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Abstract

3D scene perception, namely object detection, and generation are closely related
problems, but existing works typically address them in isolation. 3D object detec-
tion from monocular images relies on explicit priors and inductive biases about the
scene structure, such as ground planes and depth distribution. Generative methods,
such as probabilistic diffusion models, have shown to be effective learners of
empirical priors. In this work, we join scene perception and generative tasks by
re-framing object detection as a conditional generative process with a learned prior
– closing the cycle by reconstructing and manipulating the observed image.
We model the features, poses, and size of each object instance explicitly on a
ground plane which are produced as the output of a conditional generative process
from an input observation. This underlying representation of each object models
an elliptical feature representation on the ground plane that gets unprojected in
the height dimension. The proposed diffusion-based neural rendering method
simultaneously allows for 3D object detection, 3D multi-object scene generation,
and scene reconstruction from a single image.

1 Introduction

3D perception is fundamental to many graphics and vision tasks. In particular, 3D object detection
requires understanding the composition and semantics of a scene and is widely used for autonomous
navigation [10, 1], robotic manipulation [3, 13], and augmented and virtual reality [52, 36]. 3D object
detection from monocular images relies heavily on explicit priors and inductive biases about the scene
structure, such as ground planes and depth distribution [6, 4, 51, 48, 28]. Existing works extract scene
layouts using feed-forward networks, but we hypothesize that these layout priors can be better learned
through generative methods that are trained on 3D layouts. By modeling the inherent structure of
scenes, generative models capture complex spatial relationships and object interactions, providing
a more robust and data-driven prior for perception. In this work, we propose a novel framework
that combines generative and perception models, and creates a shared learned representation for 3D
multi-object scene generation, 3D object detection, and scene reconstruction from a single image.

Generative methods have been extensively researched as generating three-dimensional scene content
is fundamental to graphics and vision. In computer graphics, generating 3D assets and scenes [33,
56, 5] help create realistic virtual worlds. Computer vision for robotics [7, 25] and autonomous
driving [62, 76] requires simulated scenes of high diversity and controllability that are rare or absent
in real-world captures, e.g., disaster scenarios or unseen object poses for lost cargo. However, current
works lack understanding of three-dimensional scene layouts. Previous compositional approaches for
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multi-object scene generation [43, 42, 14] produced convincing outputs, but they do not exploit the
organization of the scene. Blob-GAN [15] reconstructs scene layouts from image observations by
representing each object with a feature blob and by applying GAN inversion techniques. However,
this inversion requires an image encoder that is trained separately and cannot directly exploit the prior
knowledge hidden in the generative process of a scene. Although their two-staged process allows for
manipulation of the image composition, it lacks understanding of the underlying three-dimensional
scene layout.

Detection can be performed by guiding the generation process for a specific input image. Therefore
we propose to reformulate 3D object detection as an inverse rendering problem, where a conditional
probabilistic diffusion process synthesizes an intermediate scene layout for a multi-object scene
from a single input image. Formulating perceptive tasks as a probabilistic generation of world
representations has been explored for years [32, 77, 26, 74] as analysis by synthesis, where models
of the world help interpret observations. Our integration of perception and generation allows the
models to complement each other in understanding and predicting object locations, orientations, and
semantics.

To combine detection and generating layouts as one end-to-end training pipeline instead of requiring
multi-stage training, we leverage neural rendering and view synthesis [40, 44, 58, 72, 47, 30, 57].
Specifically, we enforce 3D consistency by supervising with novel view synthesis. As shown in
Figure 1, from an input image we eventually arrive at a novel view, and thus close the cycle.

We investigate a joint detection and generative diffusion approach that benefits from the mutual task
learning paradigms. In the first step, we generate the scene layout on the BEV plane with a diffusion
model, where each cell represents a background feature or an object and its size, location, orientation
and appearance features. In the non-generative case, where a specific layout shall be reconstructed
from an input view, we condition the diffusion process on a BEV feature map extracted from an
image and are able to guide the layout generation towards reconstructing the scene layout, which
comprises 3D object detection. The second step performs novel view synthesis. We first splat feature
ellipses for each object on the ground plane, extrude those inside the objects bounding boxes, and
project these elliptic pillars into the image plane. From the feature image, we render a novel view
of the scene, using condition a diffusion-based rendering process. Both steps can be executed in
a conditional case to perform 3D object detection and image reconstruction or unconditionally to
generate novel scene layouts and views. By adding a conditional image input the proposed method is
able to fulfill the perceptual task and predict each object’s location, size, and features. This layout
can later be manipulated to manipulate the layout and camera and render novel views of the same or
unseen scene.

In summary, our contributions are:

• We introduce a novel inverse rendering method that joins object detection and scene genera-
tion with conditional diffusion. When conditioned on a single image, we generate plausible
BEV layouts image, and without a condition we learn to generate novel unseen scene
layouts.

• To close the cycle and select plausible layout given an image, we devise a novel efficient
rendering method that operates on the projections of the features in the 3D scene located
on the ground plane. Together with the layout generation model, the method disentangles
layout and appearance in the scene.

• We validate the proposed method for 3D object detection and novel scene and view genera-
tion and find that the proposed inverse-rendering approach performs on par with existing
feed-forward detectors.

2 Related Work

3D Scene Representations and Neural Rendering. Recent methods represent 3D scenes implicitly.
This includes NeRF [40] and variants [76, 49, 39, 41] that have been extended to multi-object
scenes [69, 47, 30, 71, 18]. A growing body of work addresses joint 3D reconstruction and detection
from monocular cameras on a single scene or object. Existing methods have proposed different
geometrical priors [38] for this task, including meshes [2], points [27], wire frames [21], voxels [67],
CAD models or implicit functions [47, 30] and signed distance functions (SDFs) [78]. These methods
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focus on reconstructing specific scenes and either require explicit, pre-defined prior geometries, such
as CAD models, or multi-view images/videos and geometry supervision from meshes or point clouds.
We operate on a single image input and propose to learn the underlying prior with a generative scene
layout representation embedded in a neural rendering pipeline.

Inverse Rendering. Inverse rendering methods conceptually “invert” the graphics rendering
pipeline, which generates images from scene descriptions, and instead estimate scene properties, i.e.,
geometry, lighting, depth, and poses from input images. Recent works [64, 73, 34] jointly optimize a
volumetric model and unknown camera poses with a set of images by back-propagating through a
rendering pipeline. Other methods focus on material and lighting to find a physical representation
that best models the observed image [45, 19, 46].

Scene and Object Generation. Generative models, in particular generative-adversarial networks
(GANs) [17] and diffusion probabilistic models [22, 61], have been extensively explored for image
generation [24, 53]. Text conditioning [53], style transfer [81], and image modalities [79] have added
controllability to the generation process. In recent years these approaches have been transferred to
3D object [12, 8, 59, 55, 16] and scene generation [15, 14, 69, 43, 42].

We are primarily concerned with multi-object scenes. BlockGAN [42] disentangles each object
with a latent identity and pose for scene composition but individual objects cannot be customized.
BlobGAN [15] proposes to represent multi-object scenes with each object instance encoded by a
feature blob in the projected image space, used as a condition for a GAN-based image generation
network. A separately trained inversion network aims to translate images into a blob layout. We
find that this direct prediction without end-to-end supervision fails to recover moderately complex
scene layouts. For 3D scene generation, DisCoScene [69] follows a similar approach by rendering
an image from blended features from disentangled per-object radiance fields. This approach does not
generate or predict scene layouts and instead relies on scene descriptions extracted from the dataset.

3D Object Detection. Monocular 3D object detection [6, 4, 10, 51, 68, 48, 80, 28, 37] has
been explored extensively in computer vision. Existing approaches have investigated purely two-
dimensional convolutional architectures utilizing dense depth predictions in image [48] or the
levering of inductive biases, such as BEV projections [48], or frustum segmentation [65]. Most
existing methods can not be directly trained without a pre-trained depth prediction through depth
supervision [48, 48, 37]. A large body of existing work exploits geometric priors. Encoding the
scene layouts in the BEV space has been explored in image and LiDAR-based architectures [31, 51,
70], trading off height information for computational efficiency, which we also embrace in our work.
Typically, a BEV feature extractor (combined with measured or predicted depth) is followed by a set
of convolutional prediction heads that outputs one prediction such as location or bounding box, per
head. However, the proposed method directly generates a BEV map of the scene instead through a
jointly trained generative diffusion probabilistic model.

3 Diffusion Pillar Representation and Generation

The proposed method generates a scene layout in the 2D ground plane via a diffusion process that
enforces this layout to be consistent with a rendered image observation, i.e., performing object
detection by inverse rendering. An overview of this approach is shown in Figure 1. We represent a
scene layout with a BEV grid G, where each cell contains either a background encoding or an object
feature encoding and geometry information. Given the ground plane representation of the multi-object
scene, novel views are rendered by 3D to 2D feature projections using a second diffusion-based
process. Conditioning is optional, allowing the method to perform either 3D object detection, or to
generate novel scene layouts and novel views.

The pipeline is end-to-end differentiable, which allows us to refine the ground plane layout when
training the novel views. Doing so, we combine generation and detection into one integrated
architecture, creating a cycle that is closed by image reconstruction and manipulation.

3.1 Scene Layout Representation

We represent a multi-object scene layout on the BEV ground plane as a prior for the natural distri-
bution, without requiring costly 3D voxel discretization. The scene layout G, a HBEV ×WBEV
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Figure 1: Our end-to-end training pipeline. (Top row) Given an image observation, we extract
features and create a BEV ground plane. The diffusion model learns to generate a BEV map that
contains background and object features. (Bottom row) We extrude the BEV map and perform
projection to obtain elliptic pillars. The diffusion model learns to generate novel views.

is a grid of anchors gi,j ∈ RCBEV with i ∈ [0, HBEV ] , j ∈ [0,WBEV ] and the center location
xi,j = [i+ 0.5, j + 0.5] of each anchor in the scaled BEV space. Each anchor either represents a
single background appearance encoding ψbckg ∈ Rfbckg or one of the K objects ok in a scene with
k = {0, ...,K}. An object k is defined by an appearance feature ψfg ∈ Rffg , a latent appearance
encoding that represents the object style and class information, and a geometrical descriptor consisting
of the pose with respect to the anchor center and the dimensions ξ ∈ R7

ξk = [∆xk,∆yk,∆zk, wk, lk, hk, θk] and ok = (vk, ξk, ψk) . (1)

An additional descriptor v at each anchor classifies the anchor either as one of the data-sets Ncls

classes through one-hot encoding

vi,j = onehot (clsi,j) , with v ∈ {0, 1}Ncls
, (2)

or if zero for all entries, the respective anchor (i, j) is treated as background. The combined number
of channels per anchor is CBEV = Ncls + 7 + ffg .

This explicit ground plane representation of objects effectively disentangles objects from the back-
ground. It allows for an arbitrary number of objects in a scene and separate manipulations in complex
layouts of multiple objects.

While the BEV lives on a HBEV ×WBEV grid, we can infer the object location in the reference
world as

xref
i,j = (xi,j +∆xi,j)

dx,max−dx,min

WBEV
dy,max−dy,min

HBEV

1

+ dmin, (3)

where dmin and dmax are the BEV bounds, and object dimension and rotation θ are in the unscaled
reference space.

Elliptic Pillars. While we rely on the bounding box and location ξk as a high-level description for
manipulation and 3D detection, a fixed 3D bounding box only defines the bounds of an object, and
direct projection into an image plane overestimates the object extend. We, therefore, introduce an
elliptic pillar representation with fading density ηk to transform ξk from the 2D ground plane to a 3D
space. We adopt an elliptical mid-level object representation with a spatial falloff on the 2D BEV
plane similar to BlobGAN [15] and introduce an extension into a height map. Each elliptical feature
pillar for a given object is defined by ηk =

(
xref
k , sk, ak,Rk, ψk, hk

)
and can fully be inferred from

the predicted objects of the layout generator. The ellipses on the ground plane are given by their

4



center xref
k ∈ R3, rotation R (θk) ∈ R2, scale sk = wk

√
lk
wk

, and aspect ratio ak =

√
lk
wk

. (4)

3.2 Probabilistic Layout Generation

To generate scene layouts, we design a diffusion probabilistic model based on [22]. Instead of
generating images, our diffusion model Φω learns to generate BEV maps G. Given an input scene,
we first obtain its corresponding BEV map. Then, we sample a timestep t ∈ [1, 1000] that corresponds
to some Gaussian noise level, which is added to the BEV map (forward step). The diffusion model
learns to denoise the BEV map (reverse step) and we perform ancestral sampling during generation.
We provide a complete formulation in the supplement.

We optionally concatenate a condition B to xt. This is passed as input to our diffusion model,
represented by a UNet [54]. Each block includes self-attention [63] to learn correspondences between
the BEV map and its condition. The final output is the generated BEV map.

Conditional Generation as Object Detection. The probabilistic diffusion model not only allows
for the generation of unconditional samples but also conditional generation, where generation is
guided by B. We condition the diffusion process on image features that are mapped from the image
space onto the BEV map to align with the generated layout introducing an inductive model bias
through the projection model. Here we follow a similar architecture for the BEV feature extractor
from CaDDN [51] and DSGN [11], a monocular object detection and stereo detection approaches,
which we formalize as

F = J (I)×D (I) , with J ∈ RWF×HF×C , D ∈ RWF×HF×D. (5)

Here, we project image plane information into 3D space; specifically, the image features J from
a pre-trained ResNet18 [20] are projected into D discrete bins per pixel along the depth axis.
Weighing each image feature ju,v from the same image pixel with a predicted depth distribution
p(d)u,v, a bounded frustum feature grid F ∈ RWF×HF×C×D is created where each bins feature is
fu,v,d = p(d)u,vju,v. The predicted discrete depth distribution p(d)u,v = D (u, v, d) for each pixel
u, v follows the architecture of DeepLabV3 [9] and is not supervised, but jointly trained with the
generative pipeline, which is in contrast to most monocular 3D detection methods that utilize sparse
depth supervision from 3D point clouds. From the feature frustum, we can infer the BEV features

B = M⊗P (F) , with M ∈ R1×1×, B ∈ RHBEV ×WBEV ×Z∗C . (6)

The feature frustum F is transformed back into the reference coordinate frame ref with the known
camera calibration K, pose R, compressed into the BEV boundaries [dmin,dmax], and finally down
projected with P (F). In the last step, the stacked features at each anchor location are accumulated
and reduced into the BEV feature with M.

The probability of a BEV anchor belonging to each possible object class is predicted with v̂i,j =
σ (bi,j) at the first Ncls output values in the feature dimension. All object anchors with the predicted
probability above the threshold τ+ defined for the respective class, are positive object anchors. The
remaining anchors are assumed to be part of the background. From the set of likely object anchors
only K unique object anchors are further selected performing non-maximum suppression (NMS)
on all 2D bounding boxes

[
xrefi,j , y

ref
i,j , wi,j , li,j

]
∀(i, j) ∈ arg max

cls
(v̂i,j (cls)) > τ+ on the ground

plane with an IoU threshold τNMS .

3.3 Neural Layout Rendering

With the ground plane layout in hand, we render an RGB image I ∈ RHI ,WI ,3 of a scene through
geometric projection and conditional image generation. The predicted anchors ξk and the respective
appearance featuresψk form feature pillar representation ηk with fading density to transform. Here, ηk
is aligned with the 2D ground plane but defines the 3D space. We project and blend the representation
of multiple objects in the image plane used to condition the generation of a novel view using diffusion.
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Image Projection. Given a camera projection matrix Pc = KcRc we sample 3D rays ru,v (t) =
ou,v + du,vt at each image pixel location (u, v). The rays are then projected into the BEV plane,
where we analytically compute the closest point of each ray and ellipses. First each ray ru,v is
transformed with respect to the location and rotated and scaled axis of the ellipses with

ok,2D
u,v =

[
a 0
0 1

a

]
R (θ)

(
oref,2D
u,v −

[
xk
yk

])
and dk,2D

u,v =

[
a 0
0 1

a

]
R (θ)dref,2D

u,v . (7)

For each combination of ray rk,2Du,v and objects, the closest point xref,2D
u,v,k on the ray can be found as

the perpendicular projection of the center of the ellipse onto the ray in the respective transformed
form. All rays u, v where the third dimension of the shortest distance to the center of the ellipse
is located below the BEV plane are clipped at the BEV plane and we use their BEV intersection
point instead. While BlobGAN directly uses two-dimensional blobs and opacity, respectively density,
based on the Mahalanobis distance for each pixel, our representation is based in 3D. We first follow
the calculation for the density of an object with respect to x, y, notably representing the true 2D
coordinates on the BEV plane and not pixel locations, as

bBEV (x
ref,2D
u,v,k ) = σ

(
sk − d

(
xref,2D
u,v,k , xk

))
, where (8)

d
(
xref,2D
u,v,k , xk

)
=

(
xref,2D
u,v,k − xk

)T (
R (θ) ΣkR (θ)

T
)(

xref,2D
u,v,k − xk

)
,

with Σk = cBEV

[
ak 0
0 1

ak

] (9)

is the Mahalanobis distance between the closest point and the center of the ellipse. The ellipses
are extruded into elliptical pillars from which we compute a second sample from an objects density
distribution for the intersection of each ray in the third dimension as

bh(x
ref,2D
u,v,k ) = σ (ch (zk + hk − zu,v,k)) , (10)

assuming that the density of the pillar is consistent along the height except for the top, where it fades
out. The combined density is their product b3D = bhbBEV .

For all pixels, we perform alpha blending [50] along the corresponding ray with b3D and ψk and
ψbckg, the mean from all background anchors, at the last position, which computes the full pixel
feature eu,v ∈ Rffg and the feature pillar image E ∈ RHI×WI×ffg .

Diffusion-Based Rendering. For simplicity, we use the same training scheme and architecture as
in Sec 3.2. The diffusion model Θκ takes input x = I and condition E to generate novel views.

3.4 Training and Inference

The proposed joint model for 3D detection and scene reconstruction is trained in an end-to-end
fashion. Diffusion probabilistic models are typically trained by iteratively denoising an input. While
this probabilistic approach can result in diverse outputs we want to guide our model towards accurate
predictions on the BEV plane given a condition. To this end, we propose a loss function combining
BEV reconstruction and accurate 3D predictions on the extracted object locations alongside a view
reconstruction loss.

The loss on the BEV map B̂ generation is formulated with the ground-truth target anchors ξ̂. We use a
ℓ2 loss function L2(B̂,B). From B̂ we only selectNdet anchors gi,j\ψi,j with the highest probability
max (vi, j) for one class. From all ξ̂n∀n ∈ [0, Ndet] we calculate the intersection-over-union (IoU)
with ξ and select all NIoU = N+IoU +N−IoU anchor proposals with an IoU above the thresholds
τ+IoU = 0.45 and τ−IoU = 0.25 respectively. We supervise the predicted ξ̂m∀m ∈ [0, NIoU ] using
a standard 3D detection loss function known from SECOND [70], which combines a regression
bounding box loss Lbbox, a direction classification loss Ldir and the object class loss Lcls, resulting
in the detection loss

Ldet = λregLbbox + λdirLdir + λfgLcls (11)
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For Lcls, we choose the focal loss [35] to imbalances in the amount of background and foreground
anchors. In this way, our model employs an “analysis-by-synthesis” paradigm, using the generation
of scene layouts to detect objects in existing scenes.

The generated image Î is solely supervised by the known image applying the mean-squared error
to all rendered pixels. There is no direct supervision of the generation of the appearance feature ψ
for each rendered BEV anchor, this is implicitly learned because we can update the weights ω of the
BEV diffusion process Φ with respect to the gradients dMSE (Î , I)/dψ and dψ/dω through the fully
differentiable pipeline.

Lsup = Ldet + λimgMSE
(
Î , I

)
(12)

(a) Input
images

(b) BEV features
condition

(c) Reconstruct-
ed BEV map

(d) Reconstruct-
ed image

(e) Pillars over-
laid on image

(f) 3D Bounding
Box overlaid

Figure 2: Visualization of the outputs of each step of our scene reconstruction and detection pipeline.

4 Evaluation

We assess the proposed method on monocular 3D object detection, view synthesis, and scene
manipulation tasks separately on scenes generated with the public code from the CLEVR dataset [23]
with 3 to 10 objects from the three different classes. While this dataset does not include in-the-wild
scenes, it perfectly highlights the pros and cons of repurposed multi-object scene reconstruction and
generative methods on perceptual layout reconstruction tasks. Moreover, given the training ressources
available to us, this dataset allowed for the investigations discussed in the following. We modified the
procedural Blender scene generation to export camera calibrations for detection. All detection and
generative methods are trained on the same set of posed images from 50k scenes and evaluated on
another set of 5k scenes. Camera and light source positions are randomly perturbed.

4.1 Layout Reconstruction.

The proposed approach is able to reconstruct layouts from different numbers of objects in an image,
which includes occluded objects. In Fig. 2 we show a reconstructions from a variety of test scenes
from 3 to 10 objects and the generated underlying BEV map. Each of the three colors (RGB)
for the object centers matches one of the object classes. Additionally, we visualize the output of
the BEV feature extractor, which is jointly trained with the object detector without leveraging any
form of pre-trained or supervised dense depth prediction. The spatial alignment of high activation
with the reconstructed object locations in the BEV indicates, that a BEV feature extractor can be
learned by backpropagating through the conditioning of the diffusion probabilistic generative process.
Additionally, we overlay feature pillars projected onto the image plane and the 3D bounding boxes.

3D Object detection - Conditional Generation. Next, we evaluate DiffusionPillars on an object
detection task on the CLEVR dataset. We also compare our method to two state-of-the-art monocular
3D object detection methods, DD3D [48] and DEVIANT [29]. DD3D [48] is a single-stage 3D object
detector that leverages pseudo-lidar methods such as monocular depth estimation [75]. DEVIANT
[29] uses a depth equivariant network [66] which enforces consistency to depth translations, to learn
depth estimates before detection.
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Table 1: Monocular 3D Object Detection on CLEVR. Bold and underline denote the best and second-
best result for each metric. Our method performs on par with state-of-the art monocular object
detection baselines.

Method APBEV |R40|IoU≥0.7 ↑ AP3D|R40|IoU≥0.7 ↑
DD3D 98.20 83.23
DEVIANT 94.86 86.08
DiffusionPillars (ours) 96.41 80.57

In Tab. 1 we report monocular 3D object detection results on the multi-object CLEVR dataset.
DiffusionPillars’ generative approach is comparable to state-of-the art methods, measured by 3D and
BEV AP, although not following conventional feed-forward prediction approaches.

BlobGAN [15]

Giraffe [43]

DiffusionPillars

Figure 3: We compare the rendering quality on multi-object scenes with varying amount of objects
from CLEVR [23] with GIRAFFE [43] and BlobGAN [15].

4.2 Scene Manipulation and Reconstruction with Generative Models.

For the task of scene generation and reconstruction, we compare against GIRAFFE [43] for ma-
nipulating scenes through object addition, removal, translation, and camera movement and show
a qualitative comparison with the 2D layout-based method BlobGAN [15] on the task of scene
layout reconstruction. We train GIRAFFE, which was only trained on less complex CLEVR [23]
scenes with up to 6 objects, on our data and provide additional camera information. During training,
we experimented with different hyperparameter settings for the size and amount of blobs to better
accommodate the sparse scene structure and image space rendering. Note that the used dataset is
different from the dense room datasets presented in [15] and has some impact on the output quality.

View Reconstruction Fig. 3 presents rendered scenes from all three methods. GIRAFFE and
BlobGAN apply a GAN-based up-sampling and reconstruction pipeline on a feature image, either
from a discrete layout or a feature map from volumetric rendering of multiple feature fields. Both
methods tend to blur object features from occluding and close objects. The proposed pillar projection
from a sparse 2D BEV map followed by a diffusion-based rendering step in contrast is only adding a
local instead of larger splatted features or volumes to the generation process, which results in sharp
corners and only minor blurring of object.

Using BlobGAN inversion, we show reconstructions of a possible scene layout and compare with
our BEV reconstruction in Fig. 4. We explicitly changed the number of objects to the input images’
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Input Image Layout Rendering

BlobGAN [15] Inverse

DiffusionPillars

Figure 4: Layout Reconstruction and Rendering. The Layout is reconstructed from the input image
and a re-rendered on the right side. In our case colors are explicitly matched to the corresponding
class of cube, sphere or cylinder.

object amount, but were only able to reconstruct less explainable layouts on those sparse multi-object
scenes. Leveraging DiffusionPillars explicit underlying 3D detection, layouts are reasonable in sparse
and dense multi-object scenes.

4.3 Manipulation - Controlled View Synthesis.

We compare manipulation capabilities between GIRAFFE [43] and our method via removal and
translation of objects in Fig. 5. BlobGAN [15] presents manipulation capabilities, but they are
not accessible. For GIRAFFE, blended objects already present in the reconstruction become more
dominant when adding more objects to the scene. Our method presents more natural manipulations.
These edits, including object transformation, deletion or insertion, and camera transformation, allows
our method to reconstruct scene layouts as well as generate novel views and scenes based on the
underlying layout from an input image.

Giraffe [43]

DiffusionPillars

Figure 5: Manipulation of objects via removal and translation. Explicitly modeling object
locations and instances allows us, similar to Giraffe, to manipulate objects through removal or
translation.

5 Conclusion

We investigate joining scene perception and generation by re-framing object detection as a conditional
generative process with a learned prior. The method learns inverse rendering and view synthesis in
an end-to-end fashion. We evaluate the approach in supervised, self-supervised, and unconditional
generative settings. We find the approach performs favorably against feed-forward detectors, and
excels in scene understanding and interpretability. We are optimistic that future work can further
improve results. Next steps include testing in-the-wild datasets and extending our self-supervised
layout generation to alleviate the need for annotations for non-synthetic data.

Broader Impact Our work joins 3D perception and generation, two extensively researched fields.
DiffusionPillars fosters mutual learning that could enhance each individual task in future research.
The experiments are conducted on the CLEVR dataset and do not pose immediate ethical concerns.
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However, as DiffusionPillars includes generative and detection methods, we are aware of potential
malicious applications such as deepfakes and surveillance, respectively. Thus, caution should be
applied when dealing with sensitive applications. We do not recommend using DiffusionPillars in
cases where privacy or erroneous recognition could be an issue. Instead, we encourage practitioners
to carefully evaluate the setting under which this method will be applied before proceeding.

Limitations We have only validated DiffusionPillars on CLEVR, a synthetic dataset with limited
classes of objects. Sampling time is slow due to iterative denoising of diffusion models. This may be
further improved with techniques such as DDIM [60] sampling. Finally, due to probabilistic behavior,
object color can be incorrect during rendering as it is not explicitly disentangled.
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