
105

Supplemental Material:
∇-Prox: Differentiable Proximal Algorithm Modeling
for Large-Scale Optimization

ZEQIANG LAI∗, Beijing Institute of Technology, China
KAIXUAN WEI∗, Princeton University, USA and McGill University, Canada
YING FU, Beijing Institute of Technology, China
PHILIPP HÄRTEL, Fraunhofer IEE, Germany and Princeton University, USA
FELIX HEIDE, Princeton University, USA

ACM Reference Format:
Zeqiang Lai, Kaixuan Wei, Ying Fu, Philipp Härtel, and Felix Heide. 2023. Supplemental Material: ∇-Prox: Differentiable
Proximal Algorithm Modeling for Large-Scale Optimization. ACM Trans. Graph. 42, 4, Article 105 (July 2023), 32 pages.
https://doi.org/10.1145/3592144

OUTLINE
This supplementary material provides further details and results to support the content of the main paper. It is
organized as follows.
Section A: We provide more details for applying deep equilibrium learning to proximal algorithms, including

the conversion from proximal optimization to fixed-point iteration and its gradient derivation.
Section B: In the interest of clarity, we introduce algorithm principles and implementation details of learning

proximal solvers with deep reinforcement learning.
Section C: We present more details about the solver construction pipeline with examples of how eliminating

calculations enables more efficient forward/backward evaluations.
Section D: To showcase the ease of use and scalability of ∇-Prox, we sketch a step-by-step tutorial about adding

customized operators and proximal algorithms in light of users’ interest. A sanity check mechanism
is also introduced to ensure implementation accuracy.

Section E: With the purpose of completeness, we provide further details on the implementation of ∇-Prox,
including its built-in linear operators, proximal functions, proximal algorithms, as well as the trainer
interface to optimize solvers.

Section F: To help users familiarize ∇-Prox language and its usage, we provide examples with accompanying
code explained in a line-by-line fashion. More user-friendly tutorials are available in our released
codebase.

Section G: To reach a broader audience of the graphics community, we present general introductory background
of integrated energy system planning problems. The convergence loss mentioned in Section 5.4 of
the main paper is also introduced here.

Section H: We provide further details (e.g., experimental setup, training script) on the experimental results for
a wide range of applications.

∗indicates equal contribution.

2023. 0730-0301/2023/7-ART105 $15.00
https://doi.org/10.1145/3592144

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

HTTPS://ORCID.ORG/0009-0005-6102-4916
HTTPS://ORCID.ORG/0000-0002-9887-0455
HTTPS://ORCID.ORG/0000-0002-6677-694X
HTTPS://ORCID.ORG/0000-0002-9706-1007
HTTPS://ORCID.ORG/0000-0002-8054-9823
https://doi.org/10.1145/3592144
https://doi.org/10.1145/3592144

105:2 • Lai, Z. et al

A ADDITIONAL DETAILS ON DEEP EQUILIBRIUM LEARNING
In this section, we first provide a general review of deep equilibrium learning (DEQ), then we detail how we
transform the proximal optimization routines into a fixed-point iteration on which DEQ operates, and finally, we
show how to compute the gradients that backpropagate through whole the proximal optimization trajectory
efficiently by leveraging DEQ.

A.1 The Overview of Deep Equilibrium Learning
The DEQ was originally applied to infinite-depth networks for sequential data, which is an area orthogonal
to optimization [Bai et al. 2019]. In a sense, DEQ is a direct solver for approaches that repeatedly apply deep
sequence models, e.g., RNN and LSTM, to converge towards some fixed points. To this end, DEQ starts with a
reformulation of the deep sequence model into a fixed-point iteration

x∞ = 𝑓𝜃 (x∞; y) , (1)

where 𝑓𝜃 denotes the deep sequence model, x represents to the hidden states of the model, and y denotes the
input to the model. Instead of repeatedly evaluating until convergence, DEQ directly finds the equilibrium points
via root-finding, which can be conceptually treated as an infinite iteration. One of the most prominent advantages
of DEQ is that the backward gradient can be analytically obtained using implicit differentiation with constant
memory cost.

A.2 Formulating Proximal Optimization as Fixed-Point Iteration
To incorporate DEQ into ∇-Prox, we have to convert the proximal optimization into the computing format of
DEQ, i.e., in the form of fixed-point iteration. Every proximal algorithm is an optimization method that finds the
optimal solution by iterating over a series of variable updates. For example, the updates for ADMM algorithms
consist of two primal updates for the main variable x and the auxiliary variable v and one dual update for the
multiplier u. To convert any proximal algorithm into a fixed-point iteration, we adopt the following steps.
(1) Decouple the dependency of the optimization variables of the same step. For example, the original ADMM

typically uses the latest version of the optimization variable to update the others, e.g., u𝑡 = 𝑔(x𝑡 , v𝑡−1). To
enable the conversion, we have to change it to u𝑡 = 𝑔(x𝑡−1, v𝑡−1) where every optimization variable only
depends on the variables from the last step.

(2) Stack all the optimization variables into a single input. For example, we stack the variables x, v, u of ADMM
into a single one X. This helps to build a unified interface for different proximal algorithms with a different
number of optimization variables.

(3) Stack all the updates of the chosen proximal algorithm into a single one. Taking ADMM as an example, we
stack the x update, v update, and u update into a single one X𝑡 = 𝑓 (X𝑡−1) that takes stacked variables from
the previous step 𝑋 𝑡−1 as input and outputs the stacked variables at the current step X𝑡 .

In summary, the fixed point iteration of proximal optimization can be formulated as

X∞ = 𝑓𝜃 (X∞;M) , (2)

where X∞ is a compound variable stacking all optimization variables, e.g., x, v, u for ADMM, 𝑓𝜃 represents a
single round of updates of optimization variables x, v, u, and M denotes any other input for the updates, e.g.,
hyperparameters 𝜌 and observation y.

A.3 Detailed Derivation of Gradient Calculation of DEQ
With the fixed-point iteration formulation of proximal optimization, we could derive an efficient gradient
calculation method using implicit differentiation for fast parameter tuning. In a nutshell, consider the gradient of

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:3

the parameters 𝜃 with respect to some scalar loss L, we first apply the chain rule as
𝜕L
𝜕𝜃

= (𝜕X
∞

𝜕𝜃
)𝑇 𝜕L
𝜕X∞

, (3)

where the second term 𝜕L
𝜕X∞ can usually be automatically computed by auto-diff system. To efficiently obtain the

first term 𝜕X∞
𝜕𝜃

, we apply the chain rule to obtain
𝜕X∞

𝜕𝜃
=

𝜕X∞

𝜕𝑓𝜃 (X∞;M)
𝜕𝑓𝜃 (X∞;M)

𝜕𝜃
. (4)

The first term of (4) can be derived by differentiate both size of (2) again,
𝜕X∞

𝜕𝑓𝜃 (X∞;M) =
𝜕𝑓𝜃 (X∞;M)

𝜕X∞
𝜕X∞

𝜕𝑓𝜃 (X∞;M) , (5)

By rearranging the items, (
I − 𝜕𝑓𝜃 (X

∞;M)
𝜕X∞

)
𝜕X∞

𝜕𝑓𝜃 (X∞;M) = I, (6)

we could obtain,
𝜕X∞

𝜕𝑓𝜃 (X∞;M) =
(
I − 𝜕𝑓𝜃 (X

∞;M)
𝜕X∞

)−1
. (7)

This can be plugged back to (4) to obtain

𝜕X∞

𝜕𝜃
=

(
I − 𝜕𝑓𝜃 (X

∞;M)
𝜕X∞

)−1
𝜕𝑓𝜃 (X∞;M)

𝜕𝜃
. (8)

Then, (8) can be plugged back into (3) to obtain

𝜕L
𝜕𝜃

=

(
𝜕𝑓𝜃 (X∞;M)

𝜕𝜃

)𝑇
︸ ︷︷ ︸
Single-step Gradient

(
I − 𝜕𝑓𝜃 (X

∞;M)
𝜕x∞

)−𝑇
𝜕L
𝜕X∞︸ ︷︷ ︸

Inverse Jacobian-vector

. (9)

The first part is a single-step gradient that can be computed by utilizing auto-diff. The second part is an inverse
Jacobian-vector product that can be obtained with another fixed-point problem. To illustrate, we first define the
second part as 𝛽∞

𝛽∞ =

(
I − 𝜕𝑓𝜃 (X

∞;M)
𝜕x∞

)−𝑇
𝜕L
𝜕X∞

. (10)

This can be transformed to

𝛽∞ =

(
𝜕𝑓𝜃 (X∞;M)

𝜕X∞

)𝑇
𝛽∞ + 𝜕L

𝜕X∞
, (11)

which can be treated as a fixed-point problem.
In summary, we see that the 𝜕L

𝜕𝜃
can now be calculated by solving a single-step gradient and a fixed-point

problem. The fixed-point problem is addressed on the fly without requiring intermediate-state storage. Therefore,
the memory cost can be substantially reduced to the amount of one-step optimization.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:4 • Lai, Z. et al

B LEARNING SOLVERS VIA REINFORCEMENT LEARNING
In this section, we elaborate on the reinforcement-learning-based strategy for learning the automatic parameter
tuner within a proximal solver introduced in Section 4.5 of the main paper. First, we describe how to formulate
the automated parameter selection of proximal algorithms in a reinforcement learning (RL) context. Then, we
introduce the RL algorithm that optimizes a policy network for automatic parameter tuning. Interested readers
are also referred to [Wei et al. 2022] for additional technical detail.

B.1 Formulation Automated Parameter Selection as an RL Problem
Our goal is to automatically select a sequence of internal algorithm parameters, e.g., (𝜌0, 𝜆0, 𝜌1, 𝜆1, · · · , 𝜌𝜏 , 𝜆𝜏) to
guide the optimization (for instance, Algorithm 1 in the main paper) for problem-specific objectives of interest (for
example in image optimization, the ultimate objective is to recover an image that closes to the underlying ground
truth, meanwhile speeding up the convergence). This problem can be formulated as a Markov decision process
(MDP) addressed via reinforcement learning. Reinforcement learning is a subarea of machine learning related to
how an agent should act within an environment, to maximize its cumulative rewards [François-Lavet et al. 2018].
We briefly introduce basic concepts from RL, and how we formulate our automated parameter selection problem
as an RL problem.

We denote the MDP by the tuple (S,A, 𝑝, 𝑟), whereS is the state space,A is the action space, 𝑝 is the transition
function related to environmental dynamics, and 𝑟 is the reward function. Take the image optimization task
as an example, S is the space of optimization (primal and dual) variable states, which includes the initializa-
tion (𝑥0, 𝑣0, 𝑢0) and all intermediate results (𝑥𝑘 , 𝑣𝑘 , 𝑢𝑘) in the optimization process. A is the space of internal
parameters, including both discrete termination time 𝜏 and the continuous penalty/weighting parameters (𝜌𝑘 ,
𝜆𝑘). The transition function 𝑝 : S ×A → S maps input state 𝑠 ∈ S to its outcome state 𝑠′ ∈ S after taking action
𝑎 ∈ A. The state transition can be expressed as 𝑠𝑡+1 = 𝑝 (𝑠𝑡 , 𝑎𝑡), which is composed of one or several iterations
in the optimization. On each transition, the environment emits a reward with respect to the reward function
𝑟 : 𝑆 × A → R, which evaluates actions given the state. Applying a sequence of parameters to the initial state 𝑠0
results in a trajectory 𝑇 of states, actions and rewards, i.e. 𝑇 = {𝑠0, 𝑎0, 𝑟0, · · · , 𝑠𝑁 , 𝑎𝑁 , 𝑟𝑁 }. Then, we define the
return 𝑅𝑡 of a trajectory 𝑇 as the summation of discounted rewards after 𝑠𝑡 :

𝑅𝑡 =

𝑁−𝑡∑︁
𝑡 ′=0

𝛾𝑡
′
𝑟 (𝑠𝑡+𝑡 ′ , 𝑎𝑡+𝑡 ′), (12)

where 𝛾 ∈ [0, 1) is a discount factor and prioritizes earlier rewards over later ones.
Our objective is to learn a policy 𝜋 , denoted as 𝜋 (𝑎 |𝑠) : S → A for the decision-making agent, in order to

maximize the objective defined as

𝐽 (𝜋) = E𝑠0∼𝑆0,𝑇∼𝜋 [𝑅0] , (13)

where E represents expectation, 𝑠0 is the initial state, and 𝑆0 is the corresponding initial state distribution.
Intuitively, the objective describes the expected return over all possible trajectories induced by the policy 𝜋 . The
expected return on states and state-action pairs under the policy 𝜋 are defined by state-value functions 𝑉 𝜋 and
action-value functions 𝑄𝜋 respectively, i.e.

𝑉 𝜋 (𝑠) = E𝑇∼𝜋 [𝑅0 |𝑠0 = 𝑠] , (14)
𝑄𝜋 (𝑠, 𝑎) = E𝑇∼𝜋 [𝑅0 |𝑠0 = 𝑠, 𝑎0 = 𝑎] . (15)

In our task, we divide actions into two components, i.e. 𝑎 = (𝑎1, 𝑎2)1, which includes a discrete decision 𝑎1 on
termination time 𝜏 and a continuous decision 𝑎2 on penalty/weighting parameter (𝜌 , 𝜆). The policy also has two
1Strictly speaking, 𝑎𝑡 = (𝑎𝑡1, 𝑎𝑡2) . Here, we omit the notation 𝑡 (time step) for simplicity.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:5

sub-policies: 𝜋 = (𝜋1, 𝜋2), a stochastic policy and a deterministic policy, which generate 𝑎1 and 𝑎2 respectively.
The role of 𝜋1 is to determine when to end the iterative algorithm by sampling a boolean-valued outcome 𝑎1
from a two-class categorical distribution 𝜋1 (·|𝑠), which is calculated based on the current state 𝑠 . If 𝑎1 = 0, the
next iteration will proceed; otherwise, the optimization terminates and outputs the final state. In contrast to the
stochastic policy 𝜋1, 𝜋2 is treated deterministically, i.e., 𝑎2 = 𝜋2 (𝑠). Because 𝜋2 is differentiable with respect to the
environment, its gradient can be accurately estimated.

In RL, the environment is characterized by two components, i.e. the environment dynamics and reward function.
The dynamics of the environment are represented by the transition function 𝑝 , which is associated with the
differentiable proximal algorithm in our task. The transition function 𝑝 in this scenario involves𝑚 iterations of
optimization at each time step. The value of𝑚 determines the level of control over the termination time of the
optimization process, with larger values leading to coarser control but more efficient decision-making. To avoid
infinite optimization loops, the maximum time step 𝑁 is imposed, leading to𝑚 ×𝑁 iterations of the optimization
at most. To take both algorithm effectiveness and runtime into account, the reward function is defined as:

𝑟 (𝑠𝑡 , 𝑎𝑡) = [𝜁 (𝑝 (𝑠𝑡 , 𝑎𝑡)) − 𝜁 (𝑠𝑡)] − 𝜂, (16)

The first term, 𝜁 (𝑝 (𝑠𝑡 , 𝑎𝑡)) − 𝜁 (𝑠𝑡), measures the performance improvement (e.g., PSNR in image recovery) made
by the policy, where 𝜁 (·) is the performance metric of the task at hand. The second term, 𝜂, penalizes the policy for
not terminating at step 𝑡 , with 𝜂 determining the degree of penalty. A negative reward is given if the performance
gain does not exceed the degree of penalty, encouraging the policy to stop the iteration when the gain diminishes.

B.2 Optimizing Parameter Selection Policy
Next, we introduce a mixed algorithm for learning a parameter selection policy that combines both model-free
and model-based reinforcement learning. Specifically, model-free RL (agnostic to the environment dynamics) is
used to train 𝜋1, while model-based RL is utilized to optimize 𝜋2 to make full use of the environment model. We
employ the actor-critic framework [Sutton et al. 2000], which includes a policy network, 𝜋𝜃 (𝑎𝑡 |𝑠𝑡) (the actor),
and a value network, 𝑉 𝜋

𝜙
(𝑠𝑡) (the critic), to formulate the policy and state-value function, respectively.

The policy and value networks are designed to be simple yet effective. We use residual structures (ResNet-18)
[He et al. 2016] as the feature extractors in both networks, followed by fully-connected layers and activation
functions to produce the desired outputs. It is worth noting that the additional computation cost of the policy
network is minimal compared to the iteration cost of proximal algorithms.
The policy and value networks are learned in an alternating manner. For each gradient step, we update the

parameters of the value network, 𝜙 , by minimizing the loss function:

𝐿𝜙 = E𝑠∼𝐵,𝑎∼𝜋𝜃 (𝑠)

[
1
2
(𝑟 (𝑠, 𝑎) + 𝛾𝑉 𝜋

𝜙
(𝑝 (𝑠, 𝑎)) −𝑉 𝜋

𝜙
(𝑠))2

]
, (17)

where 𝐵 is the distribution of previously sampled states, which is implemented by a state buffer, and serves as
a form of experience replay mechanism [Lin 1992]. This is observed to "smooth" the training data distribution
[Mnih et al. 2013]. The update uses a target value network 𝑉 𝜋

𝜙
to stabilize the training process [Mnih et al. 2015],

where 𝜙 is the exponential moving average of the value network weights.
The policy network is composed of two sub-policies that share convolutional layers to extract image features.

These are then followed by two separate groups of fully-connected layers that produce the termination probability,
𝜋1 (·|𝑠), after softmax, or the penalty/balancing parameters, 𝜋2 (𝑠), after sigmoid. The parameters of the sub-policies
are denoted as 𝜃1 and 𝜃2, respectively, and the goal is to optimize 𝜃 = (𝜃1, 𝜃2) so that the objective 𝐽 (𝜋𝜃) is
maximized. The policy network is trained using policy gradient methods [Peters and Schaal 2006]. The gradient
of 𝜃1 is estimated by a likelihood estimator in a model-free manner, while the gradient of 𝜃2 is estimated relying

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:6 • Lai, Z. et al

Algorithm 1 Parameter Selection Policy Training Scheme
Require: Image dataset 𝐷 , degradation operator 𝑔(·), learning rates 𝑙𝜃 , 𝑙𝜙 , weight parameter 𝛽 .
1: Initialize network parameters 𝜃 , 𝜙 , 𝜙 and state buffer 𝐵.
2: for each training iteration do
3: sample initial state 𝑠0 from 𝐷 via 𝑔(·)
4: for environment step 𝑡 ∈ [0, 𝑁) do
5: 𝑎𝑡 ∼ 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)
6: 𝑠𝑡+1 ∼ 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)
7: 𝐵 ← 𝐵 ∪ {𝑠𝑡+1}
8: break if the boolean outcome of 𝑎𝑡 equals to 1
9: end for
10: for each gradient step do
11: sample states from the state buffer 𝐵
12: 𝜃1 ← 𝜃1 + 𝑙𝜃▽𝜃1 𝐽 (𝜋𝜃)
13: 𝜃2 ← 𝜃2 + 𝑙𝜃▽𝜃2 𝐽 (𝜋𝜃)
14: 𝜙 ← 𝜙 − 𝑙𝜙▽𝜙𝐿𝜙
15: 𝜙 ← 𝛽𝜙 + (1 − 𝛽)𝜙
16: end for
17: end for
Ensure: Learned policy network 𝜋𝜃

on backpropagation via the environment dynamics in a model-based manner. Specifically, for discrete termination
time decision 𝜋1, we apply the policy gradient theorem [Sutton et al. 2000] to obtain unbiased the Monte Carlo
estimate of ▽𝜃1 𝐽 (𝜋𝜃) using the advantage function 𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) −𝑉 𝜋 (𝑠) as the target, which is computed
as

▽𝜃1 𝐽 (𝜋𝜃) =E𝑠∼𝐵,𝑎∼𝜋𝜃 (𝑠)
[
▽𝜃1 log𝜋1 (𝑎1 |𝑠)𝐴𝜋 (𝑠, 𝑎)

]
. (18)

For continuous denoising strength and penalty parameter selection 𝜋2, we utilize the deterministic policy gradient
theorem [Silver et al. 2014] to formulate its gradient that reads:

▽𝜃2 𝐽 (𝜋𝜃) =E𝑠∼𝐵,𝑎∼𝜋𝜃 (𝑠)
[
▽𝑎2 𝑄

𝜋 (𝑠, 𝑎)▽𝜃2𝜋2 (𝑠)
]
, (19)

where we approximate the action-value function 𝑄𝜋 (𝑠, 𝑎) by 𝑟 (𝑠, 𝑎) + 𝛾𝑉 𝜋
𝜙
(𝑝 (𝑠, 𝑎)) given its unfolded definition

[Sutton and Barto 2018].
By using the chain rule, we can directly calculate the gradient of 𝜃2 through backpropagation with the reward

function, the value network, and the transition function. This is in contrast to relying solely on the gradient
backpropagated from the learned action-value function in the model-free DDPG algorithm [Lillicrap et al. 2016].
The training algorithm for our policy learning is outlined in Algorithm 1. It requires an image dataset 𝐷 , a

degradation operator 𝑔(·), learning rates 𝑙𝜃 , 𝑙𝜙 , and a weight parameter 𝛽 . To generate the initial states 𝑠0, we
define the degradation operator 𝑔(·) as a combination of a forward model and an initialization function. The
forward model maps the underlying image 𝑥 to its observation 𝑦, while the initialization function generates the
initial estimate 𝑥0 from the observation 𝑦. For linear inverse problems, 𝑔(·) is typically defined as the composition
of the forward operator and the adjoint operator of the problem (for example, 𝑔(·) is the composition of the
partially-sampled Fourier transform and the inverse Fourier transform in CS-MRI).

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:7

C ADDITIONAL DETAILS ON SOLVER CONSTRUCTION

C.1 Solver Construction Pipeline
The solver construction/compilation pipeline is shown in Figure I. We here provide a brief introduction to the
different compilation stages and we refer interested readers to ProxImaL [Heide et al. 2016] for more details from
which it mostly inherits.

Problem Transformation. ∇-Prox supports compositing different proxable penalty functions, whose correspond-
ing linear operators can be composed as well. These compositions produce a directed acyclic graph (DAG) that is
similar to the abstract syntax tree (AST) [Wile 1997] of a conventional computer program. The problem transfor-
mation plays the same role as the AST transformation [Kruse 2021] phase of the compilation of conventional
programming language. This typically involves recognizing patterns on the proximal and linear operators in the
graph and performing a series of sub-graph rewriting or reduction. For example, constant folding is performed
to recognize and evaluate the constant expression in the problem DAG (e.g., extracting the offset of the sum of
square penalty) at compile time rather than repeatedly computing them at runtime.

Problem Partition. The proximal algorithms in ∇-Prox rely on variable splitting that is based on a partition of
two sets Ω and Ψ on every penalty function in a given problem2, following the formulation in ProxImaL [2016].
In this formulation, the choice of splitting determines the introduction of auxiliary variables and can drastically
affect the solver formulation and its performance.

𝑔(x) =
∑︁
𝑓𝑖 ∈Ω

𝑓𝑖 (x), ℎ(z) =
∑︁
𝑓𝑖 ∈Ψ

𝑓𝑖 (z),

The optimal partition depends on the choice of specific algorithm and ∇-Prox would automatically detect and
select the most proper one. For ADMM, a rule of thumb is that Ω often only contains quadratic terms so that the
x subproblem can be reduced to a least squares problem.

Problem Scaling. The compiler includes an optional stage that performs the preconditioning on the split
problem for accelerating the algorithm convergence and performance. By default, this is achieved by solving an
equivalent problem whose variables are scaled by the spectral norm of the composited linear operator [Heide
et al. 2016]. With the differentiable solver, our compiler also supports the learning-based preconditioner tailored
for the given dataset, which usually exhibits better performance.

Code Generation. Once the problem is transformed, the next step is generating the solver algorithm code.
All the algorithms in ∇-Prox exploit variable-splitting techniques and they share a common variable-splitting
strategy to decouple every proxable function of the optimization objective into a set of separable easier-to-solve
subproblems.

C.2 Extensible Sum Square
Typical proximal algorithms based on variable splitting all have one step that requires solving a linear system
Kx = b. For example, ADMM solves generalized Problem (4) with multiple priors via alternatively solving three
subproblems. The priors are properly split into two sets Ω and Ψ, where Ω only contains quadratic terms so that
x subproblem can be reduced to a least squares problem. Then, it can be solved in closed form or via iterative
methods such as conjugate gradient, based on whether linear operators of all quadratic terms have diagonal
Gram matrices. In our framework, we consider another case where some quadratic terms can be solved in the
closed form via special proximal operators even though the Gram matrices of its linear operator are not diagonal,

2Note the constraints 𝑐 𝑗 are converted into penalties 𝑓𝑗 using indicator functions.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:8 • Lai, Z. et al

PROBLEM
TRANSFORM

PROBLEM
PARITION

PROBLEM
SCALING

Code
Generation

Preconditioner

Fig. I. Overview of the stages of the general solving pipeline. It consists of two non-differentiable compilation stages for
transforming the problem represented as DAG, and two differentiable stages for scaling and solving the problem where the
gradient can backpropagate to the preconditioner or other learnable components.

which have been studied for image super-resolution [Chan et al. 2016], CSMRI [Wei et al. 2020], single photon
imaging [Chan et al. 2016], and others.

To illustrate, we consider image super-resolution as an example where we use a single deep denoiser prior and
a mean-square-error data-fidelity constraint as

x̄ = argmin
x

1
2
| |SHx − y| |2 + 𝜆𝑔(x),

where S is a K-fold downsampling operator and H is a blurring operator, 𝑔 denotes a deep denoiser prior and 𝜆 is
corresponding penalty strength. When the ADMM is adopted, we solve this optimization problem by solving
three subproblems as

x(𝑘+1) = argmin
x∈R𝑛

1
2 | |SHx − y| |

2 + 𝜌

2

x − x̃(𝑘)2
,

v(𝑘+1) = argmin
v∈R𝑛

𝜆𝑔(v) + 𝜌

2

v − ṽ(𝑘)2
,

u(𝑘+1) = u(𝑘) +
(
x(𝑘+1) − v(𝑘+1)

)
,

(20)

where v(𝑘) def
= (1/𝜌)v(𝑘) , �̃� (𝑘) def

= 𝒗 (𝑘) − 𝒖 (𝑘) and �̃� (𝑘)
def
= 𝒙 (𝑘+1) + 𝒖 (𝑘) and the x update can be viewed as

solving a linear system. In ProxImaL, the x update would be solved by iterative solvers as SH is not diagonal.
In fact, the above x update could also be viewed as a proximal operator for the sum of square penalty function
1
2 | |SHx − y| |

2, and [Chan et al. 2016] show that it actually has a closed-form solution as

proxf,𝜌 (x̃(𝑘)) = 𝜌−1b − 𝜌−1G𝑇
©«F −1

F (Gb)���F (
ℎ̃0

)���2 + 𝜌

ª®®¬ (21)

where G = SH, b = G𝑇y + 𝜌x̃(𝑘) , ℎ̃0 is the 0th polyphase component of the filter HH𝑇 .
A remaining issue of these special proximal operators is that they are mostly derived for optimization objectives

with a single regularizer. To enable incorporating more regularizers, ∇-Prox introduces extensible sum squares
that automatically extend existing closed-form sum square proximal operators that operate on a single regularizer
for more regularizers. In a nutshell, ∇-Prox utilizes the fact that most special solutions (21) are derived from the
least-square solution as

𝑥 (𝑘+1) =
(
(HS)𝑇 SH + 𝜌𝐼

)−1 (
(HS)𝑇𝑦 + 𝜌𝑥 (𝑘)

)
. (22)

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:9

∇ ∇

X

M

D

% ! % ! %

(a) Common subexpression Elimination
(b) Constant Folding

(c) Merge Proxable Function
(d) Absorb Linear Operator

∇

X

D

M % ! % ! + %

H

b

−
∇

X

M

D

% ! % ! %

Hb
Hb

Fig. II. ∇-Prox performs various optimization on the problem representation to eliminate unnecessary calculations to
accelerate the forward and backward (gradient) computations.

When there are multiple regularizers and all their associated linear operators are identity, the least-square solution
becomes

𝑥 (𝑘+1) =

(
(HS)𝑇 SH + 𝜌

𝑁∑︁
𝑗

𝐼

)−1 (
(HS)𝑇𝑦 + 𝜌

𝑁∑︁
𝑗

𝑥 (𝑘)

)
. (23)

where 𝑁 is the number of regularizers. We could see that solution (22) and (23) actually solve the same problem
with different inputs (they only differ in 𝐼 and 𝑥 (𝑘)) and both of them can be replaced by fast solution (21). Since
𝑥 (𝑘) is the input of the proximal operator, the only thing we need to do is to change 𝐼 in the proximal operator to
reflect the number of regularizers.
The extensible sum square works exactly as discussed above. To implement it, ∇-Prox provides a base class

that is supposed to be inherited by all the special proximal operators mentioned above. It automatically tracks
the number of regularizers and emits the correct

∑𝑁
𝑗 𝐼 as an instance property that can be used in the child class

to implement their solving routines.

C.3 Eliminating Calculations
Proximal algorithms not only rely on the evaluation of proximal operators but also on the forward and adjoint
operations of linear operators. To further increase efficiency, ∇-Prox encompasses all linear operators and proxable
functions of a given problem into a DAG, which can be traversed to remove duplicate or unnecessary forward and
gradient computations. Our implementation supports several optimizations, including constant folding, common
subexpression elimination, proxable function fusion, and linear operator absorption.
For example, consider a combined penalty function for joint demosaicing and deconvolution with unaligned

observation, data fidelity, and total variation regularizations,
𝑟 (x) = ∥Dx − Hy∥22 + ∥∇x∥22 + ∥∇x∥,

where ∇ denotes the gradient operator and H denotes the homography that aligns with the observation y. As
illustrated in Figure II, ∇-Prox is capable of intelligently performing a series of simplifications including a) fusing
the common linear expression ∇𝑥 that can be evaluated only once and shared for two penalty functions; b)
directly computing the aligned observation Hy at compile time instead of repeatedly evaluating them at runtime;
c) identifying linear operators that can be absorbed into proxable functions, e.g., D into the sum of squares, which
might be helpful to circumvent iterative solving the least-square problem; d) merging proxable functions with
the same linear operator e.g., ∥ · ∥22 and ∥ · ∥, into a new compound proxable function if it can be more efficiently
evaluated. ∇-Prox would identify such a possibility and make the replacement if the resulting proxable function
is more efficient than the previous ones.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:10 • Lai, Z. et al

D EXTENSIBILITY
In this section, we demonstrate the extensibility of ∇-Prox through step-by-step tutorials for creating custom
linear operators, proxable functions, as well as proximal algorithms. Overall, ∇-Prox adopts the idea of object-
oriented programming in Python, and all the operators and algorithms are represented as classes that inherit
from a base class. For example, all the linear operators inherit from LinOp while all the proxable functions are a
subclass of ProxFn. The common routines that can be shared are implemented in base classes by ∇-Prox, and the
introduction of custom operators can be essentially achieved by implementing a few functions that are needed for
evaluating the operators, e.g., forward and adjoint in linear operator, and prox in proxable function. To maintain
differentiability, all these operators and algorithms have to be correctly implemented to be differentiable as well.
Fortunately, ∇-Prox integrates with PyTorch, so that users could utilize PyTorch’s differentiable operators to
build up custom operators for ∇-Prox.

D.1 Adding New Operators
Proxable Functions. The following code shows a template for defining a new proxable function. As previously

mentioned, we define the function as a class inheriting from the base class ProxFn, and implement all the required
methods. Then, ∇-Prox would handle all other things properly, so that the new proxable function can work with
operators, algorithms, and training utilities of the existing system.
class new_func(ProxFn):

def __init__(...):

Custom initialization code.

def _prox(self, tau, v):

Code to compute the function's proximal operator.

return ...

def _eval(self, v):

(Optional) Code to evaluate the function.

return ...

def _grad(self, v):

(Optional) Code to compute the analytic gradient.

return ...

Specifically, defining a new function only requires a method _prox to be implemented, which evaluates the
proximal operator of the given function. Users can optionally implement the _grad function to provide a routine
for computing the analytic gradient of the proxable function. This facilitates the algorithms that partially rely on
the gradient evaluation, e.g., proximal gradient descent [Bruck Jr 1975]. Besides, users could also implement the
_eval method that computes the forwarding results of the proxable function if it is possible. ∇-Prox would take
the _eval routine and compute the gradient with auto-diff if _grad is not implemented.

Linear Operators. Defining new linear operators mostly corresponds to defining the forward and adjoint routines.
The following code shows the template for defining them. Similar to a proxable function, the operator is defined
as a class inheriting from the base class LinOp.
class new_linop(LinOp):

def __init__(...):

Custom initialization code.

def forward(self, inputs):

Read from inputs, apply operator, and return outputs.

return ...

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:11

def adjoint(self, inputs):

Read from inputs, apply adjoint, and return outputs.

return ...

def is_diag(self, freq):

(Optional) Check if the linear operator is diagonalizable or

diagonalizable in the frequency domain.

return ...

def get_diag(self, x, freq):

(Optional) Return the diagonal/frequency diagonal matrix that

matches the shape of input x.

return ...

def params(self):

(Optional) Return the trainable parameters.

return ...

By default, the linear operator is not diagonal. To introduce a diagonal linear operator, one must implement the
is_diag and get_diag for checking the diagonalizability and acquiring the diagonal matrix. These methods facilitate
∇-Prox to construct more efficient solvers, e.g., ADMM with closed-form matrix inverse for the least-square
update.

Registering Learnable Parameters. By default, anything that inherits from nn.Module of PyTorch can be registered
as trainable parameters of the linear operators or proxable functions. For other types of learnable components,
e.g., those hidden in the forward and adjoint function of black-box linear operators, users have to manually
register them by either passing them into black-box operators or implementing the params method.

D.2 Adding New Proximal Algorithms
Extending ∇-Prox for more proximal algorithms is also easy and straightforward. We again define a new algorithm
class that inherits from the base class Algorithm. For this particular case, the required methods that have to be
implemented are partition and _iter, which stands for the problem partition and a single algorithm iteration.
The partition takes a list of proxable functions and returns the splits of them as a list of psi_fn and omega_fn as
previously discussed in Section C.1. For _iter, it is a single iteration of the proximal algorithm that takes an input
of state and two parameters rho for penalty strength on multipliers and lam for proximal operators. The state is
generally a list of variables including the auxiliary ones that an algorithm creates. ∇-Prox simply provides state
as what returns in the previous execution of _iter or the initial state provided by initialize method.
class new_algorithm(Algorithm):

def partition(cls, prox_fns: List[ProxFn]):

Perform problem partition on algorithm's need

def __init__(...):

Custom initialization code.

def _iter(self, state, rho, lam):

Code to compute the function's proximal operator.

return ...

def initialize(self, x0):

Return the initial state

return ...

def nparams(self):

(Optional) Return the number of hyperparameters of

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:12 • Lai, Z. et al

this algorithm

return ...

def state_split(self):

(Optional) Return the split size of the packed state.

Useful for deep equilibrium/reinforcement learning.

return ...

The implementations of partition, initialize, and _iter are generally enough for performing the evaluation of
the proximal algorithm for a given problem. To integrate it with deep equilibrium learning (DEQ) and deep
reinforcement learning (RL), users have to implement two additional helper methods, i.e., params for counting the
number of hyperparameters, and state_split for the structures of the state that returns by _iter. For example,
assuming _iter returns the state as nested arrays like [x,[v1,v2],[u1,u2]], the output of state_split should be
[1,[2],[2]]. ∇-Prox exploits these properties to perform necessary packing and unpacking for the iteration states
to achieve a unified interface for the internal DEQ and RL implementations.

D.3 Sanity Check
Dot Product Test for Linear Operator. Typically, it is not always easy to correctly implement the forward

and adjoint operations of linear operators. To facilitate the testing of these operators, ∇-Prox provides an
implementation of the dot-product test for verifying that the forward and adjoint are adjoint to each other.
Basically, the idea of the dot-product test comes from the associative property of linear algebra, which gives the
following equation,

𝑦𝑇 (𝐴𝑥) = (𝐴𝑇𝑦)𝑇𝑥
where 𝑥 and 𝑦 are randomly generated data, and 𝐴 and 𝐴𝑇 denote the forward and adjoint of the linear operator.
∇-Prox makes use of this property and generates a large number of random data to check if this equation always
holds with respect to a given precision. To use this utility, users can call the validate(linop, tol=1e-6) and specify
the tolerance of the difference between two sides of the equation.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:13

E ADDITIONAL IMPLEMENTATION DETAILS
In this section, we present a comprehensive overview of a wide variety of built-in components implemented in
∇-Prox, which can be divided into i) built-in (linear/proximal) operators, ii) proximal algorithms, as well as iii)
trainers for differentiable learned solvers.

E.1 Built-in Linear Operators
∇-Prox offers a set of commonly-used linear operators with all the forward and adjoint routines implemented in
differentiable approaches. Here, we discuss the full set of linear operators that ∇-Prox currently supports.

Convolution. The conv(x, psf) operator calculates the circular convolution of a tensor 𝑥 with 𝑛 dimensions
using a known kernel 𝑘 with 𝑛 dimensions. We implement the conv in the frequency domain. The adjoint is a
circular convolution with the conjugate of the kernel. The conv is diagonal in the frequency domain.

Gradient. The grad(x,dim) operator calculates the discrete gradient of 𝑥 along the specified dimension. The
adjoint of this operator computes the negative divergence along the same dimension. The grad operator is diagonal
in the frequency domain.

Subsample. The subsample(x, steps) operator selects elements from the input data using a step-based approach
along each axis 𝑖 , where the steps are defined as steps𝑖 − 1 to steps𝑖 . The adjoint of subsample reverses this process
by inserting steps𝑖 values before each entry along axis 𝑖 . The subsample operator is Gram diagonal.

Element-wise multiplication. The mul_elemwise(w, x) operator performs element-wise multiplication between 𝑥
and a fixed array𝑤 , and its adjoint also performs element-wise multiplication with𝑤 . The mul_elemwise operator
is diagonal.

Scalar multiplication. The scale(c,x) operator denotes multiplication by a fixed scalar constant 𝑐 ∈ R, and its
adjoint operation also corresponds to multiplication by 𝑐 . The scale operator is diagonal.

Sum. The sum(x1, x2, ..., xk) operator performs the summation of 𝑘 arrays 𝑥1, . . . , 𝑥𝑘 , and its adjoint operation
duplicates a single input into 𝑘 different outputs.

Vstack. The vstack(x1, x2, ..., xk) operator stacks 𝑘 arrays 𝑥1, . . . , 𝑥𝑘 vertically to form a single array, while
its adjoint operation involves splitting a single array into 𝑘 different subarrays. The vstack operator is diagonal.

Black box. The black_box(forward, adjoint) operator takes the function pointers of the forward and adjoint
routines to build a block box linear operator. It can optionally accept a list of trainable parameters to facilitate
the end-to-end training, though it is recommended to sub-classing the LinOp to build a new linear operator for
complex cases.

E.2 Built-in Proximal Operators
∇-Prox offers a list of proximal operators for the commonly-used regularizers. Every proximal operator is offered
as a class inherited from the base class ProxFn. Users could freely build their own custom proximal operator with
minimum requirements. In the following, we provide an overview of the built-in ones.

Sum-squares. The sum_squares(x) computes the squared ℓ2-norm, denoted as 𝑓 (𝑥) = |𝑥 |22, for a vector 𝑥 with 𝑛
elements, where 𝑥 belongs to the real number space R𝑛 . The proximal operator is given by

prox𝜏 𝑓 (v) =
1

2𝜏 + 1
v.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:14 • Lai, Z. et al

The function weighted_sum_squares(D,x) is a modified version that calculates the squared ℓ2-norm, denoted as
𝑓 (𝑥) = |𝐷𝑥 |22, for a vector 𝑥 with 𝑛 elements, where 𝐷 is a diagonal matrix in the real number space R𝑛×𝑛 . The
proximal operator is given by

prox𝜏 𝑓 (v) = (2𝜏𝐷𝑇𝐷 + 𝐼)−1v.

The weighted variation is employed to absorb diagonal linear operators into the proximal function sum_squares.

ℓ1-norm. The ℓ1-norm is represented by the norm1(x) function, which computes 𝑓 (𝑥) = |𝑥 |1, where 𝑥 ∈ R𝑛 . The
proximal operator for this function, denoted as prox𝜏 𝑓 (v), is given by

prox𝜏 𝑓 (v)𝑖 = sign(v𝑖)max{|𝑣𝑖 | − 𝜏, 0}, 𝑖 = 1, . . . , 𝑛,

which is also known as soft-thresholding. There is a variant of the ℓ1-norm, denoted as weighted_norm1(D,x), which
is defined as 𝑓 (𝑥) = |𝐷𝑥 |1, where 𝐷 ∈ R𝑛×𝑛 is a diagonal matrix. The proximal operator for this weighted variant
is given by the formula:

prox𝜏 𝑓 (v)𝑖 = sign(v𝑖)max{|𝑣𝑖 | − 𝜏 |𝐷𝑖𝑖 |, 0}, 𝑖 = 1, . . . , 𝑛.

The purpose of the weighted variant is to absorb diagonal linear operators into the norm1 proxable function.

Poisson norm. The function poisson_norm(x) calculates the negative log-likelihood for a Poisson noise model, as
described by

𝑓 (𝑥) =
𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑏𝑖 log(𝑥𝑖) + I(0,+∞) (𝑥𝑖),

where 𝑏 is a vector of non-negative real numbers with 𝑛 components, 𝑥 is a vector of real numbers with 𝑛
components, and I(0,+∞) is the indicator function on the interval (0, +∞). The proximal operator is given by

prox𝜏 𝑓 (v)𝑖 =
v𝑖 − 𝜏

2
+

√︁
𝜏𝑏𝑖 + (𝜏 − v𝑖)2/4, 𝑖 = 1, . . . , 𝑛.

The weighted_poisson_norm(D,x) function is a variant defined as

𝑓 (𝑥) =
𝑛∑︁
𝑖=1

𝐷𝑖𝑖𝑥𝑖 − 𝑏𝑖 log(𝐷𝑖𝑖𝑥𝑖) + I(0,+∞) (𝐷𝑖𝑖𝑥𝑖),

where 𝐷 ∈ R𝑛×𝑛 is a diagonal matrix. The proximal operator is given by

prox𝜏 𝑓 (v)𝑖 =
v𝑖 − 𝜏𝐷𝑖𝑖

2
+

√︁
𝜏𝑏𝑖 + (𝜏𝐷𝑖𝑖 − v𝑖)2/4, 𝑖 = 1, . . . , 𝑛.

The weighted variation is employed to incorporate diagonal linear operators into the proximal function of the
poisson_norm for better absorption.

Group ℓ1-norm. The function group_norm1(x, dims) calculates the sum of ℓ2-norms denoted as 𝑓 (𝑥) = ∑𝑝

𝑖=1 |𝑥𝑔𝑖 |2,
where 𝑥 ∈ R𝑛 and 𝑔1, . . . , 𝑔𝑝 is a partition of 1, . . . , 𝑛 obtained by flattening 𝑥 along the specified dimensions. The
proximal operator for this function is expressed as follows:

prox𝜏 𝑓 (v)𝑔𝑖 = v𝑔𝑖 max{1 − 𝜏/∥v𝑔𝑖 ∥2, 0}, 𝑖 = 1, . . . , 𝑝 ,

which is also known as group soft-thresholding.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:15

Nonnegativity constraint. The nonneg(x) function denotes the indicator 𝑓 (𝑥) = ∑𝑛
𝑖=1 I[0,+∞) (𝑥𝑖), where 𝑥 ∈ R𝑛 .

The proximal operator is given by
prox𝜏 𝑓 (v)𝑖 = max{v𝑖 , 0}, 𝑖 = 1, . . . , 𝑛.

The weighted_nonneg(D,x) function is a variant defined as

𝑓 (𝑥) =
𝑛∑︁
𝑖=1
I[0,+∞) (𝐷𝑖𝑖𝑥𝑖),

where 𝐷 ∈ R𝑛×𝑛 is a diagonal matrix. The proximal operator is given by
prox𝜏 𝑓 (v)𝑖 = max{𝐷𝑖𝑖v𝑖 , 0}/𝐷𝑖𝑖 , 𝑖 = 1, . . . , 𝑛.

The weighted variant is used to absorb diagonal linear operators into the nonneg proxable function.

Denoising. The proximal operator, which incorporates a quadratic proximity term, can also be viewed as a
Maximum a Posteriori (MAP) estimate for denoising Gaussian likelihoods, commonly referred to as Gaussian
denoiser. For a Gaussian likelihood 𝑝 (v|x) along with an arbitrary exponential prior 𝑝 (x).

𝑝 (v|x) ∝ exp
(
−
∥x − v∥22

2𝜎2

)
𝑝 (x) ∝ exp (−Γ(x)) ,

By performing the MAP estimate on 𝑝 (x|v), we obtain the proximal operator

prox𝜎2Γ (v) = argmin
x

(
Γ(x) + 1

2𝜎2 ∥x − v∥
2
2

)
.

This could be solved by any Gaussian denoising algorithms {𝐷Γ
𝜎 : 𝜎 > 0}, which estimate x0 from x0 + 𝜎z with

z ∼ N(0, I), as
prox𝜏Γ (v) = 𝐷Γ√

𝜏
(v) .

Please note that it is not obligatory to compute Γ in order to evaluate the proximal operator. We only need 𝐷Γ
𝜎

that performs Gaussian denoising to implicitly model the data prior, which enables great flexibility leveraging
the latest techniques, e.g., deep neural networks, as black-box proximal operators. The proximal operator for
denoising is deep_prior in ∇-Prox.

E.3 Build-in Proximal Algorithms.
Half-quadratic Splitting. Half-Quadratic Splitting (HQS) is a simplified version of ADMM that removes the

Lagrangian multiplier. Therefore, it only contains two updates without the dual update of the multiplier. The
pseudo-code of it is given in Algorithm 2. Our compiler uses the default hyper-parameters 𝜌 = 1 × 10−5 and
𝜎 = 0.14. The default partition strategy for HQS is the same as for ADMM.

Algorithm 2 Half-Quadratic Splitting to solve Problem (1) of the main paper

1: Initialization: 𝜌0 > 0, 𝜌max > 0, (x0, z0).
2: for 𝑘 = 1 to 𝑉 do
3: x𝑘+1 = argmin

x

∑
𝑖∈Ω 𝑓𝑖 (K𝑖x) + 𝜌𝑘

∑
𝑗∈Ψ ∥K𝑗x − z𝑗 ∥22

4: z𝑘+1𝑗 = prox 𝑓𝑗

𝜎𝑘

(K𝑗x𝑘+1𝑗) ∀𝑗 ∈ Ψ
5: end for

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:16 • Lai, Z. et al

Linearized ADMM. . The linearized ADMM is a linearized version of ADMM whose pseudo-code is given in
Algorithm 3. Our compiler uses the default hyper-parameters as it is for HQS and ADMM. The default partition
strategy for linearized ADMM is the same as for ADMM.

Algorithm 3 Linearized ADMM to solve Problem (1) of the main paper

1: Initialization: 𝜇 > 𝜌 ∥K∥22, (x0, z0, 𝜆0).
2: for 𝑘 = 1 to 𝑉 do
3: x𝑘+1 = prox𝑔

𝜇
(x𝑘 − (𝜌/𝜇)𝐾𝑇 (𝐾x𝑘 − z𝑘 + 𝜆𝑘))

4: z𝑘+1𝑗 = prox 𝑓𝑗

𝜎

(K𝑗x𝑘+1𝑗 + 𝜆𝑘𝑗) ∀𝑗 ∈ Ψ
5: 𝜆𝑘+1𝑗 = 𝜆𝑘𝑗 + (K𝑗x𝑘+1 − z𝑘+1𝑗) ∀𝑗 ∈ Ψ
6: end for

Pock-Chambolle. The Pock-Chambolle, as shown in Algorithm (4), is in fact the linearized ADMM applied to
the dual of Problem (1) [Chambolle and Pock 2011]. The dual problem involves the conjugates of 𝑓1, . . . , 𝑓𝐼 from
Problem (1). The proximal operator for the conjugate 𝑓 ∗𝑖 can be evaluated using the proximal operator for 𝑓𝑖 and
Moreau’s Identity [Moreau 1965].

Algorithm 4 Pock-Chambolle to solve Problem (1) of the main paper
1: Initialization: 𝜎𝜏 ∥K∥22 < 1, 𝜃 ∈ [0, 1], (x0, z0), x̄0 = x0.
2: for 𝑘 = 1 to 𝑉 do
3: z𝑘+1/2

𝑗
= z𝑘

𝑗
+ 𝜎K𝑗 x̄𝑘 ∀𝑗 ∈ Ψ

4: z𝑘+1
𝑗

= z𝑘+1/2
𝑗

− 𝜎prox𝑓𝑗 /𝜎
(
z𝑘+1/2
𝑗
/𝜎

)
∀𝑗 ∈ Ψ

5: if Ω = {𝑓𝑖 } then
6: x𝑘+1 = prox𝜏 𝑓𝑖

(
x𝑘 − 𝜏K𝑇 z𝑘+1

)
7: else
8: x𝑘+1 = x𝑘 − 𝜏K𝑇 z𝑘+1
9: end if
10: x̄𝑘+1 = x𝑘+1 + 𝜃

(
x𝑘+1 − x𝑘

)
11: end for

Proximal Gradient Descent. Proximal Gradient Descent decomposes the optimization of the given objective into
two parts where the gradient descent is used for the convex and differentiable part and the proximal mapping is
used for the potentially non-differentiable part. The pseudo-code of it is given in Algorithm 5. Proximal Gradient
Descent is only applicable for two regularizers.

Algorithm 5 Proximal Gradient Descent to solve Problem (1) of the main paper

1: Initialization: 𝜌, 𝜎 , (x0, z0).
2: for 𝑘 = 1 to 𝑉 do
3: x𝑘+1 = z𝑘 − 𝜌∇𝑔(z𝑘)
4: z𝑘+1𝑗 = prox 𝑓𝑗

𝜎𝑘

(x𝑘+1𝑗)
5: end for

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:17

E.4 Training Interface for Learned Solvers
Thanks to the transparent design of ∇-Prox, the training of the learned solver can be achieved in a unified training
interface, i.e., train(args, dataset, solver, step_fn). The solver passed into train can be either an unrolled solver,
DEQ solver, or RL solver.

solver = specialize(solver, 'unroll', share=False)

or we could directly wrap the solver.

solver = UnrolledSolver(solver, share=False)

solver = DEQSolver(solver)

solver = RLSolver(solver)

setup the forward step.

def step_fn(batch):

target, b = batch

y.value = b

pred = solver.solve(x0=b, rhos=rhos, lams={reg_term: sigmas}, max_iter=max_iter)

return target, pred

call the utility to train it.

train(args, dataset, solver, step_fn)

Specifically, training a learned solver is straightforward in ∇-Prox. The first step for it is transforming the solver by
calling specialize or wrapping the existing solver by a solver wrapper, e.g., DEQSolver. The resulting solver exhibits
the same interface as the original one so that the training can be done with a conventional training pipeline of
learning-based approaches. In ∇-Prox, we provide a utility train_deq to facilitate fast prototyping. Basically, we
pass in the arguments specifying the training options, training dataset, solver with learnable parameters, and a
step function that unwraps the data and evaluates the forward model. The intermediate results are periodically
saved for inspecting the training process. Our training utility is general and easy to be modified, which we believe
can be a good starting point for primary testing and training for different base solvers. Internally, train calls the
other training utilities, train_unroll, train_deq, and train_rl based on the type of learned solver. Most of part of
these utilities are the same except for some special method-specific treatments, e.g., building the critic network
for RL training, and checking the over-flow loss for DEQ.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:18 • Lai, Z. et al

F LEARN ∇-PROX WITH EXAMPLES
In this section, we provide step-by-step examples for compiling the Problem (24) discussed in the main paper.

x∗ = argmin
x

∥D (x; 𝜃𝐷𝑂𝐸) − y∥22 + 𝑟 (x;𝜃𝑟) (24)

𝑓1 (v) = ∥v − y∥22, K1 = D (·; 𝜃𝐷𝑂𝐸)
𝑓2 (v) = 𝜆𝑔(v;𝜃𝑟), K2 = I
𝑓3 (v) = 𝐼 [0,∞) (v), K3 = I

(25)

With only a few lines of code, ∇-Prox can compile the problem into various differentiable solvers that can be
used independently or be integrated into an existing differentiable pipeline, e.g., optimization together with a
post-processing network.

We first consider joint deconvolution and denoising as a simplified version of the Problem (24), that is with a
fixed PSF instead of a learned one. The forward model of this problem can be defined in ∇-Prox with conv(x, psf).
Given an observation y, our goal is to find the unknown image x̂ by minimizing an objective function, which can
concisely be described in ∇-Prox with almost the same syntax as the mathematical objective.

x = Variable()

data_term = sum_squares(conv(x, psf) - y)

prior_term = deep_prior(x, unet)

objective = data_term + prior_term + nonneg(x)

∇-Prox facilitates experimenting with regularizations. For example, users can trivially change the plug-and-play
prior with the denoiser FFDNet [Zhang et al. 2018] as deep_prior(x, 'ffdnet'), or use a total variation prior with
norm1(grad(x)). Solving the objective is achieved by wrapping it into a Problem class and calling the solve method
by specifying the desired algorithms, e.g., ADMM in this case.

p = Problem(objective)

out = p.solve(method='admm')

Users are allowed to pass more options to configure this process, e.g., the initial guess, max iterations, and
algorithm parameters, with keyword arguments of p.solve(x0=..., rhos=..., max_iters=...).
We note that p.solve is a differentiable routine that can be integrated with PyTorch [Paszke et al. 2019] for

downstream learning-based tasks. Despite that, it is usually more efficient to use the compiled solver with our
Placeholder and compile functionalities. To illustrate this, we return back to Problem (24) with learnable PSF, that
is

y = Placeholder(input)

data_term = sum_squares(conv(x, psf_DOE) - y)

prior_term = deep_prior(x, unet)

objective = data_term + prior_term + nonneg(x)

s = compile(objective, method='admm')

To learn this PSF along the rest of the parameters, one immediate choice to make the solver differentiable
may be unrolling which can be immediately achieved by fixing the max_iters argument of p.solve. To provide
finer-grained control, ∇-Prox provides a primitive specialize to specialize the existing solver into an unrolled one
with independent parameters for each iteration.

s2 = specialize(s, method='unroll', shared=False)

The resulting unrolled solver can then allow for fine-tuning the learning-based PnP prior or even training a
learnable linear operator, e.g., the above learnable PSF with a physical imaging model psf_DOE.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:19

As discussed in the previous paragraphs, unrolling for many iterations becomes intractable. To this end, ∇-Prox
supports incorporating deep equilibrium learning for many iterations which, from a user perspective, is as
immediate as algorithm unrolling using the specialize primitive.

s3 = specialize(s, method='deq')

The DEQ solver is memory-effective and can be trained with the utility train_deq(s3, dataset, **cfg) provided
by ∇-Prox, via specifying the solver, training dataset, and configurations. Being able to compile differentiable
solvers, ∇-Prox is also capable of automatically estimating the parameters and the terminal time. Specifically, we
extend the specialize primitive to easily transform the solver to the tuning-free (TF) one that can be learned with
reinforcement learning [Wei et al. 2020].

s4 = specialize(s, method='rl', policy='resnet')

Training these TF solvers can also be achieved with the built-in training utility train_rl(s4, dataset, **cfg).
All the solvers in ∇-Prox, including the vanilla one and the specialized ones, contain a s.solve method that

shares the same function signature. Users can then seamlessly switch between different specializations, which
provides flexibility for rapid prototyping for diverse applications.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:20 • Lai, Z. et al

G ADDITIONAL DETAILS FOR INTEGRATED ENERGY SYSTEM PLANNING

G.1 General Modeling
The modeling and optimization framework for integrated energy system transformation pathways is a multi-
period capacity expansion and system operation problem. Conceptually, the framework follows a generic structure
and logic to account for the necessity of modeling the vital integration of energy and non-energy commodities
and their underlying sectors, markets, infrastructures, and technologies. A concise description and formulation
with sets and indices, constraints, and the objective function are given below.

G.2 Sets and Indices
The model formulation requires multiple sets covering the system representation domains of integrated energy
systems and the multi-fold interaction between components.

𝑝 ∈ 𝑃 Planning periods,
𝑡 ∈ 𝑇 Time steps (discrete and equidistant),
𝑛 ∈ 𝑁 Nodes,
𝑐 ∈ 𝐶 Commodities,
𝑢 ∈ 𝑈 Converters,
𝑠 ∈ 𝑆 Storage systems,
𝑤 ∈𝑊 Sources,
𝑑 ∈ 𝐷 Sinks,
𝑈𝑐 Subset of converters𝑈 interacting with commodity 𝑐 ,
𝑆𝑐 Subset of storage systems 𝑆 interacting with commodity 𝑐 ,
𝑙 ∈ 𝐿𝑐 Links for commodity 𝑐 (two-dimensional),
𝑙 ∈ 𝐿𝑐 𝐿𝑐 B { (𝑛,𝑚) ∈ 𝐿𝑐 : 𝑛 > 𝑚 } ,
𝛿out𝑐 (𝑛) 𝛿out𝑐 (𝑛) B { 𝑙 ∈ 𝐿𝑐 : ∃𝑚 with 𝑙 = (𝑛,𝑚) } ,
𝛿 in𝑐 (𝑛) 𝛿 in𝑐 (𝑛) B { 𝑙 ∈ 𝐿𝑐 : ∃𝑚 with 𝑙 = (𝑚,𝑛) } .

The planning periods 𝑃 represent stages of the transformation path under investigation (e.g., the years 2025
to 2055 in 10-year steps). Time steps 𝑇 typically capture a full meteorological year in hourly resolution to
capture all seasons and reflect weather-dominated renewable generation technologies as well as end-use demand
patterns. Nodes 𝑁 may represent network nodes, price zones, jurisdictions, or regions at the global scale.
Commodities 𝐶 include energy and non-energy commodities. Energy commodities include electricity, hydrogen,
methane, ammonia, liquids, transport demands, as well as heating and cooling for residential and non-residential
applications. Non-energy commodities are carbon-dioxide, whose circular management becomes very relevant in
climate-neutral settings. Converters 𝑈 serve comprise several technologies of integrated energy systems. They
include thermal generator (e.g., open- and closed-cycle gas turbines, nuclear) and (variable) renewable generator
(e.g., solar photovoltaic, on- and offshore wind, biomass) technologies. Moreover, converter units describe several
commodity conversion systems (e.g., heat pump, boiler, electric vehicle, electrolyzer, methanation, and carbon
capture units). Storage systems 𝑆 describe commodity-specific storage technologies (e.g., battery, pumped-hydro,
gas storage for hydrogen or gas, thermal storage, or carbon storage). Sources𝑊 allow the energy system planning
problem to explicitly represent potential sources of commodities to supply the individual demands (e.g., import
of fossil or renewable hydrogen or liquids at given costs). Sinks 𝐷 introduce inelastic or flexible end-use demands
for various commodities to the system planning problem (e.g., conventional electricity demand, residential and
non-residential heating and cooling demands, feedstock demands for hydrogen, methane or carbon dioxide).
Links 𝐿 allow the transport of commodities via energy and non-energy networks between nodes (e.g., electricity,
hydrogen, methane, carbon dioxide).

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:21

G.3 Decision Variables
The decision variables describe capacity expansion and dispatch decisions. The model makes endogenous capacity
investment decisions for the converter, storage system, and link components for every considered planning
period. The dispatch variables of all relevant components reflect the scheduling decisions for operating and
clearing the integrated system for every considered planning period and time step.

𝑥𝑢,𝑛,𝑝 ∈ R+ ∀𝑢 ∈ 𝑈 ,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃 Converter capacity,
𝑥+𝑢,𝑛,𝑝 ∈ R+ ∀𝑢 ∈ 𝑈 ,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃 Converter capacity expansion,
𝑥𝑢,𝑛,𝑝,𝑡 ∈ R+ ∀𝑢 ∈ 𝑈 ,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 Converter dispatch,
𝑥𝑠,𝑛,𝑝 ∈ R+ ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃 Storage capacity,
𝑥+𝑠,𝑛,𝑝 ∈ R+ ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃 Storage capacity expansion,
𝑥 in𝑠,𝑛,𝑝,𝑡 ∈ R+ ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 Storage injection dispatch,
𝑥out𝑠,𝑛,𝑝,𝑡 ∈ R+ ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 Storage withdrawal dispatch,
𝑥 lvl𝑠,𝑛,𝑝,𝑡 ∈ R+ ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 Storage level dispatch,
𝑥𝑙,𝑐,𝑝 ∈ R+ ∀𝑙 ∈ 𝐿𝑐 ,∀𝑐 ∈ 𝐶,∀𝑝 ∈ 𝑃 Link capacity,
𝑥+𝑙,𝑐,𝑝 ∈ R+ ∀𝑙 ∈ 𝐿𝑐 ,∀𝑐 ∈ 𝐶,∀𝑝 ∈ 𝑃 Link capacity expansion,
𝑥𝑙,𝑐,𝑝,𝑡 ∈ R+ ∀𝑙 ∈ 𝐿𝑐 ,∀𝑐 ∈ 𝐶,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 Link dispatch,
𝑥𝑤,𝑐,𝑛,𝑝,𝑡 ∈ R+ ∀𝑤 ∈𝑊,∀𝑐 ∈ 𝐶,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 Source dispatch,
𝑥𝑑,𝑐,𝑛,𝑝,𝑡 ∈ R+ ∀𝑑 ∈ 𝐷,∀𝑐 ∈ 𝐶,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 Sink dispatch.

G.4 Constraints
The modeling framework requires a set of linear constraints to incorporate characteristics and limits for capacity
expansion and operational dispatch decisions of its model components. Equations (26) to (28) define lower and
upper limits on the capacity expansion decisions for converter, storage, and link components from geographically
and technically feasible potentials. Equations (29) to (34) impose the corresponding capacity expansion continuities
between individual planning periods throughout the considered transformation pathway. Equations (35) to (42)
enforce the individual dispatch characteristics and technology availability limits including the storage level

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:22 • Lai, Z. et al

continuity and commodity transport via the corresponding energy and non-energy networks between nodes.

𝑋𝑢,𝑛,𝑝 ≤ 𝑥𝑢,𝑛,𝑝 ≤ 𝑋𝑢,𝑛,𝑝 ∀𝑢 ∈ 𝑈 ,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃 (26)

𝑋 𝑠,𝑛,𝑝 ≤ 𝑥𝑠,𝑛,𝑝 ≤ 𝑋 𝑠,𝑛,𝑝 ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃 (27)

𝑋 𝑙,𝑐,𝑝 ≤ 𝑥𝑙,𝑐,𝑝 ≤ 𝑋 𝑙,𝑐,𝑝 ∀𝑙 ∈ 𝐿𝑐 ,∀𝑐 ∈ 𝐶,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃 (28)

𝑥𝑢,𝑛,𝑝 = 𝑥𝑢,𝑛,𝑝−1 + 𝑥+𝑢,𝑛,𝑝 ∀𝑢 ∈ 𝑈 ,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃 \ {𝑝0} (29)
𝑥𝑠,𝑛,𝑝 = 𝑥𝑠,𝑛,𝑝−1 + 𝑥+𝑠,𝑛,𝑝 ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃 \ {𝑝0} (30)

𝑥𝑙,𝑐,𝑝 = 𝑥𝑙,𝑐,𝑝−1 + 𝑥+𝑙,𝑐,𝑝 ∀𝑙 ∈ 𝐿𝑐 ,∀𝑐 ∈ 𝐶,∀𝑝 ∈ 𝑃 \ {𝑝0} (31)

𝑥𝑢,𝑛,𝑝0 = 𝑋𝑢,𝑛,0 + 𝑥+𝑢,𝑛,𝑝0 ∀𝑢 ∈ 𝑈 ,∀𝑛 ∈ 𝑁 (32)

𝑥𝑠,𝑛,𝑝0 = 𝑋 𝑠,𝑛,0 + 𝑥+𝑠,𝑛,𝑝0 ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁 (33)

𝑥𝑙,𝑐,𝑝0 = 𝑋 𝑙,𝑐,0 + 𝑥+𝑙,𝑐,𝑝0
∀𝑙 ∈ 𝐿𝑐 ,∀𝑐 ∈ 𝐶 (34)

𝐴𝑢,𝑛,𝑝,𝑡 𝑥𝑢,𝑛,𝑝 ≤ 𝑥𝑢,𝑛,𝑝,𝑡 ≤ 𝐴𝑢,𝑛,𝑝,𝑡 𝑥𝑢,𝑛,𝑝 ∀𝑢 ∈ 𝑈 ,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 (35)

𝐴𝑠,𝑛,𝑝,𝑡 𝑥𝑠,𝑛,𝑝 ≤ 𝑥
in
𝑠,𝑛,𝑝,𝑡 ≤ 𝐴𝑠,𝑛,𝑝,𝑡 𝑥𝑠,𝑛,𝑝 ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 (36)

𝐴𝑠,𝑛,𝑝,𝑡 𝑥𝑠,𝑛,𝑝 ≤ 𝑥
out
𝑠,𝑛,𝑝,𝑡 ≤ 𝐴𝑠,𝑛,𝑝,𝑡 𝑥𝑠,𝑛,𝑝 ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 (37)

𝐴𝑠,𝑛,𝑝,𝑡 𝑥𝑠,𝑛,𝑝 ≤ Φ𝑠 𝑥
lvl
𝑠,𝑛,𝑝,𝑡 ≤ 𝐴𝑠,𝑛,𝑝,𝑡 𝑥𝑠,𝑛,𝑝 ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 (38)

𝑥 lvl𝑠,𝑛,𝑝,𝑡+1 = (1 − Λ𝑠) 𝑥 lvl𝑠,𝑛,𝑝,𝑡 +
(
𝜂in𝑠 𝑥

in
𝑠,𝑛,𝑝,𝑡 −

𝑥out𝑠,𝑛,𝑝,𝑡

𝜂out𝑠

)
Δt ∀𝑠 ∈ 𝑆,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 (39)

0 ≤ 𝑥 (𝑛,𝑚),𝑐,𝑝,𝑡 + 𝑥 (𝑚,𝑛),𝑐,𝑝,𝑡 ≤ 𝐴𝑙,𝑐,𝑝,𝑡 𝑥𝑙,𝑐,𝑝 ∀(𝑛,𝑚) ∈ 𝐿𝑐 ,∀𝑐 ∈ 𝐶,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 (40)

𝐷𝑑,𝑐,𝑛,𝑝,𝑡 ≤ 𝑥𝑑,𝑐,𝑛,𝑝,𝑡 ≤ 𝐷𝑑,𝑐,𝑛,𝑝,𝑡 ∀𝑑 ∈ 𝐷,∀𝑐 ∈ 𝐶,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 (41)

𝑊 𝑤,𝑐,𝑛,𝑝,𝑡 ≤ 𝑥𝑤,𝑐,𝑛,𝑝,𝑡 ≤𝑊 𝑤,𝑐,𝑛,𝑝,𝑡 ∀𝑤 ∈𝑊,∀𝑐 ∈ 𝐶,∀𝑛 ∈ 𝑁,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 (42)

Here, 𝑋 (·),(·),𝑝 ∈ R+ and 𝑋 (·),(·),𝑝 ∈ R+ are lower and upper capacity potentials, respectively, and 𝑋 (·),𝑛,0 ∈ R+
is the already existing capacity in initial planning period 𝑝0 for component (·). Moreover, 𝐴 (·),(·),𝑝,𝑡 ∈ [0, 1]
and 𝐴 (·),(·),𝑝,𝑡 ∈ [0, 1] are location-, planning period-, and time step-dependent parameters for minimum and
maximum technology availability. For storage components, Φ𝑠 ∈ R+ denotes storage power-to-energy ratio,
Λ𝑠 ∈ [0, 1] are scalar parameters for specific self-discharge losses, and 𝜂in/out𝑠 ∈ [0, 1] are scalar parameters for
storage injection and withdrawal efficiencies, and Δt is the constant duration of the considered time step, e.g., 1
hour. For sinks and sources, 𝐷𝑑,𝑐,𝑛,𝑝,𝑡 ∈ R+ and 𝐷𝑑,𝑐,𝑛,𝑝,𝑡 ∈ R+ as well as𝑊 𝑤,𝑐,𝑛,𝑝,𝑡 ∈ R+ and𝑊 𝑤,𝑐,𝑛,𝑝,𝑡 ∈ R+ are
location-, planning period-, and time step-dependent parameters for minimum and maximum sink demands and
source supply. Note that, for simplicity, upper or lower budget constraints are omitted here but can easily be
integrated via constraints summing over one or more dimensions. For instance, global annual emission budgets
could be achieved by summing over all time steps 𝑡 ∈ 𝑇 of a planning period and all nodal sinks 𝑑 for such a
commodity 𝑐 .
The nodal commodity balance or clearing constraint in Equation (43) ensures that the supply and demand

including relevant storage components and in- and outgoing links to other nodes are in equilibrium for every

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:23

planning period and time step.

0 =
∑︁
𝑢∈𝑈𝑐

(
Θ
op
𝑢,𝑐 − Θ

ip
𝑢,𝑐

)
𝑥𝑢,𝑛,𝑝,𝑡 +

∑︁
𝑠∈𝑆𝑐

(
𝑥out𝑠,𝑛,𝑝,𝑡 − 𝑥 in𝑠,𝑛,𝑝,𝑡

)
−

∑︁
𝑑∈𝐷

𝑥𝑑,𝑐,𝑛,𝑝,𝑡 +
∑︁
𝑤∈𝑊

𝑥𝑤,𝑐,𝑛,𝑝,𝑡

+
∑︁

𝑙∈𝛿 in𝑐 (𝑛)

𝑥𝑙,𝑐,𝑝,𝑡 −
∑︁

𝑙∈𝛿out𝑐 (𝑛)

1
𝜂𝑙
𝑥𝑙,𝑐,𝑝,𝑡 ∀𝑛 ∈ 𝑁,∀𝑐 ∈ 𝐶,∀𝑝 ∈ 𝑃,∀𝑡 ∈ 𝑇 (43)

Here, Θip
𝑢,𝑐 ∈ R and Θ

op
𝑢,𝑐 ∈ R are commodity in- and output factors of converter component 𝑢, and 𝜂𝑙 ∈ [0, 1] is a

scalar parameter for line-length-specific (linear) transmission loss factors for the commodity transport via link 𝑙 .

G.5 Objective function and optimization problem
The objective of the modeling framework is to minimize the total system cost of the energy system transformation
pathway, incorporating investment costs of multi-period capacity expansion planning and operational costs of
supplying end-use demands given the constraints outlined above. The period-specific investment cost function
𝑓 ic𝑝 (𝑥) gathers all investment costs for expanding the capacities of converters, storage systems, and links that
allow for commodity transport between the considered nodes, which writes as

𝑓 ic𝑝 (𝑥) =
∑︁
𝑛∈𝑁

(∑︁
𝑢∈𝑈

𝜋 ic
𝑢,𝑝 𝑥

+
𝑢,𝑛,𝑝 +

∑︁
𝑠∈𝑆

𝜋 ic
𝑠,𝑝 𝑥

+
𝑠,𝑛,𝑝

)
+

∑︁
𝑐∈𝐶

∑︁
𝑙∈𝐿𝑐

𝜋 ic
𝑙,𝑝
𝑥+
𝑙,𝑐,𝑝

∀𝑝 ∈ 𝑃 , (44)

where 𝜋 ic
(·),𝑝 ∈ R are scalar parameters for (annualized) investment cost. The period-specific operational cost

function 𝑓 oc𝑝,𝑡 (𝑥) describes the cost of dispatching all relevant system components and is defined for every time
step by

𝑓 oc𝑝,𝑡 (𝑥) =
∑︁
𝑛∈𝑁

(∑︁
𝑢∈𝑈

𝜋oc
𝑢,𝑝,𝑡 𝑥𝑢,𝑛,𝑝,𝑡 +

∑︁
𝑠∈𝑆

𝜋oc
𝑠,𝑝,𝑡

(
𝑥 in𝑠,𝑛,𝑝,𝑡 + 𝑥out𝑠,𝑛,𝑝,𝑡

)
+

∑︁
𝑐∈𝐶

(∑︁
𝑑∈𝐷

𝜋oc
𝑑,𝑐,𝑛,𝑝,𝑡

𝑥𝑑,𝑐,𝑛,𝑝,𝑡 +
∑︁
𝑤∈𝑊

𝜋oc
𝑤,𝑐,𝑛,𝑝,𝑡 𝑥𝑤,𝑐,𝑛,𝑝,𝑡

))
∀𝑡 ∈ 𝑇,∀𝑝 ∈ 𝑃 , (45)

where 𝜋oc
(·),𝑝,𝑡 ∈ R and 𝜋oc

(·),𝑐,𝑛,𝑝,𝑡 ∈ R are scalar parameters for component-, planning period-, and partly time
step-dependent (marginal) operational costs. With the objective function components defined in Equations (45)
and (44), the resulting linear programming problem writes as

min 𝑓 (𝑥) =
∑︁
𝑝∈𝑃

𝜉𝑝

(
𝑓 ic𝑝 (𝑥) +

∑︁
𝑡 ∈𝑇

𝑓 oc𝑝,𝑡 (𝑥)
)

s.t. Equations (26) to (28) (Capacity potential restrictions)
Equations (29) to (34) (Expansion continuities)
Equations (35) to (42) (Dispatch characteristics and limits)
Equation (43) (Nodal commodity clearing)

(46)

where 𝜉𝑝 ∈ R is a period-specific discount factor to account for the time value of money and perpetuity in the
multi-period planning problem.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:24 • Lai, Z. et al

G.6 Convergence Loss
After the formal introduction of the integrated energy system planning problem, we now present the convergence
loss function mentioned in Section 5.4 of the main paper. Consider the following linear programming problem,

min 𝑐𝑇𝑥

subject to 𝐴𝑥 ∈ C
(47)

where 𝑥, 𝑐 ∈ R𝑛 denote the decision variable and the cost vector respectively, 𝐴 ∈𝑚×𝑛 is the constraint matrix
and the set C takes the form

C = [𝑙, 𝑢] = {𝑧 ∈ R𝑚 | 𝑙𝑖 ≤ 𝑧𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, ...,𝑚}

It can be verified that the complex integrated energy system model (46) with its polyhedral constraint set can
reduce to the simple form of (47). To leverage proximal algorithms to tackle this problem, we rewrite the problem
(47) by introducing an additional decision variable 𝑧 ∈ R𝑚 to obtain the equivalent problem

min 𝑐𝑇𝑥

subject to 𝐴𝑥 = 𝑧

𝑧 ∈ C.
(48)

The optimality conditions of problem (48) are be written as

𝐴𝑥 = 𝑧, (49)

𝑐 +𝐴𝑇𝑦 = 0, (50)
𝑧 ∈ C, 𝑦 = 𝑁C (𝑧), (51)

where 𝑦 ∈ R𝑚 is the Lagrange multiplier with respect to the constraint 𝐴𝑥 = 𝑧 and 𝑁C denotes the normal cone
of C at 𝑧. If there exists 𝑥, 𝑧,𝑦 that satisfy the conditions above, then we say that (𝑥, 𝑧) is a primal and 𝑦 is a dual
solution to problem (48). We define the primal and dual residuals of problem (47) as

𝑟prim = 𝐴𝑥 − 𝑧, (52)

𝑟dual = 𝑐 +𝐴𝑇𝑦. (53)

which are essential indicators related to a bound on the objective suboptimality [Boyd et al. 2011]. In proximal
algorithms such as ADMM, the termination criterion can be reasonably derived based on the the primal and dual
residuals 𝑟prim and 𝑟dual, i.e.,

∥𝑟prim∥ ≤ 𝜖prim and ∥𝑟dual∥ ≤ 𝜖dual (54)

where ∥ · ∥ is a norm operator that can be taken in various forms (1, 2,∞-norm), 𝜖prim and 𝜖dual are feasibility
tolerances for the primal and dual feasibility conditions, respectively. In practice, these tolerances are selected as
a combination of an absolute and relative criterion, such as

𝜖prim = 𝜖abs + 𝜖relmax{∥𝐴𝑥𝑘 ∥, ∥𝑧𝑘 ∥} (55)

𝜖dual = 𝜖abs + 𝜖relmax{∥𝐴𝑇𝑦𝑘 ∥, ∥𝑐 ∥}, (56)

where 𝜖abs > 0 is an absolute tolerance and 𝜖rel > 0 is a relative tolerance, In the above formulation, one can
immediately realize that to speed up the practical convergence, the proximal solver should meet the stopping

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:25

criterion (54) as soon as possible. Building upon this observation, we propose a convergence loss function that
encourages solvers to actively chase the stopping criterion, i.e.,

Lconverge = log
(∥𝑟prim∥
𝜖prim

)
+ log

(
∥𝑟dual∥
𝜖dual

)
(57)

Minimizing this loss function naturally meets the stopping criterion (54). Since the operands involved in (57)
are computed from optimization variables 𝑥, 𝑧,𝑦, the gradient can be directly backpropagated downstream to
algorithm parameters for fast adaptation thanks to the differentiability design of ∇-Prox.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:26 • Lai, Z. et al

H ADDITIONAL APPLICATION SETUPS AND RESULTS
In this section, we provide more details about the experimental setup for the applications presented in the main
paper. Additional quantitative and visual results are also provided.

H.1 End-to-End Computational Optics
Here, we provide the training details of the end-to-end computational single thin-lens imaging about ∇-Prox
and the competing methods. Specifically, all the models are trained for 100 epochs with the AdamW optimizer
at a constant learning rate 1 × 10−4 for the first 50 epochs and 1 × 10−5 for the last 50 epochs. The training
can generally be finished in a few hours depending on the used hardware. ∇-Prox leverages a hybrid model-
and learning-based PnP solver as initialization, which only needs a small dataset BSD500-train [Martin et al.
2001] containing 200 images, for optical model fine-tuning. Other competing methods, including JD2 [Xing and
Egiazarian 2021] and DeepOptics-UNet [Metzler et al. 2020], are trained on a larger dataset DIV2K [Agustsson
and Timofte 2017] containing roughly 1K images with over 2K resolution since they are trained from scratch. We
believe this data/training efficiency is one of the big advantages of ∇-Prox. Additionally, we provide more visual
comparisons in Figure III.

H.2 Image Deraining
We perform algorithm unrolling of proximal gradient descent for image deraining. The training data of all
methods is made up of 11,200 clean-rain image pairs in Rain14000 [Fu et al. 2017], 1,800 image pairs in Rain1800
[Yang et al. 2017], 700 image pairs in Rain800 [Zhang et al. 2019] and 12 image pairs in Rain12 [Hyun Kim
et al. 2013], following MPRNet [Zamir et al. 2021]. We train the solver with a learnable linear operator and an
unrolled prior for 250 epochs. As mentioned in the main paper, with a learned solver and an initializer, we could
further improve the performance by combining them. This is achieved by another 30 epochs of fine-tuning. The
additional quantitative results on Rain100L and Test2800 are shown in Table I, and the additional visual results
are shown in Figure IV.

For the network structures of the linear operators, we employ one residual block for the forward routine and
another residual block [He et al. 2016] for the adjoint routine. The residual block itself is composed of three
convolution blocks with two for feature extraction and one for skip connection.

Table I. Quantitative results (PSNR and SSIM) of image deraining. The best and second-best scores are highlighted and
underlined.

Method Rain100H Rain100L Test1200 Test2800
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PreNet [Ren et al. 2019] 26.77 0.858 32.44 0.950 31.36 0.911 31.75 0.916
MPRNet [Zamir et al. 2021] 30.41 0.890 36.40 0.965 32.91 0.916 33.64 0.938
DGUNet [Mou et al. 2022] 30.66 0.891 38.25 0.974 33.23 0.920 34.01 0.942
Restormer [Zamir et al. 2022] 31.46 0.904 38.99 0.978 33.19 0.926 34.18 0.944
MHNet [Gao and Dang 2023] 30.34 0.903 39.47 0.984 33.42 0.924 - -
∇-Prox (Learn LinOp) 31.08 0.897 38.09 0.973 32.95 0.913 33.93 0.941
∇-Prox (Learn LinOp + Initializer) 31.62 0.905 39.06 0.978 33.25 0.926 34.19 0.944

H.3 Compressive Magnetic Resonance Imaging
As we demonstrated in the main paper, we experiment with a variety of solvers for CS-MRI, covering all the
techniques that ∇-Prox provides. For the PnP solver, we run all the cases with 24 iterations in total following

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:27

[Zhang et al. 2021] and the parameters are manually tuned optimally case by case. For learnable solvers, i.e.,
unrolled, DEQ, and RL solvers, we train them with a dataset provided in [Wei et al. 2020], which is a resized
version (128 × 128) of PASCAL VOC [Everingham et al. 2015]. Specifically, for unrolled solvers, we start from a
PnP solver with a pretrained deep denoising prior and then fine-tune the prior as well as the algorithm parameters
by unrolling 10 optimization iterations. For both unrolled and DEQ solvers, we utilize a batch size of 32 and
AdamW [Loshchilov and Hutter 2017] optimizer with a constant learning rate of 1 × 10−4. For RL solvers, the
batch size for training is set to 32 and it utilizes an action pack of 5 (predicting parameters of 5 optimization
iterations together) and maximum iteration steps of 30, following [Wei et al. 2020]. The additional visual results
are shown in Figure V.

H.4 Fast Prototyping Experiments
Here, we provide more experimental setup details for the fast prototyping experiments mentioned in Section 5.5
of the main paper.

Effect of Solver Parameter Setting Strategies. In this experiment, we compare three parameter setting strategies,
including fixed, log descent, and our reinforcement-learning-based strategies, on five different tasks, including
image deblurring, demosaicing, inpainting, single image super-resolution (SISR), and hyperspectral compressive
sensing (HCS). For hyperspectral compressive sensing, we randomly select 5 images from ICVL [Arad and
Ben-Shahar 2016] which are cropped to 512 × 512 for testing. We use Set14 [Zeyde et al. 2012] dataset without
cropping for evaluating other tasks. For the parameter setting, there are two parameters to be set for ADMM, i.e.,
penalty strength 𝜌 and denoising strength 𝜎 . They are correlated by 𝜌 = 𝜆𝜎2 where 𝜆 is the strength of regularize.
Following [Zhang et al. 2021], we set 𝜆 = 0.23 as constant and only search the best parameter for 𝜎 and derive the
best 𝜌 from that. The best 𝜎 for fixed strategy is obtained by brute-force search in the range of [0, 70]. The best
upper and lower bound of 𝜎 for the log decent strategy is obtained by brute-force search in the range of [0, 70] as
well. For RL strategy, we train the policy network with ICVL where 50 images are randomly selected and cropped
to 64 × 64 (for compressive sensing task), and BSD500-train [Martin et al. 2001] where each image is cropped to
128 × 128 (for other tasks). The policy network is trained to predict a pair of parameters for every 6 iterations.
The maximum number of iterations for all strategies is set to 30. As for the degradation, the deblurring uses
Gaussian blur with a width of 15 and sigma of 5, the SISR uses a scaling factor of 2, and Gaussian downsampling
with the same blur kernel as the deblurring task. The inpainting randomly masks 50% of pixels. The compressive
sensing adopts CASSI [Wagadarikar et al. 2009] system.

Effect of Different Proximal Algorithm Choices. For demosaicing and deblurring, the dataset and training setup
for the RL-based parameter scheduler are the same as the first prototyping experiment. For CSMRI, the setup is
the same as the experiments of the main paper.

Effect of Regularizers. The dataset/training setup for the RL-based parameter scheduler is the same as the first
prototyping experiment. All the different objectives with different regularizers share the same setup.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:28 • Lai, Z. et al

JD2 [Xing and Egiazarian 2021] DeepOptics-UNet [Metzler et al. 2020] ∇-Prox (Ours)DPIR [Zhang et al. 2021]

Fig. III. Additional visual results for end-to-end computational optics.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:29

Restormer [Zamir et al. 2022] PreNet [Ren et al. 2019] MPRNet [Zamir et al. 2021] DGUNet [Mou et al. 2022] ∇-Prox (Ours)Rainy Input

Fig. IV. Additional visual results for image deraining.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:30 • Lai, Z. et al

∇-Prox (Ours)Ground Truth IRCNN [Zhang et al. 2017b]ISTANet [Zhang 2018]RecPF [Yang et al. 2010] TFPnP [Wei et al. 2022]

Fig. V. Additional visual results for CSMRI reconstruction.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

Supplemental Material: ∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 105:31

REFERENCES
Eirikur Agustsson and Radu Timofte. 2017. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
Boaz Arad and Ohad Ben-Shahar. 2016. Sparse Recovery of Hyperspectral Signal from Natural RGB Images. In European Conference on

Computer Vision. Springer, 19–34.
Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2019. Deep equilibrium models. Advances in Neural Information Processing Systems 32 (2019).
Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011. Distributed optimization and statistical learning via the

alternating direction method of multipliers. Foundations and Trends® in Machine learning 3, 1 (2011), 1–122.
Ronald E Bruck Jr. 1975. An iterative solution of a variational inequality for certain monotone operators in Hilbert space. Bull. Amer. Math.

Soc. 81, 5 (1975), 890–892.
Antonin Chambolle and Thomas Pock. 2011. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal

of mathematical imaging and vision 40, 1 (2011), 120–145.
Stanley H Chan, Xiran Wang, and Omar A Elgendy. 2016. Plug-and-play ADMM for image restoration: Fixed-point convergence and

applications. IEEE Transactions on Computational Imaging 3, 1 (2016), 84–98.
Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. 2015. The pascal visual object

classes challenge: A retrospective. International journal of computer vision 111 (2015), 98–136.
Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle Pineau, et al. 2018. An introduction to deep reinforcement

learning. Foundations and Trends® in Machine Learning 11, 3-4 (2018), 219–354.
Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao Ding, and John Paisley. 2017. Removing rain from single images via a deep detail

network. In Proceedings of the IEEE conference on computer vision and pattern recognition. 3855–3863.
Hu Gao and Depeng Dang. 2023. Mixed Hierarchy Network for Image Restoration. arXiv preprint arXiv:2302.09554 (2023).
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770–778.
Felix Heide, Steven Diamond, Matthias Nießner, Jonathan Ragan-Kelley, Wolfgang Heidrich, and Gordon Wetzstein. 2016. Proximal: Efficient

image optimization using proximal algorithms. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–15.
Tae Hyun Kim, Byeongjoo Ahn, and Kyoung Mu Lee. 2013. Dynamic scene deblurring. In Proceedings of the IEEE international conference on

computer vision. 3160–3167.
Michael Kruse. 2021. Loop Transformations using Clang’s Abstract Syntax Tree. In 50th International Conference on Parallel Processing

Workshop. 1–7.
Timothy Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and DaanWierstra. 2016. Continuous

control with deep reinforcement learning. International Conference on Learning Representations (2016).
Longji Lin. 1992. Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching. Machine Learning 8, 3 (1992),

293–321.
Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017).
D. Martin, C. Fowlkes, D. Tal, and J. Malik. 2001. A Database of Human Segmented Natural Images and its Application to Evaluating

Segmentation Algorithms and Measuring Ecological Statistics. In Proc. 8th Int’l Conf. Computer Vision, Vol. 2. 416–423.
Christopher A Metzler, Hayato Ikoma, Yifan Peng, and Gordon Wetzstein. 2020. Deep optics for single-shot high-dynamic-range imaging. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1375–1385.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing

atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K

Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.
Jean-Jacques Moreau. 1965. Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique de France 93 (1965), 273–299.
Chong Mou, Qian Wang, and Jian Zhang. 2022. Deep Generalized Unfolding Networks for Image Restoration. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 17399–17410.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing
systems 32 (2019).

Jan Peters and Stefan Schaal. 2006. Policy Gradient Methods for Robotics. International Conference on Intelligent Robots and Systems (2006),
2219–2225.

Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu, and Deyu Meng. 2019. Progressive image deraining networks: A better and simpler
baseline. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3937–3946.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. 2014. Deterministic policy gradient algorithms.
In International conference on machine learning. PMLR, 387–395.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

105:32 • Lai, Z. et al

Richard Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. 2000. Policy Gradient Methods for Reinforcement Learning with
Function Approximation. Advances in Neural Information Processing Systems (2000).

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: an introduction. (2018).
Ashwin A Wagadarikar, Nikos P Pitsianis, Xiaobai Sun, and David J Brady. 2009. Video rate spectral imaging using a coded aperture snapshot

spectral imager. Optics express 17, 8 (2009), 6368–6388.
Kaixuan Wei, Angelica Aviles-Rivero, Jingwei Liang, Ying Fu, Hua Huang, and Carola-Bibiane Schönlieb. 2022. TFPNP: Tuning-free plug-

and-play proximal algorithms with applications to inverse imaging problems. Journal of Machine Learning Research 23, 16 (2022),
1–48.

Kaixuan Wei, Angelica Aviles-Rivero, Jingwei Liang, Ying Fu, Carola-Bibiane Schönlieb, and Hua Huang. 2020. Tuning-free plug-and-play
proximal algorithm for inverse imaging problems. In International Conference on Machine Learning. PMLR, 10158–10169.

David S Wile. 1997. Abstract syntax from concrete syntax. In Proceedings of the 19th international conference on Software engineering. 472–480.
Wenzhu Xing and Karen Egiazarian. 2021. End-to-end learning for joint image demosaicing, denoising and super-resolution. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3507–3516.
Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. 2017. Deep joint rain detection and removal from a

single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1357–1366.
Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. 2022. Restormer: Efficient

transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5728–5739.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao. 2021. Multi-stage
progressive image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 14821–14831.

Roman Zeyde, Michael Elad, and Matan Protter. 2012. On single image scale-up using sparse-representations. In Curves and Surfaces: 7th
International Conference, Avignon, France, June 24-30, 2010, Revised Selected Papers 7. Springer, 711–730.

He Zhang, Vishwanath Sindagi, and Vishal M Patel. 2019. Image de-raining using a conditional generative adversarial network. IEEE
transactions on circuits and systems for video technology 30, 11 (2019), 3943–3956.

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. 2021. Plug-and-play image restoration with deep denoiser
prior. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

Kai Zhang, Wangmeng Zuo, and Lei Zhang. 2018. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE
Transactions on Image Processing 27, 9 (2018), 4608–4622.

ACM Trans. Graph., Vol. 42, No. 4, Article 105. Publication date: July 2023.

	A Additional Details on Deep Equilibrium Learning
	A.1 The Overview of Deep Equilibrium Learning
	A.2 Formulating Proximal Optimization as Fixed-Point Iteration
	A.3 Detailed Derivation of Gradient Calculation of DEQ

	B Learning Solvers via Reinforcement Learning
	B.1 Formulation Automated Parameter Selection as an RL Problem
	B.2 Optimizing Parameter Selection Policy

	C Additional Details on Solver Construction
	C.1 Solver Construction Pipeline
	C.2 Extensible Sum Square
	C.3 Eliminating Calculations

	D Extensibility
	D.1 Adding New Operators
	D.2 Adding New Proximal Algorithms
	D.3 Sanity Check

	E Additional Implementation Details
	E.1 Built-in Linear Operators
	E.2 Built-in Proximal Operators
	E.3 Build-in Proximal Algorithms.
	E.4 Training Interface for Learned Solvers

	F Learn -Prox with Examples
	G Additional Details for Integrated Energy System Planning
	G.1 General Modeling
	G.2 Sets and Indices
	G.3 Decision Variables
	G.4 Constraints
	G.5 Objective function and optimization problem
	G.6 Convergence Loss

	H Additional Application Setups and Results
	H.1 End-to-End Computational Optics
	H.2 Image Deraining
	H.3 Compressive Magnetic Resonance Imaging
	H.4 Fast Prototyping Experiments

	References

