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1 EVENT AGGREGATION
Event-based cameras output asynchronous events, which are in-
compatiblewith CNN-based architectures. As such, captured events
are normally aggregated into event frames first. We adopt the ag-
gregation algorithm of Zhang et al.[Zhang et al. 2021] to accumu-
late events into event frames. Specifically, in a given time interval,
a set of events can be defined as:

E = {𝑒𝑘 }𝑁𝑘=1 = {[𝑥𝑘 , 𝑦𝑘 , 𝑡𝑘 , 𝑝𝑘 ]}𝑁𝑘=1 , (1)

where (𝑥𝑘 , 𝑦𝑘 ) denotes the pixel location of event 𝑒𝑘 ; 𝑡𝑘 is the times-
tamp; 𝑝 is the polarity which means the sign of bright change, with
+1 and −1 representing the positive and negative events, respec-
tively.

Then, the events captured within a time window are aggregated
as follows:

𝐸 (𝑥,𝑦, 𝑡) = ⌊𝑝𝑘 × 𝛿 (𝑡𝑚𝑎𝑥 − 𝑡𝑘 ) + 1

2
× 255⌋ (2)

𝑡𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑡𝑘 × 𝛿 (𝑥 − 𝑥𝑘 , 𝑦 − 𝑦𝑘 )) (3)

where 𝛿 is the Dirac delta function.

2 LEAKY INTEGRATE-AND-FIRE (LIF)
SPIKING MODEL

A sequence of spikes is called a spike train and is defined as 𝑠 (𝑡) =
Σ𝑡 (𝑓 ) ∈F𝛿 (𝑡 − 𝑡 (𝑓 ) ), where F represents the set of times at which
the individual spikes occur [Shrestha and Orchard 2018]. Given 𝑁 𝑙

incoming spike trains at layer 𝑙 at timestamp 𝑡 , the output of the
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𝑖-th LIF neuron of next layer at timestamp 𝑡 , 𝑠𝑙+1𝑖 (𝑡), is mathemati-
cally defined as:

𝑠𝑙+1𝑖 (𝑡) = 𝑓𝑠
(
𝑣𝑙+1𝑖 (𝑡)

)
,

𝑣𝑙+1𝑖 (𝑡) =
𝑁 𝑙∑
𝑗=1

𝑤𝑖 𝑗𝑠
𝑙
𝑗 (𝑡)+

𝑣𝑙+1𝑖 (𝑡 − 1) 𝑓𝑑
(
𝑠𝑙+1𝑖 (𝑡 − 1)

)
+ 𝑏𝑙+1𝑖 ,

𝑓𝑑 (𝑠 (𝑡)) =
{
𝐷 𝑠 (𝑡) = 0

0 𝑠 (𝑡) = 1,
(4)

where𝑤𝑖 𝑗 is the synaptic weight between the 𝑗-th neuron on the 𝑙-
th layer and the 𝑖-th neuron on the layer 𝑙 + 1; 𝑏𝑙+1𝑖 is an adjustable
bias; and 𝐷 is a constant. The operator 𝑓𝑠 (·) is a spike function
defined as:

𝑓𝑠 (𝑣) : 𝑣 → 𝑠, 𝑠 (𝑡) := 𝑠 (𝑡) + 𝛿 (𝑡 − 𝑡 (𝑓 +1) ), (5)

𝑡 (𝑓 +1) = min{𝑡 : 𝑣 (𝑡) = Θ, 𝑡 > 𝑡 (𝑓 ) }, (6)

where Θ is the membrane potential threshold. Note that 𝑓𝑠 (·) is
non-differentiable.

In our experiment, when receivingmembrane potentials𝑋 𝑡 , this
SNN layer outputs updated spikes, 𝑃𝑡 , and updates the recorded
membrane potential 𝑉 𝑡 , as follows:

𝑃𝑡 = ℎ(𝑉 𝑡 − Θ),
𝑉 𝑡 = 𝛼𝑉 𝑡−1 (1 − 𝑃𝑡−1) + 𝑋 𝑡 ,

ℎ(𝑥) =
{
1 𝑥 >= 0

0 𝑥 < 0
, (7)

where Θ is set to 0.3 in all our experiments. The parameter 𝛼 is a
decay factor used for achieving hyperpolarization. The potential
value 𝑉 𝑡 is updated such that, for a spike at timestamp 𝑡 − 1, the
membrane potential should be reset to 0 by scaling 1 − 𝑃𝑡−1. Es-
sentially, 𝛼 (1−𝑃𝑡−1) corresponds to 𝑓𝑑 (·) in Equation 4. Note that
the item

∑𝑁 𝑙

𝑗=1𝑤𝑖 𝑗𝑠
𝑙
𝑗 (𝑡) of Equation 4 is replaced by a CNN-based

layer, and 𝑋 𝑡 is the corresponding item here.

3 NETWORK DETAILS
In Figure 1, we show more details of the proposed Spiking Eye
Emotion Network (SEEN).

4 EMOTION CLASSIFICATION DATASETS
In Table 1, we report the statistics of widely used emotion recogni-
tion datasets. Our SEE dataset is the only one that provides the
metadata of lighting conditions and the only one that provides
events and corresponding intensity frames.

Our dataset collection follows all required human subject regula-
tions of our institutions; all subjects gave their informed consent to
image their eye region and facial expressions (with the possibility
of identification) to be used for research purposes and publication.

5 TRAINING SETUP
SEEN is implemented in PyTorch [Paszke et al. 2019] and trained
with stochastic gradient descent (SGD) with a momentum of 0.9

C

Et

Spatial Feature Extractor 

+

Temporal Feature Extractor 

A

C Concatenation

Batch Normalization + ReLUφ
Adaptive Average Pooling

SNN Layer

Element-wise Multiplication 

+ Element-wise Addition

Softmax

k 3
1×1

fc 256
18432

fc 7
256

k 256
3×3 k 512

3×3

k 256
3×3 k 512

3×3

ω1A φ

ω2A φ

ω3A φ

C k 64
1×1

k 64
1×1

k 64
1×1

k 64
1×1

k 8
1×1

k 8
1×1

k 8
1×1

k 64
3×3

k 64
5×5

k 64
7×7

Figure 1: More details of our spatial feature extractor S and
temporal feature extractor T. 𝑘𝑐𝑖×𝑖 denotes the convolutional
layer where kernel size is 𝑖 × 𝑖, and the number of output
channels is 𝑐; 𝑓 𝑐𝑐2𝑐1 denotes the fully connected layer where
the number of input and output channels are 𝑐1 and 𝑐2, re-
spectively.

and a weight decay of 1e−3. We train SEEN for 180 epochs with a
batch size of 32 on an NVIDIA TITAN V GPU. We use the StepLR
scheduler to moderate the learning rate. Specifically, the initial
learning rate is set to 0.015, the step size is set to 1, and the decay
rate is set to 0.94. For a fair comparison, we train or fine-tune all
competing models on the same SEE dataset. Based on the require-
ments of different models, we resize the input accordingly: SEEN
is resized to 90× 90; All face-based models are resized to 112× 112;
Eyemotion and EMO inputs are resized to 299 × 299 and 64 × 64,
respectively. On the SNN side, We use a spiking threshold of 0.3
and a decay factor of 0.2 for all SNN neurons.

6 EVALUATION METRICS
For our evaluation, we adopt two widely used metrics for quantita-
tively assessing the emotion classification performance: Unweighted
Average Recall (UAR) and Weighted Average Recall (WAR). UAR
reflects the average accuracy of different emotion classes without
considering instances per class, while WAR indicates the accuracy
of overall emotions [Schuller et al. 2011]. Formally, they are de-
fined as:

𝑈𝐴𝑅 =
1
𝑁𝑐

𝑁𝑐∑
𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

, (8)

𝑊𝐴𝑅 =
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 , (9)

where 𝑁𝑐 is the total number of emotion classes; 𝑇𝑃 and 𝐹𝑃 are
true and false positive, respectively;𝑇𝑁 and 𝐹𝑁 are true and false
negative, respectively.

7 WEIGHT COPY ON TRAINING SPEED
Our weight copy scheme does not only effectively address the spa-
tial and temporal domain gap during training, but it also dramati-
cally increases training speed; see Table 2.The experimental results
show that with the experimental setting E13-S0, the training speed
is almost doubled.
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Table 1: We summarize commonly used emotion recognition datasets with different target areas, including face-based, single-
eye based, and double-eye based datasets. Among them, four were collected with RGB-based conventional cameras, and three
are collected with Infrared sensors. The proposed SEE dataset is the only one collected by event-based cameras. In addition,
the SEE dataset is the only one that provides lighting conditions (LC).

Database Sequence/Frame Subjects Condition Emotion Sensor Type Target Area LC
CK+[2010] 593/NA 123 Lab 8 RGB Face No
BU-4DFE[2008] 606/NA 101 Lab 6 RGB Face No
MMI [2005][2010] 2900/NA 25 Lab 7 RGB Face No
MUG [2010] 1462/NA 52 Lab 7 RGB Face No
Oulu-CASIA [2011] 2880/NA 80 Lab 6 Infrared Face No
Eyemotion [2019] NA/50000 46 HMD 5 Infrared Double Eyes No
EMO [2020] NA/39780 20 HMD 7 Infrared Single Eye No
SEE (Ours) 2405/128712 113 HMD 7 Grayscale + Event Single Eye Yes

Table 2: Effect of weight copy on training speed.

Train one epoch E4-S0 E4-S1 E4-S3 E7-S0 E7-S1 E13-S0
without weight copy 8.3s 12.4s 20.6s

Ours 5.5s 7.2s 10.9s

8 GENDER AND AGE DISTRIBUTION
EFFECTS

We conduct experiments to analyze the impact of gender and age.
The results in Table 3 and 4 show that our approach offers more
accurate results for female than male participants, and it is slightly
more effective in younger age categories.

Table 3: Performance on the gender distribution.

Gender (Num) Metrics E4-S0 E4-S1 E4-S3 E7-S0 E7-S1 E13-S0

Male (66) WAR 76.7 78.9 82.0 77.7 80.3 80.7 
UAR 77.4 79.5 82.7 78.4 80.9  81.3

Female (45) WAR 81.8 84.1 86.2 82.6 85.8 84.7 
UAR 81.2 83.4 86.0 82.2 85.0  83.9

Table 4: Performance on the age distribution.

Age group (Num) Metrics E4-S0 E4-S1 E4-S3 E7-S0 E7-S1 E13-S0

[19,23] (80) WAR 79.0 81.3 83.6 80.2 82.4 82.4 
UAR 79.4 81.7 84.0 80.6 82.6  82.6

[24,28] (31) WAR 77.3 79.3 83.7 77.6 82.4 81.7 
UAR 78.0 80.2 84.3 78.5 83.3  82.7

9 ADDITIONAL ABLATION STUDY
In Table 5, we provide two additional ablation study: a) Impact of
Input: Experiments (A) and (B); b) Influence of multiscale percep-
tion: Experiments (I)-(K).

Impact of Input. SEEN leverages both spatial and temporal cues
for recognizing emotion. In experiments (A) and (B), the input of
the spatial feature extractor 𝑆 and the temporal feature extractor𝑇
is changed to events and frames, respectively. These experiments
demonstrate the effectiveness of leveraging both domains. These
two experiments also show that our SEEN can seamlessly work
with pure event or intensity frames albeit less effectively.

Influence of SEEN components. We investigate the effectiveness
of multiscale perception (experiments (L)-(N)). All three experi-
ment groups show that SEEN with all components offers the best
performance. We witness a significant performance degradation
in (L)-(N), validating that multiscale cues and self-attention (i.e.,
Ω) are essential for emotion classification accuracy.
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