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Stochastic Light Field Holography
Florian Schiffers, Praneeth Chakravarthula, Nathan Matsuda, Grace Kuo,
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Abstract—The Visual Turing Test is the ultimate goal to evaluate the realism of holographic displays. Previous studies have focused on
addressing challenges such as limited étendue and image quality over a large focal volume, but they have not investigated the effect of
pupil sampling on the viewing experience in full 3D holograms. In this work, we tackle this problem with a novel hologram generation
algorithm motivated by matching the projection operators of incoherent (Light Field) and coherent (Wigner Function) light transport. To
this end, we supervise hologram computation using synthesized photographs, which are rendered on-the-fly using Light Field
refocusing from stochastically sampled pupil states during optimization. The proposed method produces holograms with correct
parallax and focus cues, which are important for passing the Visual Turing Test. We validate that our approach compares favorably to
state-of-the-art CGH algorithms that use Light Field and Focal Stack supervision. Our experiments demonstrate that our algorithm
improves the viewing experience when evaluated under a large variety of different pupil states.

Index Terms—Computational Display, Holography, Light Field, Wigner Distributions, Near-Eye Display, VR/AR
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1 INTRODUCTION

IN 1972, the Cartier jewelry store on 5th Avenue in New
York City displayed an analog hologram of a hand-

holding jewelry on their window storefront. This hologram
was so realistic that an elderly woman passing by attempted
to attack the virtual arm floating in mid-air [1]. Large-format
analog holograms are known for their incredible realism
and ability to give the impression of a complete 3D picture
frozen in time. For static objects, full-color holography has
been shown to provide realism on par with the visual
inspection of the actual object. As such, holography is often
seen as the most likely approach to pass the Visual Tur-
ing Test [2]. However, the dynamic display of high-quality
digital holographic 3D imagery has proven challenging as a
result of the limited system étendue. Etendue is determined
by the Space-Bandwidth-Product (SBP) of the modulator,
which is equal to the product of the maximum diffraction
angle supported by the modulator and its modulation area.
Most existing holographic systems rely on phase-only spa-
tial light modulators (SLM), where this angle is limited by
the pixel size – today’s fabrication techniques achieve 8µm
pixel pitch for phase SLMs with no more than 4◦ of diffrac-
tion while limiting the eyebox to the size of the device.
As a result, the available SBP mandates a trade-off between
FOV and eyebox size that impacts the number of achievable
angular views. The SBP required for holographic near-eye
displays with a large eye box (roughly 10mm) and large
FoV ( 100 degree), is still so high that pupil steering using
eye tracking might be necessary unless étendue-expansion
approaches [3], [4], [5], [6], [7] make significant progress.

Problem Statement. Even with novel designs, achieving
and utilizing a large enough SBP to fully realize the potential
of holographic displays remains a challenge. Specifically,
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Fig. 1: Stochastic Light Field Holography Algorithm: We wish to
infer an SLM phase image ϕ that produces a hologram with
viewable intensity matching the projections rendered from
a target Light Field L. To do this, a series of pupil samples
with randomly generated position, diameter, and focus, pi
are passed to two equivalent image formation models: a
Light Field projection operator, which produces individual
target images Ti, and a Wigner projection operator, which
produces individual output estimates T̂i, for each of the
pupil samples. These target and output estimates are com-
pared using a photo-consistency loss function, which is in
turn used to update the SLM phase image with a gradient
descent step.

a key question is how to compute holograms such that
they provide an optimal image for any possible viewpoint.
This problem is amplified for large SBP systems with large
eyebox size as the pupil can move significantly within. Pupil
movement, including changes in location, size, and defo-
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Fig. 2: Stochastic Light Field Holography on experimental hardware. Recent advances in holographic displays achieve high image
fidelity using smooth-phase holograms. This comes at the cost of a highly concentrated eye box limiting image formation
to only the central view. For a more robust visual experience, holographic displays should provide good image quality
for arbitrary pupil-states (diameter, location, and accommodation) within the entire available eye box. With Stochastic Light
Field Holography (SLFH), we propose a novel framework that ensures photo-consistency over the entire eye-box volume.
We implement a novel Focal Stack supervision algorithm (LF2FS) and show that SLFH is a generalization of state-of-the-art
(SOTA) Focal Stack and Short-Time-Fourier-Transform (STFT) supervision of CGH optimization algorithms, representing only
a limited subset of possible pupil states. Consequently, our proposed method provides the best average image fidelity
over the entire eyebox compared to SOTA. On the left, we show experimental captures from three example pupil states
(Front/Back focus for accommodation, left/right for parallax). On the right, we show epipolar slices generated by capturing a 1D
trajectory consisting of 31 small pupils (1/8th of eyebox) from left to right for both front and back focus. Our SLFH method
produces the least artifacts over the full eyebox, while Focal Stack supervision produces strong color-fringing at occlusions
and STFT-optimized holograms often show ringing artifacts and over-sharpened in focus images.

cus, can significantly affect image quality on holographic
displays [8]. Accurately accounting for pupil movement is,
as such, a critical challenge in the development of photo-
realistic holographic displays, as it can greatly affect the re-
alism and immersion of the viewing experience (see Fig. 3).
Only recently, researchers have investigated this issue for
2D holography [8] and showed only very preliminary 3D
results using a two-plane representation with two objects.
Hence, the computation of pupil-aware 3D holograms is an
open problem that we address in this paper.

Proposed Solution. In this work, we address the challenge
of computing high-quality holograms that accurately repro-
duce vision cues during pupil movement. To do this, we
propose a new Stochastic Light Field Holography (SLFH)
algorithm that generates holograms using a loss function
motivated by matching the photographic projection opera-
tors of incoherent and coherent light. Our approach ensures
optimal performance for a random assortment of pupil
states and, unlike previous work, produces 3D imagery
while also avoiding overfitting to specific viewing condi-
tions. While previous methods use a loss function based
on a set of static, prerendered images, we supervise our
loss function by synthesizing novel views using Light Field
refocusing [9] from arbitrary pupil states. By sampling pupil
states stochastically, we ensure, unlike existing work, that
the optimized hologram provides correct parallax, defocus,
and depth-of-field cues for all possible pupil states.In or-
der to have a fair comparison method with multi-plane
approaches [10], [11], we introduce a novel Focal Stack
supervision algorithm (LF2FS) which ensures a parallax-
consistent defocus allowing for a direct comparison to our
main contribution, which is SLFH.

Contributions. Our software codebase for stochastic pupil
sampling will be made publicly available after publication of this

manuscript. Our paper makes the following contributions:
• We are the first to study the image quality of 3D-CGH

algorithms for all possible pupil states within the available
eye-box volume.

• We are the first to introduce on-the-fly Light Field refocus-
ing [12] into the holographic generation process. We pro-
pose a new CGH-algorithm that reproduces parallax and
accommodation for arbitrary pupil states by coupling the
projection operators for ray-space (Light Field) and wave-
optics (Wigner Distribution). We use this to implement both
a novel Focal Stack supervision algorithm (LF2FS) and our
proposed SLFH method.

• We validate the method in simulation and demonstrate
that, while previous techniques overfit to specific pupil
states used during training, our method produces the
most favorable display for arbitrary viewing conditions
(see Fig. 4).

• We assess the method with an experimental prototype
and demonstrate higher quality parallax information with
fewer artifacts than state-of-the-art Light Field supervi-
sion CGH optimization algorithms (see Figs. 2, 6, and
Supplemental Material).

2 RELATED WORK

Holography for displays relies on diffraction and interfer-
ence of light to generate images. Based on the diffracted
field, a hologram can be classified as a far-field Fourier
hologram or a near-field Fresnel hologram. Using phase-
only SLMs requires computing phase-only holograms that
are capable of producing the diffraction field that can closely
mimic the target image. However, the underlying phase
retrieval problem is generally ill-posed and non-convex.
Though introduced for Fourier phase retrieval, early meth-
ods such as error reduction using iterative optimization [13],



3

Fig. 3: The eyebox problem and Smooth-Phase CGH algorithms:
State-of-the-art holograms can achieve high image quality,
but their spectral energy is highly concentrated leading to a
small, effective eye-box. Here, we show image degradation
of smooth-phase holograms on our experimental setup once
the eye-pupil (red inset) does not sample the DC-term any-
more.

[14] and hybrid input-output (HIO) methods [15], [16] are
applicable for both Fourier and Fresnel holograms. Re-
searchers have also explored phase-retrieval methods using
first-order nonlinear optimization [17], alternative direction
methods for phase retrieval [18], [19], nonconvex optimiza-
tion [20], and methods overcoming the nonconvex nature
of the phase retrieval problem by lifting, i.e., relaxation,
to a semidefinite [21] or linear program [22], [23]. Several
works [24], [25] have explored optimization approaches
using first-order gradient descent methods to solve for
holograms with flexible loss functions.

Focal Stack and RGBD Algorithms. Instead of computing
the wave propagation for millions of points, a 3D object can
be represented as a stack of intensity layers [10], [26], [27],
[28]. Wave propagation methods such as the inverse Fresnel
transform or angular spectrum propagation are typically
used for propagating the waves from several layers of the
3D scene towards the SLM plane, where they are interfered
with to produce a complex hologram [3], [20], [24], [29].
Although this approach can be implemented efficiently, it
cannot support continuous focus cues and accurate occlu-
sion due to discrete plane sampling. Recent work [30] sug-
gests that holograms based on smooth-phase profiles [31]
cannot support accommodation; the ultimate promise of 3d
holography. An additional discussion on smooth vs random
phase holograms is found in the supplementary.

A further approximation to the layer-based methods is
to determine the focal depth of the user, i.e., distance of
the object to which the user fixates via an eyetracker and
adjusting the focal plane of the 2D holographic projection
to match the user focal distance [32]. While emulating a 3D
scene by adaptively shifting a 2D holographic projection in
space is computationally efficient, operating in a varifocal
mode under-utilizes the capabilities of a holographic dis-
play. Moreover, achieving natural focus cues and physically
accurate occlusion effects still remains a challenge. To com-
pare against SOTA Focal Stack methods, we introduce a novel
Focal Stack supervision algorithm (LF2FS) that generates Focal
Stacks on the fly from Light Fields according to physically
accurate pupil states.

Light Field Algorithms. To support occlusion and depth-
dependent effects, a Light Field can be encoded into a
hologram partitioned spatially into elementary hologram
patches, called “hogels” [34], similar to elementary images
in a Light Field. These hogels produce local ray distributions
that reconstruct multiple (Light Field) views [35], [36], [37].
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Fig. 4: Statistical Evaluation: Statistical performance evalu-
ation of SSIM percpetual similarity metric over the Deep
Spaces [33] light field dataset. Holograms are trained using
STFT, Focal Stack supervision (LF2FS), and Stochastic Light
Field Holography (SLFH). Statistics are plotted for vari-
ous aperture types: Varying Aperture (focus and position
are fixed), Focal Stack (aperture diameter and position are
fixed), Light Field (aperture diameter and focus are fixed),
and random pupils. Each dot represents the average SSIM
of all evaluated pupil-positions for a specific aperture type
for one specific light field within the Deep Spaces [33]
dataset. Hence, each dot corresponds to the average perfor-
mance for a specific scene. Our method always produces
the best worse case performance, and produces a better
mean and variance for random pupils, which means that
our algorithm performs better for a wider variety of near-
eye viewing conditions.

Such holograms which encode a Light Field are called “holo-
graphic stereograms”. Conventional stereograms, where
hogels are out of phase with each other, suffer from a lack
of focus cues and limited depth of field [35]. To keep the
hogels of a holographic stereogram in phase throughout the
hologram, researchers have introduced an additional phase
factor to calculate what is called a phase-added stereogram
(PAS) [36]. However, akin to a microlens array-based Light
Field display [38], stereograms suffer from the fundamental
spatio-angular resolution trade-off: A larger hogel size leads
to a decreased spatial resolution. This fundamental limita-
tion does not allow for high spatial resolution holographic
stereogram projections. Recent methods have attempted to
overcome this trade-off [39], [40], [41] via Short-Time Fourier
Transform (STFT) inversion. However, these methods do not
match the image quality achieved for 2D holograms [24],
[42] and suffer from artifacts around object discontinuities
due to suboptimal inversion of the STFT. More impor-
tantly, these algorithms do not incorporate pupil models
for viewing the hologram, and therefore overfit to viewing
conditions where the eyebox and pupil coincide. In Sec. 3
will further discuss the Wigner function and how it relates
to holographic displays. We want to stress that we are not
the first to consider the Wigner-function for holographic
displays [41], [43], [44]. However, these methods use the
Wigner-function to establish a closed-form solution similar
to [39], which is different from ours, which uses an iterative
approach to recover the displayed phase-modulation.

Learning-Based Holography. Neural networks and deep
learning approaches have recently been proposed as tools
for optical design and holographic phase retrieval. Holo-
graphic microscopy has been tackled by solving phase
retrieval problems using neural networks [28], [45]. In a
similar fashion, neural networks have been investigated for
learning holographic wave propagation from a large train-
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Fig. 5: Simplified diagram of the proposed setup: An SLM
(illumination path not shown) diffracts a collimated beam
according to an optimized pattern. The modulated beam
passes through a 4-f system, with a pupil having pro-
grammable shift s and diameter d. The relay system pro-
duces an image of the SLM offset from the detector by a
defocus distance z.

ing dataset. For example, Horisaki et al. [46] trained a U-net
on a pair of SLM phase and intensity patterns, and predicted
SLM phase patterns during inference. Recently, Eybposh
et al. [28] proposed an unsupervised training strategy and
predicted the SLM phase patterns in real time that pro-
duced 2D and 3D holographic projections. Peng et al. [24]
and Chakravarthula et al. [42] have recently demonstrated
camera-in-the-loop (CITL) calibration of hardware using
neural networks and high-fidelity holographic images on
prototype displays. Shi et al. [47] have demonstrated high-
resolution real-time holography with a light weight neural
phase-retrieval network that may be suitable for inference
on mobile hardware in the future.

Pupil and Parallax-aware Holography. Very recently, re-
searchers have investigated the effects of pupil sampling
on holographic setups. Chakravarthula et al. [8] work is
the most similar work related to the investigation in this
paper. Chakravarthula et al. propose a new cost function
which enforces a uniform energy distribution over the eye-
box by stochastically sampling different pupil positions.
However, their approach is limited to 2D-imagery and very
preliminary multi-plane images, and, as a result, they did
not account for parallax and focus-cues effects. Methods
that operate on RGB-D scenes [10], [24], [47] are capable of
finding correct accommodation cues by using multi-plane
or Focal Stack representations, however, are not able to
account for correct parallax cues when the pupil is shifting.
Motivated by this, recent work has proposed holographic
generation algorithms using Light Field supervision [39],
[48], [49], making use of the Short Time Fourier Transform
(STFT) and allowing a bidirectional transform between holo-
grams and Light Fields as proposed by [50]. All of these
existing methods have in common that they do not allow
for pupil sampling and accurate parallax cues at the same
time.

3 PHOTOGRAPHIC PROJECTION OPERATORS

In this section, we establish a connection between the
coherent (wave-optics) and incoherent (ray-space) projection
operators. We first introduce Light Fields, their coherent
equivalent using the Wigner-formalism, and their resem-
blance to STFT approaches used in current literature.

3.1 Eye Pupil Model

The primary contribution of our work is to introduce a
simplified eye/pupil model into the hologram forward
model for optimization of photorealistic 3D imagery over
a variety of viewing conditions. We approximate a near-
eye holographic display system as a 4f relay where an
eyepiece images an SLM illuminated by monochormatic
light through a pupil, followed by an eye lens which images
onto a detector (see Fig. 5). We represent 2D coordinates
in the detector plane as r = (x, y), and pupil plane as
q = (u, v). The eye is assumed to be focused at infinity
in the rest state so that converting from pupil to angular
coordinates is given by the relation q = tan(θ)/f , where
f is the focal length of the eye model or objective lens (f2
in Fig. 5). For simplicity, we parameterize the pupil state p
with a set of 4 parameters, that is

p = {s, z, d}, (1)

corresponding to focus distance (z), 2D-pupil shift s =
(x, y), and aperture diameter (d). We define the pupil aper-
ture function as a circular function that focuses at infinity in
the rest state

A(q; p) =

{
1, if |q− s| < d

0, otherwise.
(2)

3.2 Light Fields

Light Fields represent the flow of radiance in a scene in
every direction and every point in space. This extra informa-
tion can be used to generate synthetic 2D images from differ-
ent viewpoints and simulate optical effects like defocus and
lens aberrations. The photography operator is used in digital
refocusing [12] to render images at different depths from the
Light Field under a virtual aperture function. Specifically,
the operator Plf describes the transformation of a 4D Light
Field L(r,q) into a synthetic photograph focused through
an aperture function A with a depth defined by α. We
parameterize the Light Field such that r and q represent the
spatial coordinates of the Light Field on detector and pupil
planes, respectively. The photographic projection operator
can then be expressed as the following projection from 4D
to 2D

Plf [L; p] (r) =

∫
A(q; p) · L(q− q− r

α
,q) dq, (3)

Equation 3 can be thought of as shearing the 4D space,
multiplication with the aperture function and a subsequent
projection down to 2D. Note that the effects of changing
focus distance z are incorporated into the defocus parameter
α = f/(z + f).

3.3 Wigner Function

The projection operator for Light Fields in Eq. 3 works
only for incoherent light as it cannot account for inter-
ference effects. To overcome these limitations, [51], [52]
used the Wigner Distribution-Function (WDF) to establish
the connection to Light Fields. While it is computationally
intractable to use Wigner functions efficiently for large
holograms, it provides a powerful tool for understanding
optical systems and their limitations. To illustrate this, let us
consider a monochromatic optical field u(r). The correlation
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between two points on the field r and r′ is given by the
mutual intensity function, which operates on a 2D field and
then produces a 4D quantity as

J[u(r)] (r, r′) =
〈
u

(
r+

r′

2

)
u∗

(
r− r′

2

)〉
, (4)

where ⟨·⟩ denotes a time-average. The WDF is then defined
as the Fourier transform of the mutual intensity along r′

W[u(r)](r,q′) =

∫
J (r, r′) exp (−2πir′ · q′) dr′. (5)

The spatial frequency coordinates q′ of the WDF can be
converted to spatial pupil coordinates q via the relation

W (r,q) = W (r, λfq′). (6)

Wigner Projection Operator. We next consider the WDF
W (r,q) defined at the plane of a phase-only SLM with
displayed phase pattern ϕ(r), producing a diffracted field
u(r) = exp (jϕ(r)). Defining the WDF of the aperture
function A(q; p) to be WA(r,q), the WDF that is imaged
onto the retina of the eye (assuming unit magnification for
simplicity) is

Wo[u(r)](r,q) =

∫
WA (r,qi)W [u(r)] (r,q− qi) dqi

(7)
The effect of a focus shift z in Wigner-space can be repre-
sented as a shear [53] given by

Wz (r,q) = Wo (r− λzq′,q) = Wo

(
r− z

f
q,q

)
, (8)

which results in the Wigner projection operator

PWF [u(r); p] (r) =∫∫
WA(r,q− qi) ·W [u(r)]

(
q− q− r

α
,q

)
dqdqi. (9)

Relationship between Wigner and Light Field Projection.
Comparing Eq. 9 with Eq. 3, we observe that the projection
geometry is identical while the WDF projection allows us
to incorporate interference effects from the eye pupil that
naturally arise when viewing a holographic display illumi-
nated with coherent light. Closer inspection reveals that the
Wigner projection operator is a generalization of Light Field
projection. When the retina detector pixel size ∆ is much
larger than the diffraction airy disc size ∆ >> λ · f/d,
then the effect of diffraction from the pupil aperture on
the perceived image is negligible. In this case, the WDF
for the aperture is approximately independent of spatial
coordinates r so that WA(r,q) ≈ A(q; p) ·W (r,q). Hence,
the projection operators for Eq. 9 and Eq. 3 are identical
within a scale factor.

Wigner Projection with Wave Optics. The similarity be-
tween photographic projection operators for Light Fields
and WDFs provides an intuition for how to optimize holo-
grams that produce photorealistic imagery over a variety of
viewing conditions. However, while the WDF is an elegant
way to describe coherent light transport, it is impractical
to compute on large fields [54]. Instead, we implement the
projection operator of Eq. 9 using wavefront propagators via
stochastic pupil-sampling as described in Sec 4.2.

3.4 Bidirectional Hologram Light Field Transform
As discussed in Sec. 2, a successful branch of LF-CGH algo-
rithms employs STFT-inversion to move between LFs and
hologram-domains [50]. The Wigner projections (Sec. 3.3)
have striking similarities with the STFT, as we will show in
the following. The STFT of a signal u(r) is defined as the
convolution with a window function w(r) such that

STFT[u(r)] (r,q) =
∫

u (r′)w (r′ − r) e−j2πq·r′dr′

= F−1 {U (q′) ·W (q′ − q)} ,
(10)

where U (q′) and W (q′) are Fourier transforms of the
field u (r) and window function w (r), respectively. The
relationship between the STFT of the field u(r) and the
target lightfield is then

L (r,q) = |STFT [u(r)] (r,q)|2 . (11)

Together, Eqns. 10 and 11 express the relationship between
STFT-based CGH algorithms and the Wigner projection op-
erator implemented using wave optics as detailed in Sec. 4.2.
Implicitly, the STFT computes an image of the hologram as
viewed with a pupil function W (q′), which is the Fourier
Transform of the STFT window function w (r). Typically a
Hanning window or similar function is used to suppress
ringing, and a grid of pupil positions is computed by
applying a 2D FFT to the windowed field u (r′)w (r′ − r).

The method we propose in this work can be thought
of as a generalization of STFT-based methods, with a few
important differences. First, while the STFT method uses
fixed pupils for hologram generation that provide photo-
consistency with lightfield views, our method ensures that
arbitrary pupil functions applied to the holographic display
are consistent with Light Field projection using the same
pupil. Second, our method relies on the relationship be-
tween spatial frequency coordinates and angular frequency
coordinates of the field, which is necessary to produce
accurate color reconstructions with multiple wavelengths.
Lastly, the proposed method decouples the number of pupil
positions from the forward model so that less memory can
be used to compute larger holograms.

3.5 Eyebox, Pupils and Speckle
This paper focuses on the problem of developing optimiza-
tion algorithms for holograms that produce photorealistic
3D imagery over a variety of random pupil states. A neces-
sary requirement for these algorithms is that they produce
an eyebox with a relatively smooth distribution of intensity
so that there is not a drastic change in perceived bright-
ness as the pupil state changes during hologram viewing.
In order for a hologram to produce a uniform eyebox, it
must also produce a diffracted field with a relatively even
distribution of angular frequencies, which means that the
CGH will typically have highly randomized phase. This has
implications on the type of CGH algorithm used, as well
as the quality of imagery displayed since random phase
holograms naturally introduce speckle.

Many recent studies on holography do not address the
issue of eyebox uniformity, and it is often assumed that the
eye box is solely determined by the system etendue, which
defines the maximum diffraction angle given by the SLM-
pixel pitch. However, for most near-field hologram algo-
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rithms that have recently reported great image quality [24],
[47], the light distribution in the eye-box is heavily concen-
trated around the DC term. This concentration of spectral
energy leads to a significant reduction in the ”effective eye-
box size”. This problem arises naturally in many existing
holographic generation algorithms. Double Phase (DPAC)
encoding provides a direct method for encoding a complex
field onto a phase only SLM, but only works well with
smooth phase holograms that contain a Fourier spectrum
highly concentrated around the optical axis (DC angular fre-
quency). Likewise, similar characteristics are observed when
using holographic generation based on gradient-descent
style algorithms that are initialized with smooth phase (see
Fig. 3).

Speckles are interference effects that occur when a
diffracted field is highly random compared to its effec-
tive aperture. The speckle size on the retina of a pupil
sampled hologram is inversely proportional to the pupil
diameter d [55]. In this work, we focus on CGHs which are
viewed with pupil diameters much smaller than the eyebox
(d ∈ [weyebox/12, weyebox]), which can introduce significant
speckle noise in simulated and captured imagery relative
to sampling the full eyebox. To improve image quality
and reduce the effect of speckle we introduce incoherent
averaging in the form of temporal averaging of 8 frames
and spatial averaging of 2 × 2 blocks of pixels. For fair
comparisons, we apply the same incoherent averaging to
all algorithms used in this paper.

4 STOCHASTIC LIGHT FIELD HOLOGRAPHY

Building on the projection operators from the previous
section, we now introduce the proposed method. We first
introduce the forward model that describes the mapping
from a displayed phase-modulation ϕ on the SLM to the
complex wavefront u, assuming that the image is captured
under an arbitrary pupil state. Then, we will introduce the
proposed novel CGH-algorithm using Light Field supervi-
sion (see Fig. 1).

4.1 Enforcing Photo-Consistency
The proposed method enforces photo-consistency between
image formation of a known Light Field L(r,q) and a
unknown Wigner distribution W [u(r)](r,q), where u(r) =
exp (jϕ(r)) is the complex field formed by the holographic
display with phase-only slm pattern ϕ(r). We implement
projection operators for both Light Field Plf [·] (see Eq. 3)
and the Wigner Distribution Pwd [·] (see Eq. 5) such that
they match the geometry of our holographic display. The
projections of the known Light Field produce a set of target
photographs given the viewing parameters

Ti(r) = Plf [L, pi]. (12)

We then generate the corresponding Wigner projections
corresponding to observations of the diffracted optical field
with the same viewing parameters

T̂i(r, ϕ(r)) = Pwd[exp (jϕ(r)), pi]. (13)

The optimization objective is then to find the SLM pattern
ϕ(r) that solves

ϕ(x)∗ = argminϕ

∑
i

L( Ti(r), T̂i(r, ϕ(r))) (14)

given pi =

{
xi ∼ U [−rmax, rmax] zi ∼ U [zmin, zmax]
yi ∼ U [−rmax, rmax] di ∼ U [rmin, rmax]

(15)
where U is the uniform distribution and L is an arbitrary
loss-function (L2 in our case).

4.2 Implementation of Projection Operators
Wigner-Projection using Wave Optics. While the Wigner pro-
jection operator of Eq. 5 is useful to build an intuition
for how to optimize a hologram that is radiometrically
consistent with a target lightfield, computing the full WDF is
impractical because the WDF is a 4D function which results
in quartic memory growth. Instead, we use a Fourier optics
forward model to stochastically sample pupil positions,
resulting in the simplified 2D projection operator that does
not require storing a 4D WDF, that is

Pwd[u(r), p](r) =

∫
U(q)K(q, p)e−j2πq·rdr. (16)

Here, U is the frequency representation of the phase-only
SLM-modulation

U (q) = F {u(r)} (17)

and the aperture function K incorporates the effects of the
pupil parameters p through the the aperture function A, and
the propagation kernel H as

K(q, p) = A

(
q− s

λf
,
d

λf

)
H (q; z) . (18)

The angular spectrum propagation kernel H defined in the
frequency domain is given by

H (q; z) =

{
ei

2π
λ

√
1− ||λq||2z, if

√
||q||2 < 1

λ ,

0 otherwise.
(19)

Relationship to Focal Stack and STFT Supervision. The
propagation kernel expressed by Eqn. 16 is a generalization
of both Focal Stack [10], [11] and STFT [48] supervision
applied to hologram optimization. For focal stack supervi-
sion, the pupil parameters p = (s, d, z) are fixed so that
pupil shift s = 0, the aperture diameter d is equal to the
eyebox size, and the depth is discretized into N -layers over
z ∈ [zmin, zmax]. As discussed in Sec. 3.3, STFT supervision
closely resembles Eq. 16, but the kernel K(q, p) is equal
to the Fourier Transform of the STFT window W (q), and
pupil shift positions are computed over a grid of positions
s ∈ [dmin, dmax] that is determined by the window size
and FFT algorithm. However, this analysis reveals that a
correct implementation of STFT supervision would require
the window W (q) to also be used for generating projections
of the Light Field following Eq. 3. As a result, Eq. 11 is not
strictly valid unless the window function is a jinc function,
the 2D polar analog of the sinc function, whose width
depends on the wavelength:

w(r) =
d

λf
jinc

(
dr

λf

)
, (20)

so that its Fourier transform is a circular aperture:

W (q) = A

(
q,

d

λf

)
. (21)

Focal stack and STFT supervision are, therefore, specific
cases of supervising with random pupil positions, and, as
a result, they overfit to specific pupil conditions, which
we show does not generalize well to arbitrary viewing
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conditions, see in Figs. 4 and 7. Furthermore, because
Focal Stack supervision is a special case of supervising with
random pupil states, we introduce a new LF2FS algorithm
that computes Focal Stacks on the fly for supervision by
varying only the defocus parameter of pupil states and
holding the rest constant.

4.3 Implementation
Experimental Setup. We employ a conventional setup for
Near-Eye Hologram as used in [24]. The only addition is
a 2D translation and a motorized iris placed in the Fourier-
plane of the 4f system to measure parallax and depth-of-
field effects. For exact setup details, we refer to the supple-
mentary.

Implementation details. Optimization is implemented us-
ing ADAM [56] using automatic-differentiation following
Wirtinger Holography [25] with the standard L2-loss used
in all experiments. Further implementation details on our
and the comparison method STFT [48] are found in the
supplementary.

5 RESULTS

The proposed method aims to find an optimal hologram that
is optimized for the best average image quality over a four-
dimensional pupil state-space, which includes diameter,
location, and focus. For all the simulations and experimental
results in the paper, the pupil parameters are chosen such
that the defocus range is zmin = 0mm, zmax = 15mm and
the aperture range is dmin = 2mm, dmax = 20mm. This is
slightly smaller than the smallest eye-box size (22mm) that
is produced by the blue channel (440nm) under the 400mm
focal length that was employed in the setup with an 8um
SLM pitch.

Comparison to Smooth-Phase Holograms. Our paper fo-
cuses on algorithms that produce random-phase holograms
such that the maximal possible eyebox is filled. Such holo-
grams inherently exhibit speckle and are further harder to
control due to physical effects such as field-fringing [57],
[58]. We expect that future research on how to combine
[24], with random phase holograms. Recent holographic
literature such as algorithms [10], [32], [47] show best-
in-class image quality, but rely heavily on smooth-phase
to achieve speckle-reduction, which leads to a localized
eye-box. As these holograms are unlikely to achieve real
3D holography [30], we do not compare against them in
our main manuscript. However, we have added further
justification and discussion of this in the supplementary
materials, including a simulation using our implementation
of the method from [10] that demonstrates how significant
pupil variations are produced by methods that optimize for
smooth-phase holograms.

Quantitative Validation (Simulation). To obtain quantita-
tive results, we optimize our method on 85 different Light
Fields from the DeepFocus [33] dataset. This dataset in-
cludes a variety of scenes with randomly sampled objects
and textures. Figure 4 presents a comparison of our method
with Focal Stack and STFT-supervision [48]. Our LF2FS
Focal Stack supervision method is similar to [10], [11],
however there is one significant difference: We compute our
focal stack directly from the Light Field to ensure physically

correct defocus cues. Layered approaches with inaccurate
synthetic defocus, create a mismatch between projection op-
erators which will introduce incorrect depth cues. Our find-
ings validate that the proposed algorithm fares favorably
for random pupil states other than those for which STFT-
supervision and LF2FS are overfitted for. Our SLFH method
produces the best-worse case performance for all pupil states, as
the best average case performance for random pupil states.
Furthermore, the variance is significantly reduced for our
approaches. This verifies that our algorithm works better
for a large range of viewing conditions.

Experimental Results (Deep Focus). Experimental results
from our prototype experimental holography setup are
shown for the Deep Focus dataset in Fig 2. The images
are captured with a pupil diameter of 8mm at positions
0mm (back-focus) and 12mm front-focus. In addition we
extracted epipolar images by capturing a 1D-trajectory from
left to right using again an 8mm-sized pupil for both front
and back focus. Additionally, we encourage the reader to
view the videos found in the Supplementary Material as
differences between the result are best visible in animation.
Our SLFH method produces fewer color artifacts than either
STFT or Focal Stack supervision.

Experimental and Simulation Results (Robot Scene). We fur-
ther evaluate our method on a blender scene in both simu-
lation and experiments. For experimental results, we eval-
uated the hologram with a focal stack trajectory as shown
in Fig. 6. For this, we use five centered focus positions with
a large aperture (80% of eyebox) and sample the volume in
equidistant steps from 0mm to 12mm. We further evaluate
the hologram in simulation in Fig. 7 for five randomly chosen
pupil positions. The results validate that our stochastic pupil
sampling algorithm can optimize holograms with correct
parallax information for large variety of pupil states.

Artifacts at the edge of the eye-box In the supplementary
video, we show the parallax that is created by one hologram
when we sample the eyebox from left to right. In those,
one can see that STFT is doing particularly poor at the
edges of the eyebox. This is because in order to make small
propagation distances work, we had to introduce an addi-
tional bandpass filter for STFT/LF2FS, which allow some
energy to diffract into no-care-areas. Without this adaption,
STFT cannot form meaningful images as shown in 10. Our
proposed SLFH algorithm doesn’t suffer from this and the
complete eyebox can be used during optimization.

Large SBP (16k x 16k) Holograms in Far-Field Configu-
ration. Current state-of-the-art displays are constrained by
the etendue, which is determined by the product of the
number of pixels and their pixel-pitch, also known as the
Space Bandwidth Product (SBP). As a result, there is a
trade-off between parallax over a larger eye box and resolu-
tion/defocus. This is a practical limitation for our prototype
constrained by current technology, but it is not a fundamen-
tal limitation to our proposed algorithm. With advances in
technology, we can expect improvements in display technol-
ogy as well as system design [3], [5] As the system etendue
increases, this results in need to perform large matrix multi-
plications (FFTs), which can quickly exhaust available GPU
memory. This problem can be mitigated by optimizing for
Far-Field Holograms where the angular spectrum corre-
sponds to the field created by the SLM. With a small change
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in the forward model and the same loss-function, we can
directly supervise a large SBP hologram by stochastically
sampling pupils over the Fourier-domain. Our pupil-aware
Far-Field approach is an extension to [5], [7] who discuss
iterative algorithms in Far-Field configuration with either
multi-layer or a light field loss similar to STFT [48] with
a fixed pupil grid. These works limit their discussion to
only a fixed set of pupils, while we outline how Far-fields
holograms with photometric consistency over the whole
pupil space. We show an example of such a simulation for a
16k x 16k hologram in Fig. 9.

6 DISCUSSION

We propose investigating the issue of CGH-optimization
from a machine-learning perspective, specifically with re-
gard to overfitting. Given that the capacity of a hologram
is constrained by the available SBP, there is no single,
optimal solution. In the context of our proposed approach of
stochastic light-field holography optimization, the objective
is to identify a hologram that yields the highest average
image quality across the entire possible space of pupil states.
Our findings indicate that, while overall correct vision cues
are maintained across the entire state-space, performance
is inferior when evaluated specifically at the pupil states
for which other algorithms were optimized. For instance,
a focal-stock loss approach may achieve near-perfect re-
construction at the depths for which it was optimized for, but
fails to accurately reproduce parallax and depth-of-field
effects. Similarly, the STFT-method demonstrates superior
performance for given pupil positions around its stand-
off distance, but experiences a significant decline in image
quality when evaluated at larger propagation distances.

Relation to Ptychography. We would like to note that our
method has a striking resemblance with a different tech-
nique known from Scientific Imaging called X-Ray Ptychog-
raphy [59]. There, the forward model and optimization are
quite similar as a complex wavefront is reconstructed from
intensity-only projections sampled at different, overlapping
pupil positions. One can think of X-Ray Ptychograpy as
a dual problem in imaging compared to the holographic
display problem. Furthermore, X-Ray Ptychography often
deals with very high resolutions, which requires highly
parallelized, distributed optimization frameworks [60] that
significantly accelerate computation. Such an increase in
performance could potentially enable the development of
human-sized, holographic displays.

7 FUTURE WORK

Light-Field Representation. In this study, we employed a tradi-
tional representation of a Light Field and applied the shift-
and-add algorithm to synthesize new views. However, the
accuracy of the Light Field representation is constrained
by its angular and spatial resolution. Due to limitations
in terms of memory, we encountered challenges such as
aliasing during refocusing (details in Supplementary). There
are approaches in recent Graphics research to overcome
these limitations [33], [61], [62]. Among those are removing
angular aliasing [61], directly synthesize refocused images
using neural-networks [33], super-resolve in angular reso-
lution using prior information [63] or fast neural-radiance
fields [62] storing a highly compressed light-field.

Speckle Reduction. When compared to our simulation, the
image quality of our experimental results is significantly
lower. This is due to unmodeled physical effects such as
cross-talk in the LCOS-SLMs. Although camera-in-the-loop
methods have been proposed, physically accurate calibra-
tion with full-random phase holograms is a novel topic [64]
and further research is needed.

Notably, speckle remain a fundamental challenge to
holographic Light Field displays. We use time averaging to
reduce speckle artifacts, and implemented our algorithms
at video rates with new high speed SLMs is a promising
direction for future work. Likewise, exploring other meth-
ods of speckle reduction [65] via incoherent averaging using
partially coherent illumination [65] or subjective speckle
optimization [66] is also a promising avenue of exploration.

Temporal Multiplexing. Recent papers propose to use
temporal multiplexing to either do simultaneous color [67]
or reduce the overall required framerate [68] using joint
optimization techniques. future work could investigate how
such approaches can be applied to our SLFH-algorithm to
further reduce the number of temporal frames required to
suppress speckle noise.

Etendue Expanders. Etendue for holographic displays re-
mains impractically small due to the limited pixel count of
commercially available SLMs. A further promising direction
for future work is to explore our stochastic pupil-sampling
cgh algorithms together with etendue expanders [4] that can
help meet AR/VR requirements for combined eyebox size
and FoV [69].

8 CONCLUSION

We introduce a new optimization method for generat-
ing light-field holograms using stochastic pupil-sampling
within a Gradient-Descent type optimization. Simulation
results demonstrating the effectiveness of the proposed
method in near-eye display and large etendue setups in far-
field configurations were presented. Experimental results
validate that our algorithm is able to provide accurate
depth cues such as parallax and defocus under a large
variety of different pupil states. All our findings confirm
that the proposed method produces the best-worse case
performance for all pupil states, as well as the best average
case performance for random pupil states – corresponding
to average viewing conditions.
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