camera on a 1D translation stage.
Parallax cues are measured by moving a 2D-translation in
the aperture domain. We additionally add a second beam-
splitter after the second lens, to build another arm that
captures an image of the aperture.

a polarizer after collimation to filter out wrongly polarized
light. Note that the FISBA laser is already polarized, so we
additionally adjusted the polarization direction of the FISBA
laser to roughly align with our polarizer. The collimated
beam then passes through a beamsplitter and impinges on
an LCOS-based SLM ( Holoeye Pluto-2.1-Vis-016 , 1080x1920
pixels with an 8um pitch).

The modulated beam then passes through a 4f system
consisting of a 400mm (first) and 200mm (second) focal
length. The change in focal length leads to an effective
demagnification factor of 2 which allows to capture the
full FoV with out camera. A motorized aperture (Standa,
8MID22-0-H) with a maximum diameter of 25mm is placed
at the Fourier plane. The aperture can be moved laterally us-
ing two motorized-translation stages (Thorlabs, MTS25-Z8).
The image sensor (MC089MG-SY by Ximea) is mounted on a
high-speed brushless translation stage (Thorlabs, DDS050).
The sensor is mounted on a rotation stage to correct for
slight off-axis misalignment.

A 0mm standoff distance (measured in SLM space with
8um pitch) is chosen for the zero disparity plane, and the
focal volume is defined over 20mm from 0mm to 20mm.
With the chosen magnification of 2, 20mm propagation
corresponds to a 5mm travel on the translation stage. Ad-
ditionally, we employ a second camera image, the pupil-
sampled eyebox in order to calibrate the orientation of the
2D-translation stage and aperture.

7.2 Resolution Detail
All images are optimized with the full resolution on the
SLM-plane ( i.e. 1080x1920 ) pixels. The pixel pitch for all
our simulations and experiments is henceforth fixed to 8um.
However, as we’re employing a pupil sampling approach
where the pupils are default smaller than the maximal eye-
box, the pixel resolution of our holograms is actually a mis-
leading measure, as each hologram must be bandlimited.
E.g., if we would evaluate our hologram with a pupil that is
the 1/3 of the eye-box size, this corresponds to a bandpass
filter of 1/3 of the fully available spectrum. The maximal
image content that we could expect in such a case would
hence be equivalent to a downsampled image of 360x640.
However, note that while image-detail is traded here, we can
also move the pupil around to different views and could ac-
tually create 3x3 = 9 independent views. As our stochastic
light field algorithm randomly samples different radii and
positions, the effective resolution of each sampled image
actually varies. However, this is automatically accounted for
in our loss-function as in each step a novel ”image view” is
synthesized using the LF-rendering algorithm.

7.3 Spatial Light Modulator Calibration
We assume the same specifications for the SLM ( Holoeye
Pluto-2.1-Vis-016) in both simulation and experiment. As
the phase delay of the liquid crystals are dependent on the
wavelength, we need to perform a basic calibration for the
phase-range (Look-up-Table) for each color. To keep it sim-
ple, we assume that the phase always starts at 0 and is linear
up. Hence, only one scalar value for each channel needs
to tuned. As our optimization routines are not constrained
in the phase values, we can wrap the phase-values after
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optimization to be matched the phase-range of the SLM. We
tune the phase-range by hand for each color channel and
found rough estimates for phase-LUT with 2.0π, 4.9π, 6.1π
for red, green, and blue channels respectively.

We note that this calibration method is quite improper
and likely contributes to a large model mismatch. However,
as the same calibration settings were assumed in the simu-
lation and also applied to each method during capture, we
ensure fairness between comparisons. Still, we acknowledge
that overall experimental image quality likely suffers from
inaccurate calibration. For future work, Neural Holography
style calibration [6] might be employed to further increase
image fidelity. However, to the best of our knowledge,
model calibration with full-random phase holograms on
LCOS-displays is still an unresearched area and needs fur-
ther investigation, which is beyond the scope of this paper.

8 IMPLEMENTATION DETAILS FOR STFT AND FO-
CAL STACK

Watching the supplementary videos, one quickly notices
that the STFT method struggles when dealing with extreme
pupil shifts. On the other hand, our SLFH approach recovers
good image quality even at the boundaries of the eyebox.

This is because we designed the propagation distances
from the 4f-plane (where the SLM image is formed) to be
small. This is e.g. beneficial to reduce artifacts that would
arise due to partial coherent effects that increase with the
propagation distance.

However, the STFT-algorithm [14] struggles with small
propagation distances. This is because STFT doesn’t have
any inherent bandlimited during propagation and hence it is
hard to form amplitude modulation with SLM’s phase-only
modulation for small propagation distances. To solve this
problem, we adapt [14] and added a circular Fourier filter
(roughly 95% eyebox radius), which allows pushing some
energy into the NO-CARE-AREAS at the edges. Hence, STFT
cannot optimize for holographic content when these NO-
CARE-AREAS are sampled, but allows for content creation
with large areas of the eyebox.

If we do not include this Fourier-filter in STFT, the
performance is roughly 15dB worse as images are extremely
low-contrast and almost look a high-pass filter.

This is a general shortcoming of STFT (as well as for
the focal-stack loss, but less pronounced), which our SLFH
approach does not suffer from. This is because the pupil-
aware formulation automatically band limits the signal in
each sampled pupil-position of during optimization with
stochastical gradient descent.

In Fig. 9 we show simulation results for the comparison
methods (STFT) and FS for small propagation distances
without introducing no-care-areas. As your stochastic pupil
sampling approach implicitly samples the pupils, each view
is already implicitly bandlimited, hence our approach can
inherently deal with small propagation distances.

In Fig. 10 we show the artifacts that occur when the no-
care areas are introduced. STFT performs significantly worse at
the edges of the eyebox. In Fig. 11 we include captures of the
actual eyebox for the STFT-content which show high-energy
peaks at the boundary of our fourier-filter which introduces

the artifacts. Despite our best efforts, we were not able to
reduce these peaks in the Fourier-domain.

9 ADDITIONAL DISCUSSIONS

9.1 Speckle due to Alignment

Random phase holograms (like ours) are actually fairly
robust to misalignment as they act more like incoherent
displays: A much larger-SLM area contributes to forming
an image point compared to smooth-phase (where the scat-
tering is small). In fact, all of our experimental results were
done without any calibration tied to alignment. However,
this doesn’t mean that full-random phase holograms (in-
cluding ours) aren’t speckle free. In random-phase holo-
grams, speckles occur naturally, just like in incoherent light,
which is, by definition, speckly (just on a much smaller
scale). Yet, we note that future developments in speckle
reduction (let it be smaller SLM-pixels or novel system
design like [28]) are fully compatible with our approach and
hopefully will help achieve image quality close to smooth-
phase holograms.

9.2 Pupil-Steering

Pupil-steering approaches might be an alternative solution
to solve the 3D ocular parallax problem. However, there is
no free lunch as it requires additional scanning hardware,
which must be very accurate, robust, and run with very
high FPS. It is potentially the only viable way to overcome
etendue limits in short-term, but we consider it more a tech-
nological challenge than answering fundamental research
questions in holography. Hence, we do not compare against
pupil-steering technologies as those are complementary to
our research.

9.3 Comparison to Pupil-Aware Holography

[13] lacks sophisticated discussion for how to achieve
true 3D-content and their experiments show only 2-plane
representations, which are not optimized with focal-stacks.
Furthermore, in order to achieve good image quality, they
use an additional DPAC-layer to encode complex-fields.
This is because DPAC inherently leads to low-bandwidth
holograms, which decrease artifacts that arise e.g., due
to field-fringing. Unfortunately, low-bandwidth holograms
come with a much-decreased eye-box size. As the goal of
light-field holography is to utilize the maximal achievable
eye-box, the algorithm proposed in [13] pupil-aware holog-
raphy cannot be applied for our purposed.

Moreover, their proposed optimization uses a shift-
invariant multi-layer representation. This is highly unphys-
ical as parallax induced by FS-cues is ignored. Our re-
sults show that holograms with correct FS-cues automati-
cally demand parallax (and vice-versa). Hence, pupil-aware
holography is at odds with physical constraints and cannot
produce image quality over the full-eyebox.

9.4 Comparison to other Light Field papers

There are several other papers that propose light field losses
such as [22]. In fact, [22] show experimental results with
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Fig. 9: Artefacts without No-Care-Areas (Simulation): This figure shows the poor performance of STFT and FS-approaches
for small propagation distances without accounting for ”NO CARE AREAS” within the eyebox. Only by introducing a no-
care area where the eye-box cannot be sampled, good images can be optimized (see other simulation and experimental
results).

Fig. 10: Artefacts with No-care-areas (Experiment): Figure shows artefacts caused by introducing no-care areas, affecting
STFT performance at the edges of the eyebox. To address this issue, a circular Fourier filter was added to push energy into
the no-care areas, enabling content creation with larger areas of the eyebox.
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Fig. 11: STFT-Artifacts in Fourier domain(Experiment).
Here, we show the displayed eye-box (aperture plane) for
three different pupil locations with the STFT-reconstructions
when including the NO-CARE-AREAS. In the ideal case,
the Fourier spectrum would be uniform (noisy everywhere),
but because of the additional Fourier filter the optimization
algorithm tends to create high-energy regions inside of the
eye box. Here we only show the blue channel. The location
of the high-energy peaks changes accordingly with different
wavelengths (red and green) as discussed above. Whenever
a pupil samples these high-energy regions, strong streak
artifacts occur. This drastically reduces the region where
STFT can be evaluated.

both focal stacks and light fields. However, those experi-
ments are done isolated from each other. The focal stack
experiments and light fields scene are from totally different
scenes and there’s no cross-examination how well a light
field scene works on a focal-stack evaluation and vice versa.
For this reason, we consider light field papers [22] to be
conceptually equivalent to STFT [14].

The proposed method using the Wigner-geometry, does
much more as we indeed couple the effects of both focal
stacks and light fields.

9.5 Clarifications on Far-Field / Fourier Holograms

In holographic near-eye displays there are two main classes
of how the holographic image is created: Near-eye and Far-
field holograms.

Most recent near-eye display holography papers work in
the near-field configuration (sometimes also labeled Fresnel
holograms). Here, the image is created at or close (propaga-
tion distances up to 200mm) to the relayed SLM-plane. This
allows to compute holograms with closed-form solutions
such as DPAC-encoding [16], real-time applications using
Neural Networks [18] and iterative methods such as [4], [6].
As discussed above, Near-eye holograms can often achieve
great image quality, especially when the chosen phase-
distribution is rather smooth.

The other class is far-field holograms, where the display
(SLM) modulates the wavefront in the spectral domain.
Recent examples of near-eye displays that work in far-field
configuration would be [20], [21], [22] that use iterative
approaches. However, there are also many closed-form so-
lutions out there, with [29] being a recent one that uses
the Wigner-formulism directly to compute wavefronts from
light fields.

9.6 Stochastic Light Field Holography with STFT-
formulation
Let us shortly revisit the STFT equation as introduced in the
main paper:

STFT[u(r)] (r,q) =
∫

u (r′)w (r′ − r) e−j2πq·r′dr′

= F−1 {U (q′) ·W (q′ − q)} ,
(7)

L (r,q) = |STFT [u(r)] (r,q)|2 . (8)

This equation is concise, simple and intuitive. In theory,
by choosing different Window functions, different pupil
functions can be realized. Note that the chosen window size
limits what pupil functions could be achieved as the chosen
window essentially also acts as a bandpass filter.

In any case, one could certainly vary windows-size,
grid-density, and propagation- distance. However, these
modifications would inherently demand a change in the
LF-targets for each chosen window configuration. While
the STFT-equation could be modified to be equivalent to
our stochastic light field approach, it would require the
same consideration on how the incoherent LF-part has to be
geometrically coupled with the coherent part. At this point,
even the STFT-formulation needs to revisit the Wigner-
formulation argument to enforce a correct geometrical cou-
pling. We conclude that the Wigner-approach provides only
the theoretical framework - whether one uses STFT or pupil-
aware representation - those are only semantics. However,
we believe that explicit modeling of the pupil in the spectral
domain is more intuitive than doing stochastic pupil sam-
pling using the STFT-formulation.

10 ADDITIONAL RESULTS

10.1 Experimental Results
Changing aperture size: We show additional results for the
robot scene where we’ve changed the aperture size and
varied the back and front focus, see Fig. 15

Greenery Scene: In Fig. 14, we show a comparison be-
tween the front and back focus between the focal stack and
our SLFH. There is higher color fidelity at leaves for the
SLFH method as it probably has seen this particular focused
region of the images more often than only one time when
optimized with a focal stack only.

10.2 Simulation Results
Chaing aperture size: We show results where we compare
the implemented algorithms in simulation for changing the
aperture from small to large in Fig. 16. Differences are best
noticeable when looking at noise level and fine details such
as the occlusions at the wireframe.

Arbitrary pupil states In Fig. 12 to Fig. 21 we show ad-
ditional simulation results evaluated under arbitrary pupil
states for a large variety of different scenes.

PSNR statistic plot
For completeness, we show in Fig. 12 the corresponding

statistical evaluation on the Deep Spaces [8] dataset with
PSNR values instead of the SSIM which we have reported
in the main paper. The findings are similar, but we believe
that SSIM is a better image metric for visual performance
evaluation than PSNR.
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Fig. 12: Statistical Evaluation: Statistical performance evalu-
ation of SSIM percpetual similarity metric over the Deep
Spaces [8] light field dataset. Holograms are trained using
STFT, Focal Stack supervision (LF2FS), and Stochastic Light
Field Holography (SLFH). Statistics are plotted for vari-
ous aperture types: Varying Aperture (focus and position
are fixed), Focal Stack (aperture diameter and position are
fixed), Light Field (aperture diameter and focus are fixed),
and random pupils. Each dot represents the average PSNR
of all evaluated pupil-positions for a specific aperture type
for one specific light field within the Deep Spaces [8] dataset.
Hence, each dot corresponds to the average performance
for a specific scene. Our method always produces the
best worse case performance, and produces a better mean
and variance for random pupils, which means that our
algorithm performs better for a wider variety of near-eye
viewing conditions.
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Fig. 13: Experiment: We show experimental results for a variety of different pupil states for STFT, focal stack, and light
field supervision. Thy differences are slight, but one can see that our proposed method consistently shows accurate image
quality.

Fig. 14: Experiment: This example shows a scene with a lot of occlusions.The most striking difference is that Focal-Stack
optimization fails to produce a correct color at the leaves (see inset on the right).
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Fig. 15: Experiment: Changing aperture size (Front/Back focus In this experiment, we change the aperture size from very small
to full aperture. Note how the second row looks almost the same for both back and front focus. One can also see that the
Depth-of-field is large for small pupils, albeit the images are very speckly. The Focal Stack optimized images are slightly
noisier than the proposed full-light image.
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Fig. 16: Simulation: Additional results showing the reconstruction quality for different approaches when changing the
pupil diameter. The proposed method SLHF produces imagery with signficantly less noise and less ringing.

Fig. 17: Simulation: Arbitrary pupils for a dense scene with occlusions.
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Fig. 18: Simulation: Arbitrary pupils for a scene from the Deep Focus dataset.

Fig. 19: Simulation: Arbitrary pupils for a scene from the Deep Focus dataset.
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Fig. 20: Simulation: Arbitrary pupils for a scene from same scene as in the paper to show more pupil states.

Fig. 21: Simulation: Arbitrary pupils for a scene from same scene as in the paper to show more pupil states.


