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In this supplementary document, we present information and experiments in support of the main1

manuscript. We provide training and architecture details, ablations, and additional comparisons and2

analyses.3
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1 Background: Diffusion Probabilistic Models17

In the Method Section of our main paper, we propose using two diffusion models to generate BEV18

maps and novel view images, respectively. Our formulation follows [19, 8]. From a distribution19

of scenes we denote a sampled BEV map or a novel view image as x0, and iteratively add small20

Gaussian noise to obtain x1, x2...xT , until xT approximates an isotropic Gaussian. This forward step21

is a Markovian fixed process [8, 20] and can be defined as22

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)
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where βt is a variance schedule. In practice, we sample xt using a closed-form parameterization23

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (2)

where αt = 1− βt, ᾱt =
∏t

i=1 αi, and ϵ ∼ N (0, I).24

The goal of each training iteration is to train a model pθ, often represented by a neural network, that25

inverts the forward diffusion (i.e., learns the reverse diffusion process):26

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (3)

and27

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)
The reverse process is also Markovian, and we fix the variances Σθ. The reverse conditional28

probability is tractable when conditioned on x0:29

q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI) (5)

We apply Bayes’ rule to rearrange the terms and obtain30

µ̃(xt, x0) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0 (6)

The closed form parameterization of xt yields31

µ̃t =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
(7)

when we represent x0 as32

x0 =
1√
ᾱt

(
xt −

√
1− ᾱtϵt

)
(8)

by rearranging Eq. (2). Thus, we can train our model to predict µ̃t, or alternatively, ϵt by rearranging33

the terms. This work predicts µ̃t for generating samples.34

During test time, our diffusion model performs generation iteratively as follows35

z0 = (f ◦ ... ◦ f)(zT , T ), f(xt, t) = Ω(xt) + σtϵ, (9)

where zT ∼ N (0, I), σt is the fixed standard deviation at the given timestep, and ϵ ∼ N (0, I).36

2 Training Details37

We will open-source all code. All models and baselines were trained on images with a resolution of38

256 x 256 pixels. We use a batch size of 16 and a learning rate of 0.0001, as well as the Adam [10]39

optimizer. All models were trained on a single NVIDIA RTX A6000 with 48 GB memory, and40

end-to-end training took 48 hours.41

2.1 Loss function42

The loss function43

L = L2(B̂,B) + λregLbbox + λdirLdir + λfgLcls + λimgMSE
(
Î , I

)
(10)

that is used to optimize the model is a combination of an L2 loss directly applied on the reconstructed44

BEV map, a 3D detection loss, and the rendering loss, which is formulated as the MSE between the45

reconstructed and input image. We set the weights of the different loss components to46

λreg = 0.0002, λdir = 0.00002, λfg = 0.0001, λimg = 0.1

While the BEV and the rendering loss are directly applied to the respective outputs, the detection loss47

uses the reconstructed anchors.48
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The regression loss is formulated in the reference space. We follow SECOND [23] in the original loss49

formulation consisting of a box classification loss, box regression loss, and a directional classification50

loss51

∆x =
xgt − xk

dk
, ∆y =

ygt − yk

dk
, ∆z =

zgt − zk

hk
, ∆w =

wgt

wk
, ∆h =

hgt

dk
, ∆l =

lgt

lk
,

∆θ = sin
(
θgt − θk

)
.

The combined box regression is computed as the sum over the SmoothL1 loss of all parameters52

Lbbox,k =
∑

ξk∈(x,y,z,w,l,h,θ)

SmoothL1 (∆ξk) (11)

Each anchor is classified either as one of the Ncls = 3 classes or, if all values of vi,j are zero, as53

the background. Since a large number of anchors are matched to the background we apply the focal54

loss [13]55

Lcls = −αc (1− pc)
γ logpc (12)

with α = 0.25 for all classes and γ = 2.0.56

The image-based loss formulation MSE (Î , I) not only optimizes the image generation, but also the57

generation of the BEV map and anchors, since it is the only loss that defines the appearance features58

ξk for an anchor k. In the early stages of training, this can have a negative impact on the quality of59

the BEV anchors, especially in the first iterations. We, therefore, apply linear scaling of 1.3 every60

1000 steps to the weight λimg for the first 30k steps before it reaches the value of 0.1.61

3 Implementation Details62

3.1 Diffusion-based BEV Reconstruction63

For the architecture of our diffusion model, we follow DDPM [8] and use a UNet [18] to extract64

both global and local features of the input observations. The generated output is the one-hot encoded65

anchor class, 3D box information, directional classifier and appearance feature dimension, resulting66

in an output dimension of Ncls + 7 + 1 + ffg, with Ncls = 3 for CLEVR [9] and ffg = 32. The67

conditioning has the same width and height as the diffused feature map and a channel dimension of68

64.69

There are 4 downsampling and 4 upsampling layers, with dimensions 64, 128, 256, 512. A connecting70

layer between the downsampling and upsampling layers has dimensions 512. Each layer contains71

two ResNet [6] blocks and self-attention [22]. For the timestep, we employ a sinusoidal positional72

embedding followed by a 2-layer MLP.73

To learn correspondences between the inputs (BEV map) and conditions (BEV features), we con-
catenate the two and employ self-attention. We compute keys (K), values (V ), queries (Q) from the
concatenated input (X) using learned weight matrices:

K = X ·WK ; V = X ·WV ; Q = X ·WQ

Then, we compute attention weights (A) via softmax of the scaled dot product of Q and K

A = softmax
(
QKT

√
d′

)
and compute the output Z as the weighted sum of V using weights from A

Z = AV

where X ∈ Rn×d,WK ,WV ,WQ ∈ Rd×d′
, A ∈ Rn×n, and Z,K, V,Q ∈ Rn×d′

. Here, d is the74

dimensions of the key, value, query vectors.75

We fix our forward variances β using a cosine schedule, following [14]. [8] set their variances to be a76

sequence of linearly increasing constants between [0.0001, 0.02], but the authors of [14] found that77

the end of the forward noising process was too noisy and could not contribute much to sample quality.78
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Thus, they employed a cosine schedule so that there is a near-linear drop in the middle of the training79

timesteps and small changes around t = 0 and t = T .80

βt = clip

(
1− ᾱt

ᾱt−1
, 0.999

)
, ᾱt =

f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
· π
2

)2

. (13)

βt is clipped at 0.999 to prevent singularities near t = T and the offset s prevents excessively small81

values of βt near t = 0.82

3.2 Diffusion-based Rendering83

For simplicity, we use the same diffusion architecture and conditioning mechanisms as in the BEV84

reconstruction, where the conditioning feature pillar image has the dimension Ncls + ffg, with85

Ncls = 3 for CLEVR [9] and ffg = 32, and an output dimension of 3 for the RGB color channels.86

3.3 BEV Feature Extractor87

We condition the generation of BEV scene layouts using image features that are mapped to the BEV88

plane. To extract these features, we modify the architecture from CaDDN [17] as follows:89

Given an image I, we first extract features J(I) ∈ RWF×HF×C using a pre-trained ResNet18 [7],90

where WF and HF are the width and height of the feature grid, and C is the number of feature91

channels. To reduce memory overhead, we use a 1x1 convolution + BatchNorm + ReLU layer92

to reduce the number of channels to 64. These features are used to estimate a categorical depth93

distribution D(I) ∈ RWF×HF×D, where D is the number of depth bins. For each pixel in J, we94

predict D probabilities, where each probability represents the confidence that the pixel is in a specified95

depth bin. The depth distribution is learned by an unsupervised categorical depth distribution network,96

which modifies the architecture of the semantic segmentation model DeepLabv3 [2]. To modify97

the semantic segmentation architecture to output pixel-wise probability scores instead of semantic98

classes, a downsample-upsample architecture is used. We apply an atrous spatial pyramid pooling99

(ASPP) [1] module with D output channels, which is then upsampled to the original feature size100

using bilinear interpolation. To normalize the probability distribution, a softmax function is applied to101

each pixel, creating the categorical depth distribution D(I) ∈ RWF×HF×D. The D bins are defined102

using linear-increasing discretization (LID) [21] as follows:103

dc = dmin +
dmax − dmin

D(D + 1)
× di(di + 1) (14)

where dc is a continuous depth value, dmin and dmax define the range of depths, and di is the104

discretized depth value.105

Using the channel-reduced image features J and the depth distribution D, we generate a frustum106

feature grid F ∈ RWF×HF×D×C as follows:107

F = J (I)×D (I) (15)

The structure of the frustum feature grid F follows the method proposed in DSGN [3].108

Given the camera projection matrix P in a reference coordinate frame the frustum features F are then109

transformed into V ∈ RHBEV ×WBEV ×Z×C , using differential sampling and collapsed into the BEV110

plane along the z-axis to generate BEV features111

B = M⊗V, with M ∈ R1×1×, B ∈ RHBEV ×WBEV ×Z∗C . (16)

The differential sampling uses sample points sfk = [u, v, di]
T
k from F, then convert them to populate112

V using P:113

sfk = Psvk, with P ∈ R3×4 (17)

B is the conditioning BEV feature plane aligned with the grid of anchors, consisting of object or114

background features.115
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4 Ablations116

Table 1: Monocular 3D Object Detection on CLEVR. Bold and underline denote the best and
second-best result for each metric for all three ablation.

Method APBEV |R40|IoU≥0.7 ↑ AP3D|R40|IoU≥0.7 ↑
Ldet +MSEI 00.00 00.00
L2,BEV +MSEI 76.18 46.53
MSEI 00.00 00.00
Pre-trained Object Detector 90.37 72.47
Full L2,BEV + Ldet +MSEI 96.41 80.57

We ablate important design and training decisions of our model.117

The loss function to train the model in the paper utilizes three different types of losses: 1. an L2118

loss between the underlying ground truth BEV map and the generated BEV map, 2. a regression119

and classification loss on the extracted object anchors from the BEV layout, following well studied120

detection pipelines [23, 12, 17] and 3. the MSE loss between the input image and the reconstructed121

view. We evaluate the necessity of all three loss types in the following by training and evaluating a122

model for combinations of the loss function.123

Loss Ablations. To validate that the loss functions we propose are essential for the method to124

function, we experiment with combinations of loss components. First, we evaluate the BEV generator125

only supervised on one of the two losses, either the BEV loss L2,BEV or Detection Loss Ldet together126

with the MSE loss on the reconstructed image. A third training of the full model end-to-end is only127

supervised by the input image, without direct supervision of the BEV. Results in Tab. 1 show that128

neither the BEV loss nor the detection loss is just enough to train a conditional diffusion model that129

is able to perform 3D detection. While the L2 loss is able to generate layouts, the performance is130

worse. A pure detection loss Ldet just generates large object regions, which we visualize in Fig. 1 but131

fails to reconstruct the scene’s layout. Without supervision, self-supervised training is able to use132

object anchors at arbitrary locations and the background feature to directly leak the input image to133

the rendering pipeline, not solving for an underlying layout. This is shown in Fig. 2.134

Figure 1: Ldet +MSEI . We show the reconstructed BEV layout and the respective feature pillars
projected onto the generated image of that scene. For the standard detection loss and rendering loss,
the training of the diffusion model fails to reconstruct the true underlying layout.

Figure 2: Self − supervised. We show the reconstructed BEV layout, as well as the feature pillars
projected onto the generated image of that scene. Without any supervision of object locations, the
generated BEVs reconstruct some latent feature space but do not have any understanding of the
underlying scene layout.

BEV Diffusion Pre-training. Further, we also experiment with training the diffusion model without135

the reconstruction and show the quality of this model as a standalone 3D object detection method in136

Tab. 1. We find that training with the entire pipeline has a positive impact on the detection results137

over just training the first half of the model.138
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5 3D Detection139

Figure 3: Visualization of 3D Bounding Boxes for our method. We visualize 3D bounding boxes,
that were generated with OUR proposed methods. For visualization, we apply the tooling from the
KITTI dataset [5].

Table 2: Monocular 3D Object Detection on CLEVR. Bold and underline denote the best and
second-best result for each metric.

Method APBEV |R40|IoU≥0.7 ↑ AP3D|R40|IoU≥0.7 ↑
DD3D 98.20 83.23
DEVIANT 94.86 86.08
MonoFlex 95.97 82.20
CaDDN 92.46 79.41
DiffusionPillars (ours) 96.41 80.57

We present object detection results from our method as well as a comparison with four state-of-the-art140

monocular 3D object detection methods. The evaluated methods are as follows:141

DD3D [16] is an end-to-end, scalable detector that does not suffer from the limitations of previous142

pseudo-lidar methods, such as overfitting and increased complexity.143

DEVIANT [11] uses convolutional blocks that are equivariant to 3D translations, including depth144

translations in the projective manifold. This allows for consistent depth estimation, leading to better145

3D object detection results.146

MonoFlex [24] optimizes truncated and non-truncated objects separately, and estimates depths from147

different groups of keypoints.148

CaDDN [17], mentioned previously in Section 3.3, combines extracted depth-aware BEV features149

with the detection head of PointPillars [12], a LiDAR-based object detection method.150

As seen in Tab. 2 and visualized in Fig. 3, our method demonstrates object detection results on par151

with traditional feed-forward 3D object detection architectures, with the second-best results in BEV152

average precision. While BEV precision is relatively high, 3D precision is still on par, but suffers153
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slightly, specifically in the cube class. We hypothesize that this is due to the difficulty in accurately154

predicting and generating rotation.155

6 Additional Layout Reconstruction and Manipulation156

We present additional manipulation and reconstruction results from our approach. All scenes displayed157

in the following figures are either reconstructed from randomly sampled scenes of the 5.5k test scenes158

or objects from those reconstructions randomly sampled in new compositions. In some cases, objects159

are not detected, but we still include those scenes and manipulation results.160

Scene Manipulation. Given an initial layout of a scene we add random offsets in the BEV to one161

or all objects. In addition to the results shown in the main paper, we present renderings of novel scene162

layouts in Fig 4. This can also be used to control renderings through user-defined inputs. Occlusions163

are handled by our method as well as in the reconstruction task.164

Novel View Synthesis. In addition to the images shown in the main paper, we present results on165

the novel view synthesis task in Fig 5. Cameras are rotated along the scene at different heights. In166

addition to novel views, we show the input view and a reconstruction of the same view.167

Detection & Reconstruction. In Fig. 6 we present additional reconstructed images from the test168

set, as well as outputs from the diffusion-based detection as BEV maps, and visualizations of the169

pillars that condition the image generation process. In the BEV and pillar images each color (RGB)170

represents one of the three classes in the CLEVR dataset: Red = Cube, Green = Sphere, Blue =171

Cylinder. The overall reconstruction quality is satisfactory, but sometimes the diffusion probabilistic172

process leads to small errors in the reconstructed images, including wrong material properties or173

reconstructed color, rounded corners and edges at cubes, and inconsistent lighting.174

Reconstruction from Inverse BlobGAN. Prior generative methods with intermediate layout175

representations usually do not offer a straightforward reconstruction approach that is not trained176

afterward and maps from the image space back to the latent space. BlobGAN [4] proposes such a177

method, with published code. Unfortunately, this method only supports images with a fixed number178

of objects in all scenes. We made some modifications to the code to allow for reconstructions from179

generated images with arbitrary, but known numbers of objects in the generated image. Results are180

presented in Fig 7.181

Novel Scene Composition. By removing or adding objects to the intermediate layout, we are182

able to create novel scene compositions, which are shown in Fig 8. Using the pillar projections,183

our diffusion-based rendering approach is able to generate images of more complex novel scenes,184

including occluding objects.185

Novel Scenes from GIRAFFE. We compare results to the results from similar experiments on186

GIRAFFE [15] in Fig. 9 applying the provided rendering script. The overall rendering quality suffers187

from blurred features and changes in object appearances after adding new, occluding objects to the188

scene.189
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Figure 4: Object Translation. We present renderings from layouts where we translate objects on the
BEV. We first sample a random scene and add offsets to all or a single object in the scene. Our scene
layout is able to handle complex novel layouts and occlusion.
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Input Image Reconstruction Novel View

Figure 5: Novel View Synthesis. We first reconstruct a scene from an input image. Next to this is
a rendering of the reconstructed scene. The four images on the right show novel views, which are
generated through manipulation of the viewing angle of the camera.
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Inputs Reconstructed Images Reconstructed Pillars Reconstructed BEVs

Figure 6: Reconstructed Scenes. Images of the scene are reconstructed conditioning our method
on the left input images. The BEV map is the output of the diffusion-probabilistic BEV generation
method. The images of the pillars are directly projected from the 3D reconstruction of the scene
proposed by us. Red = Cube, Green = Sphere, Blue = Cylinder.
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Inverse BlobGAN [4]

Generated Image Reconstructed Images Reconstructed Layout

Figure 7: Inverse BlobGAN. [4] We visualize results from BlobGAN’s inverse path, as well as the
intermediate blob layouts. For those experiments we chose to use BlobGANs own reconstruction
over GT images to handle a different amount of objects in each experiment.
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Figure 8: DiffusionPillars (Ours) Scene Composition. (top-down) We add or remove objects to a
scene. Lighting changes are the result of diffusion-based rendering in unseen scenarios. The model
was only trained on a dataset with 3 to 10 objects but is able to reconstruct scenes with fewer and
more objects.

Figure 9: GIRAFFE [15] Scene Composition. (left-right) We visualize results from GIRAFFE’s
scene manipulations through sampling objects in a scene. For those experiments, we chose to use the
code for rendering novel views and scene manipulation provided by the authors of GIRAFFE.
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