
∇-Prox: Differentiable Proximal Algorithm Modeling
for Large-Scale Optimization
ZEQIANG LAI∗, Beijing Institute of Technology, China
KAIXUAN WEI∗, Princeton University, USA and McGill University, Canada
YING FU†, Beijing Institute of Technology, China
PHILIPP HÄRTEL, Fraunhofer IEE, Germany and Princeton University, USA
FELIX HEIDE, Princeton University, USA

Pytorch: >160 GB
(Handwritten) 100 lines

Pytorch: 130 GB
(Handwritten) 300 lines

Pytorch: 22 GB
(TFPnP) 50 lines

Gurobi: >350 GB
(CVXPY) 5 lines

∇-Prox: 13 GB
5 lines

∇-Prox: 54 GB
10 lines

∇-Prox: 6 GB
7 lines

∇-Prox: 14 GB
5 lines

5% lines
>92% memory saving

3% lines
58% memory saving

14% lines
73% memory saving

Same lines
>96% memory saving

Image De-Raining Compressive MRIComputational Optics Energy System Planning Compilation and Computation Flow

Proximal Solver

RL UNROLLDEQ

specialize(solver, method=‘unroll’)

compile(prob, method=‘admm’)

solver.solve()

d_loss

Optics

𝐱∗ = argmin 𝐃 𝐱; 𝜃"#$ − 𝐲 % + 𝑟 𝐱; 𝜃&

Deep Prior

d_prior

d_lens

Parameter
Scheduler

d_policy

min c!x
s.t. a"!x ≤ b"

Solar PV
Offshore wind
Onshore wind
Hydro

Fig. 1. ∇-Prox is a domain-specific language (DSL) and compiler that transforms optimization problems into differentiable proximal solvers. Departing
from handwriting these solvers and differentiating via autograd, ∇-Prox requires only a few lines of code to define a solver that can be specialized to
respect a memory or training budget by optimized algorithm unrolling, deep equilibrium learning, and deep reinforcement learning. ∇-Prox allows for rapid
prototyping of learning-based bi-level optimization problems for a diverse range of applications. We compare our framework against existing methods with
naive implementations. ∇-Prox is significantly more compact in terms of lines of code and compares favorably in memory consumption for diverse tasks.

Tasks across diverse application domains can be posed as large-scale opti-
mization problems, these include graphics, vision, machine learning, imaging,
health, scheduling, planning, and energy system forecasting. Independently
of the application domain, proximal algorithms have emerged as a formal op-
timization method that successfully solves a wide array of existing problems,
often exploiting problem-specific structures in the optimization. Although
model-based formal optimization provides a principled approach to problem
modeling with convergence guarantees, at first glance, this seems to be at
odds with black-box deep learningmethods. A recent line of work shows that,

∗indicates equal contribution.
†indicates corresponding author: fuying@bit.edu.cn

Authors’ addresses: Zeqiang Lai, Beijing Institute of Technology, China, laizeqiang@
outlook.com; Kaixuan Wei, Princeton University, USA and and McGill University,
Canada, kxwei@princeton.edu; Ying Fu, Beijing Institute of Technology, China,
fuying@bit.edu.cn; Philipp Härtel, Fraunhofer IEE, Germany and and Princeton Uni-
versity, USA, philipp.haertel@iee.fraunhofer.de; Felix Heide, Princeton University, USA,
fheide@cs.princeton.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
0730-0301/2023/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

when combined with learning-based ingredients, model-based optimization
methods are effective, interpretable, and allow for generalization to a wide
spectrum of applications with little or no extra training data. However, exper-
imenting with such hybrid approaches for different tasks by hand requires
domain expertise in both proximal optimization and deep learning, which is
often error-prone and time-consuming. Moreover, naively unrolling these
iterative methods produces lengthy compute graphs, which when differen-
tiated via autograd techniques results in exploding memory consumption,
making batch-based training challenging. In this work, we introduce ∇-Prox,
a domain-specific modeling language and compiler for large-scale optimiza-
tion problems using differentiable proximal algorithms. ∇-Prox allows users
to specify optimization objective functions of unknowns concisely at a high
level, and intelligently compiles the problem into compute and memory-
efficient differentiable solvers. One of the core features of ∇-Prox is its full
differentiability, which supports hybrid model- and learning-based solvers
integrating proximal optimization with neural network pipelines. Exam-
ple applications of this methodology include learning-based priors and/or
sample-dependent inner-loop optimization schedulers, learned with deep
equilibrium learning or deep reinforcement learning. With a few lines of
code, we show ∇-Prox can generate performant solvers for a range of image
optimization problems, including end-to-end computational optics, image
deraining, and compressive magnetic resonance imaging. We also demon-
strate ∇-Prox can be used in a completely orthogonal application domain
of energy system planning, an essential task in the energy crisis and the
clean energy transition, where it outperforms state-of-the-art CVXPY and
commercial Gurobi solvers.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

HTTPS://ORCID.ORG/0009-0005-6102-4916
HTTPS://ORCID.ORG/0000-0002-9887-0455
HTTPS://ORCID.ORG/0000-0002-6677-694X
HTTPS://ORCID.ORG/0000-0002-9706-1007
HTTPS://ORCID.ORG/0000-0002-8054-9823
https://orcid.org/0009-0005-6102-4916
https://orcid.org/0000-0002-9887-0455
https://orcid.org/0000-0002-6677-694X
https://orcid.org/0000-0002-9706-1007
https://orcid.org/0000-0002-8054-9823
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Lai, Z. et al

CCS Concepts: • Computing methodologies → Computational photogra-
phy; Regularization; • Theory of computation→ Continuous optimization;
Reinforcement learning; •Mathematics of computing→ Solvers;Automatic
differentiation.

Additional Key Words and Phrases: Computational photography, image
reconstruction, differentiable optimization

ACM Reference Format:
Zeqiang Lai, Kaixuan Wei, Ying Fu, Philipp Härtel, and Felix Heide. 2023.
∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Opti-
mization. ACM Trans. Graph. 1, 1 (May 2023), 19 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A broad array of problems in the sciences, engineering, economics,
health, and fabrication can be cast as formal optimization problems
[Wright et al. 1999]. Remarkably, proximal optimization algorithms
[Parikh and Boyd 2014] have emerged across all of these diverse ap-
plication domains as optimization methods as a direct result of being
flexible and handling large-scale problems. In contrast to conven-
tional interior-point or active set methods that solve minimization
problems of modest size, proximal algorithms scale to constrained
large-scale problems [Boyd et al. 2011] with millions of variables.
Defining a class of algorithms, proximal methods sit at a higher
level of abstraction than typical optimization methods that directly
evaluate first and second-order derivatives for a given problem. In-
stead, proximal algorithms interact with proximal functions, which
themselves can be minimization problems. As such, task-specific
proximal algorithms are capable of exploiting application-specific
problem structures in domains such as imaging optimization prob-
lems [Heide et al. 2016], control and scheduling problems [Parikh
and Boyd 2014]. However, although this proximal algorithm mod-
eling provides a principled approach with rigorous convergence
guarantee [Komodakis and Pesquet 2015; Nishihara et al. 2015;Wang
et al. 2019], existing model-based formal optimization methods ap-
pear to be at odds with black-box deep learning methods, which also
solve high-dimensional data fitting problems, and, albeit missing
convergence guarantees, have been broadly deployed for inverse
problems and prediction tasks across almost all application domains
[Almagro Armenteros et al. 2019; Goodfellow et al. 2016; Lai et al.
2022; LeCun et al. 2015; Ongie et al. 2020; Ozturk et al. 2020; Silver
et al. 2017; Zhao et al. 2019].

Indeed, learning-based methods, especially deep neural networks
represent a different paradigm that extracts task-specific priors
from data, in lieu of formalized domain knowledge exploited in
model-based optimization methods. As a direct result, black-box
deep learning methods can learn to fit high-dimensional and com-
plex data with expressiveness far beyond existing analytical models
but have trouble generalizing to unseen domains where the data
distribution does not resemble that of the training set. In contrast,
model-based optimization methods are less expressive but often
generalize more effectively.
Recently, these benefits and drawbacks have spurred strong in-

terest in developing hybrid methods that embrace the best of both

worlds. Researchers have combined model-based optimization meth-
ods with learning-based components, allowing for effective, inter-
pretable, and generalizable methods with little or no extra train-
ing data [Diamond et al. 2017; Kamilov et al. 2023; Monga et al.
2021; Shlezinger et al. 2020; Wei et al. 2022a; Zhang et al. 2021].
However, implementing and prototyping such hybrid methods for
different tasks by hand requires domain expertise on both proximal
optimization and deep learning. While modern deep-learning model-
ing languages allow for fast prototyping, implementing proximal
algorithms is often error-prone and time-consuming. This inherent
difficulty stems from the ambiguities when formulating a certain
(possibly ill-posed) problem as an optimization function and com-
piling this optimization function to a proximal solver. Finding an
effective optimization method thus typically requires exploring a
large space of problem formulations, translations, and solvers. This
is even more challenging when considering differentiable solver
designs that have to account for loop termination and many distinct
ways to construct a hybrid pipeline taking other differentiable al-
gorithm components, such as a downstream neural network, into
account. As a result, existing methods mostly rely on unrolling these
iterative optimization methods to produce lengthy compute graphs
that can be differentiated via autograd techniques. This results in
exploding memory consumption and making batch-based training
challenging without costly GPU hardware with hundreds of GBs of
memory available (see Figure 1).

In this work, we address these challenges by introducing ∇-Prox,
a domain-specific modeling language and compiler for large-scale
optimization problems with differentiable proximal algorithms. Al-
though not limited to a specific application domain, we focus our
work on large-scale image optimization problems. As such, we build
on the proximal image optimization framework ProxImaL [Heide
et al. 2016]. ∇-Prox allows users to specify optimization objective
functions of unknowns concisely at a high level using an intuitive
syntax that follows the mathematical objectives and then compiles
the problem into efficient differentiable solvers exploiting problem-
specific structures automatically. It inherits most assets from Prox-
ImaL, i.e., the compiler pipeline consisting of problem rewriting,
splitting, and scaling. But, unlike ProxImaL, ∇-Prox supports full dif-
ferentiability, which goes beyond conventional auto-differentiation
mechanisms [Paszke et al. 2017, 2019]. Specifically, ∇-Prox supports
equilibrium learning and reinforcement learning based bi-level op-
timization schemes that do not require unrolling algorithms into
lengthy compute graphs. As such, the proposed DSL supports hy-
brid model-based and learning-based solvers that merge proximal
optimization with deep neural network pipelines in a structured
manner. The computational graphs and gradients computed by ∇-
Prox seamlessly integrate with modern deep learning modeling
frameworks such as PyTorch.

With these differentiable solvers in hand, ∇-Prox enables users to
construct hybrid solvers with learning-based task-oriented priors
and/or sample-dependent inner-loop schedulers. Based on memory
and compute resources available for training, users can train hy-
brid solvers with distinct learning strategies including algorithm
unrolling [Diamond et al. 2017; Monga et al. 2021], deep equilibrium
learning [Bai et al. 2019; Gilton et al. 2021] and deep reinforcement
learning [François-Lavet et al. 2018; Wei et al. 2020]. As such, the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 3

proposed method allows for rapid experimentation with a variety
of learned solvers and training approaches without the pain of man-
ually implementing these methods and training schemes.
We validate the utility of ∇-Prox on a diverse set of imaging ap-

plications, including end-to-end computational optics that jointly
optimizes diffractive optical element and image reconstruction (joint
deconvolution and denoising) algorithm, image deraining, and com-
pressive magnetic resonance imaging. In these applications, dif-
ferentiable components are learning-based priors and/or sample-
dependent inner-loop schedulers as well as the whole proximal
optimization pipeline including the parameters themselves. We find
that, in many cases, a few lines of ∇-Prox code can generate highly
efficient differentiable solvers that achieve state-of-the-art results
when trained in an end-to-end fashion. We also show ∇-Prox can be
effective in a completely orthogonal application domain of energy
system analysis and planning, an essential task in energy security
and the transition to climate neutrality.
The main contributions in this work are as follows:

• We introduce ∇-Prox, a domain-specific modeling language
and compiler tailored for large-scale optimization using dif-
ferentiable proximal algorithms. The compiler takes a user
problem description and solver choice as inputs, and then
automatically compiles them into an efficient differentiable
solver that can be combined with other differentiable algo-
rithm components.

• We devise ∇-Prox in a fully differentiable manner, which sup-
ports hybrid model-based and learning-based solvers blend-
ing proximal optimization with neural network pipelines. To
tackle memory and compute in bi-level optimization, ∇-Prox
employs reinforcement and deep equilibrium learning beyond
unrolling.

• We validate that ∇-Prox is easy to use yet highly perfor-
mant, achieving state-of-the-art results on a variety of large-
scale optimization problems on visual data. We also demon-
strate that ∇-Prox allows applying differentiable proximal
algorithms to orthogonal application domains.

All code, examples, and documentation are publicly available at
https://github.com/princeton-computational-imaging/Delta-Prox.

2 RELATED WORK
Proximal Optimization. Tracing back to the 17th century, to find

optima of functions under certain conditions, Fermat and Lagrange
found closed-form formulae, while Newton and Gauss proposed
iterative methods to find an optimum as a sequence of smaller opti-
mization steps, each moving closer to the optimum. Since Moreau’s
proximation theorem [Moreau 1965] in the middle of the last cen-
tury, a large body of work has approached large-scale optimization
problems using operator-splitting methods and proximal algorithms
[Boyd et al. 2011; Parikh and Boyd 2014]. This includes success-
ful proximal gradient descent (a.k.a. forward–backward splitting
[Bruck Jr 1975]) and its accelerated versions such as fast iterative
shrinkage/thresholding algorithm (FISTA) [Beck and Teboulle 2009],
proximal point method [Rockafellar 1976], alternating direction
method of multipliers (ADMM) [Gabay and Mercier 1976], half-
quadratic splitting (HQS) [Geman and Yang 1995], and primal-dual

hybrid gradient, e.g., the Chambolle-Pock algorithm [Chambolle
and Pock 2011]. These proximal optimization methods were initially
developed to tackle the non-smoothness of convex optimization
objectives that are hard to be coped with by classic methods (like
Newton’s method). Recent works have shown the applicability and
superiority of proximal algorithms to non-convex optimization prob-
lems and even established local and global convergence guarantees
under certain conditions [Attouch et al. 2013; Li and Pong 2015; Li
et al. 2017; Mollenhoff et al. 2015; Nishihara et al. 2015; Wang et al.
2019].

Domain-specific Languages for Optimization, Graphics, and Vi-
sion. To facilitate the fast development and prototyping of opti-
mization solvers tailored for specific problems, a wide array of
domain-specific modeling languages (DSL) for optimization exists.
CVX [Grant and Boyd 2014] (and its siblings CVXPY [Diamond
and Boyd 2016] and Convex.jl [Udell et al. 2014]) are popular ex-
amples that have been applied across disciplines. While these DSLs
are expressive, they are restricted to convex optimization, and they
struggle to scale to large-scale (image) optimization problems with
millions of variables involved. A line of work investigates scaling
these optimization DSLs to larger problems, especially prevalent
in computer graphics and vision, which includes methods that rec-
ognize and exploit fast proximal operators and linear transforms
[Becker et al. 2011; Diamond and Boyd 2015] as well as efficient
matrix-free methods, symbolic differentiation, scheduling trans-
forms for large-scale nonlinear least squares optimization [DeVito
et al. 2017; Mara et al. 2021]. Most closely related to our work is
ProxImaL [Heide et al. 2016], an image optimization DSL in this
same line of research. ProxImaL allows formulating and compiling
non-convex objectives with even non-analytical cost functions (such
as image priors characterized by black-box denoisers). In contrast to
ProxImaL, ∇-Prox incorporates full differentiability, including effi-
cient training of the bi-level objective beyond autograd approaches,
and, with a few lines of code, enables generations of hybrid solvers
bridging proximal optimization and differentiable algorithmic in-
gredients such as neural network pipelines.
Optimization aside, DSLs have been vastly successful in Com-

puter Graphics, with examples of OpenGL [Segal and Akeley 1999]
and CUDA delivering rendering operations for broad real-world
adoptions. Simulation DSLs such as Ebb [Bernstein et al. 2016] and
Simit [Kjolstad et al. 2016] allow users to express and abstract linear
algebra operations over heterogeneous data structures of complex
geometry. Taichi [Hu et al. 2019a,b] decouples data structure from
computation by Cartesian indexing and develops a mini-language
to compose data structure hierarchies. Dr.JIT [Jakob et al. 2022]
dynamically compiles differential simulations and automatically
tracks the data dependency to remove redundant computation by
introducing checkpointing [Chen et al. 2016] and Path Replay Back-
propagation [Vicini et al. 2021]. Image processing DSLs such as
Darkroom [Hegarty et al. 2014], Halide and its extensions [Adams
et al. 2019; Li et al. 2018; Mullapudi et al. 2016; Ragan-Kelley et al.
2013] decouple algorithms from schedules for high-performance
image processing, and can automatically generate efficient imple-
mentations for diverse computing engines such as x86, ARM, GPUs.
The proposed ∇-Prox sits at a higher-level abstraction atop those

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

https://github.com/princeton-computational-imaging/Delta-Prox

4 • Lai, Z. et al

DSLs, and, while currently being implemented on top of PyTorch,
could also potentially be embedded into them to take full advan-
tage while providing flexibility for differentiable proximal algorithm
modeling.

Differentiable Optimization and Learned Solvers. ∇-Prox shares
its design philosophy with existing differentiable optimization meth-
ods which implement optimization algorithms with differentiable
programming techniques. Several lines of research investigate dif-
ferentiable optimization methods by 1) integrating solvers of op-
timization problems, e.g., quadratic programs [Amos and Kolter
2017], convex cone programs [Agrawal et al. 2019b], general convex
problems [Agrawal et al. 2019a], total variation minimization [Yeh
et al. 2022] or nonlinear least squares [Pineda et al. 2022], into a deep
network as individual layers to explicitly encode hard constraints or
dependencies; 2) unroll/unfold a certain truncated iterative solver
into a network-like architecture [Diamond et al. 2017; Dong et al.
2018; Gregor and LeCun 2010; Hershey et al. 2014; Monga et al.
2021; Sun et al. 2016; Zhang and Ghanem 2018]; 3) learn fixed point
iterations via deep equilibrium learning with implicit differentiation
[Bai et al. 2019; Gilton et al. 2021; Liu et al. 2022]; 4) train a neu-
ral policy network to automatically tune the internal parameters
within an iterative proximal algorithm using reinforcement learning
[Ichnowski et al. 2021; Wei et al. 2022a, 2020], and 5) meta-train a
model-free learnable optimizer (parameterized by a recurrent neural
network) on deep learning tasks by backpropagating through the
optimization procedure [Andrychowicz et al. 2016; Chen et al. 2021;
Li and Malik 2016; Metz et al. 2022; Wichrowska et al. 2017].
All approaches except the last category are model-based, which

means they are, in part, formal optimization instead of black-box
architectures. Implementing and testing the above hybrid model-
based and learning-based solvers from different categories by hand
is time-consuming and error-prone. ∇-Prox provides a shortcut to
addressing this challenge — all these model-based algorithms are
built-in components and can be implemented by just a few lines
of code. This allows users to experiment with the algorithm for a
given task in a rapid prototyping fashion, allowing for task-driven
optimization method design.

3 FORMULATING PROXIMAL OPTIMIZATION
In this section, we formalize the optimization problems that the
proposed domain-specific language and compiler operate on. We
consider continuous optimization problems that can be solved by
proximal algorithms. To this end, we use a high-level abstraction that
allows converting problems into mathematical and programming
representations intuitively. Specifically, we formulate problems as
general optimization problems with a sum of penalties and a list of
constraints. While summed-penalty representations are commonly
found in the literature, we extend themwith optimizable parameters.
With the mathematical representation of these problems in hand, we
show howwe can cast them into programs with our domain-specific
modeling language.

3.1 Canonical Form
We formulate a canonical optimization problem to which we convert
all problems considered in this work. We aim to find unknown

variables x ∈ R𝑛 that minimize an objective formulated as a sum
of penalties 𝑓𝑖 on linear transforms K𝑖x with possibly additional
constraints 𝑐 𝑗

argmin
x

𝐼∑︁
𝑖=1

𝑓𝑖

(
K𝑖

(
x; 𝜃𝐾𝑖

)
; 𝜃 𝑓
𝑖

)
,

𝑠 .𝑡 . 𝑐 𝑗

(
x; 𝜃𝑐𝑗

)
= 0, ∀𝑗 = 1, ..., 𝐽 ,

(1)

where the linear operator K𝑖 ∈ R𝑚𝑖×𝑛 projects the unknowns to the
inputs of the penalty functions 𝑓𝑖 : R𝑚𝑖 → R, and the constraints
𝑐 𝑗 : R𝑛 → R can be imposed by either equality or inequality1.
Here, the terms 𝑓𝑖 , K𝑖 and 𝑐 𝑗 are optionally parameterized by a set
of latent parameters, i.e., 𝜃 𝑓

𝑖
, 𝜃𝐾
𝑖
, 𝜃𝑐
𝑗
respectively2, assuming their

differentiability as in the case of a neural network or differentiable
physical forward model. Once compiled as a differentiable solver,
this canonical form enables us to implement backpropagation to
optimize both latent parameters as well as differentiable internal
solver parameters using data-driven end-to-end learning.

Example Problem. The canonical form (1) covers a wide array
of continuous optimization problems across domains. We focus in
this work on image optimization problems and, next, we describe
example problems to illustrate the design rationale and core features
behind ∇-Prox. In image optimization problems, one typically aims
at recovering an underlying unknown image x ∈ R𝑛 from noisy
and/or incomplete measurements y ∈ R𝑚 . Derived as Bayesian
maximum-a-posteriori point estimates [Chambolle and Pock 2016;
Xu et al. 2020], the penalty functions typically include a data fidelity
term measuring consistency between the reconstructed image and
measured data, and a bank of regularizers that enforce prior knowl-
edge of the unknowns in the Bayesian sense.
As a specific example, we consider end-to-end computational

optics [Sitzmann et al. 2018; Tseng et al. 2021] that jointly optimizes a
diffractive optical element (DOE) and an image reconstruction (joint
deconvolution and denoising) algorithm, where the observation y is
obtained by convolving a clear image 𝑥 by the point spread function
(PSF) of the DOE as following

y = D (x; 𝜃𝐷𝑂𝐸) + 𝜖,

where D(·; 𝜃𝐷𝑂𝐸) indicates a shift-invariant convolution process
with an optical kernel, i.e. PSF, derived from a DOE image formation
model parameterized by 𝜃𝐷𝑂𝐸 , and 𝜖 is measurement noise, e.g.,
Poissionian-Gaussian noise. As discussed before, to reconstruct tar-
get image x from noise-contaminated measurements y, we minimize
the sum of a data-fidelity 𝑓 and regularizer term 𝑟 as

min
𝑥∈R𝑛

𝑓 (D (x; 𝜃𝐷𝑂𝐸)) + 𝑟 (x; 𝜃𝑟) . (2)

There are many choices for 𝑓 and 𝑟 . For example, one might define
𝑓 as a sum-of-squares error, a Huber loss, or a Poisson negative

1Without loss of generality, the inequality constraint 𝑐 𝑗 (𝑥) ≤ 0 could be transformed
into an equality constraint by either introducing additional non-negative slack variables
(for affine functions) or converting it into 𝑐 𝑗 (𝑥) = 0 where 𝑐 𝑗 (𝑥) B max{0, 𝑐 𝑗 (𝑥) }2 ,
see [Giesen and Laue 2016] for general non-linear functions.
2We omit 𝜃 if 𝜃 is a null set 𝜙 , which implies the operator itself does not hinge on any
extra latent parameters.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 5

log-likelihood penalty, depending on the measurement noise distri-
bution. Crafting novel regularizers 𝑟 plays a key role in the develop-
ment of optimization-based methods for image reconstruction [Gu
et al. 2017; Mairal et al. 2007; Osher et al. 2005; Venkatakrishnan et al.
2013; Xu et al. 2020; Zoran and Weiss 2011]. The regularizer 𝑟 may
be a sparsity-promoting penalty such as total variation [Chambolle
and Pock 2016]; data range constraints such as non-negativity; or
an implicit image prior characterized by an image denoising algo-
rithm [Tian et al. 2020; Wei et al. 2022b; Zhang et al. 2017a] such
as non-local means [Buades et al. 2005] or a convolutional neural
network (CNN) [Zhang et al. 2017a]. In practice, researchers often
employ a mixture of several regularizers, which is what we assume
in our example problem

𝑟 (x;𝜃𝑟) = 𝜆𝑔(x;𝜃𝑟) + 𝐼 [0,∞) (x), (3)

where 𝜆 ≥ 0,𝑔(·;𝜃𝑟) denotes an image prior implicitly modeled in an
off-the-shelf denoiser (a.k.a. Plug-and-Play prior [Venkatakrishnan
et al. 2013]). In this example, we use a CNN-based denoiser with U-
Net architecture [Ronneberger et al. 2015] parameterized by network
weights 𝜃𝑟 . 𝐼 [0,∞) (x) is an indicator functionwhose value is 0 if x lies
at interval [0,∞) and∞ otherwise. This compound penalty function
encodes both analytical explicit non-negativity priors as well as
implicit priors that rely on the properties of image denoisers [Xu
et al. 2020]. Problem (4) lists the full optimization problem, where
𝑟 (x) is defined in (3). The reformulated problem (5) represents one
possible choice to transform (4) into the canonical form (1).

x∗ = argmin
x

∥D (x; 𝜃𝐷𝑂𝐸) − y∥22 + 𝑟 (x;𝜃𝑟) (4)

𝑓1 (v) = ∥v − y∥22, K1 = D (·; 𝜃𝐷𝑂𝐸)
𝑓2 (v) = 𝜆𝑔(v;𝜃𝑟), K2 = I

𝑓3 (v) = 𝐼 [0,∞) (v), K3 = I
(5)

While multiple ways exist to cast the problem into canonical
form, the specific choice affects the solver performance. This trans-
lation is typically done by hand using expert knowledge. Instead of
handcrafted translations, the proposed method provides automatic
strategies to find an optimal reformulation.
Once the optimization problem in the canonical form is formu-

lated, we compile it into a specific differentiable solver based on
the choice of the proximal algorithm. ∇-Prox supports a variety
of typical proximal algorithms, e.g., ADMM, half-quadratic split-
ting, and Pock-Chambolle algorithm. These algorithms employ a
class of abstract operators, namely proximal operators, as their base
operations instead of the computation of gradients and Hessians
in classic optimization algorithms. The proximal operators in our
formulation are also differentiable. The evaluation of the proximal
operator of a weighted penalty function 𝜇𝑓 itself involves solving a
small convex/non-convex optimization problem as

prox𝜇𝑓 (v; 𝜃 𝑓) = argmin
x

(
𝑓 (x; 𝜃 𝑓) + 1

2𝜇
∥x − v∥22

)
. (6)

These subproblems can be solved with standard methods, but they
often admit closed-form solutions or can be solved very quickly with
simple specialized methods [Parikh and Boyd 2014]. Note also that
the formulation of the proximal operator (6) is mathematically equiv-
alent to the regularized denoising, suggesting one might replace the

proximal operator prox𝜎2 𝑓 by any denoiser H𝜎 (·;𝜃 𝑓) with noise
level 𝜎 . This yields a framework coined Plug-and-Play (PnP) prior
[Venkatakrishnan et al. 2013], where the corresponding penalty
function 𝑓 (x;𝜃 𝑓) is implicitly defined by the denoiser itself with
parameters 𝜃 𝑓 , i.e., the denoiser network weights if the denoiser is
a neural network.

3.2 Programming Interface
To describe large-scale optimization problems, ∇-Prox extends the
DSL from ProxImaL [Heide et al. 2016] — to specify the optimization
objective functions conditioned on parameters (of the objective,
unknowns, or the solver itself) that can be optimized with end-to-
end training. To make this document self-contained, we introduce
the entire DSL here briefly and we explicitly point out differences
from ProxImaL.
In ∇-Prox, we start by defining a Variable that represents the

unknown of interest x, and a Placeholder that represents the input
measurements y. Then, we define each term of an optimization ob-
jective by composing linear operators LinOp and proxable functions
ProxFn with possible latent parameters Params. The linear operators
LinOp themselves can be arbitrarily combined with each other to
form a linear expression tree where the leaf nodes are required to
be a Variable, which is a LinOp as well. Each ProxFn accepts a linear
expression and optional keyword arguments depending on its spe-
cific signature. Once all the ProxFns are defined, we mix them in a
single optimization objective and wrap it with Problem to construct
the corresponding optimization problem.
With the language syntax described above, the Problem (4) can

be written as

x = Variable()

y = Placeholder(input)

data_term = sum_squares(conv(x, psf_DOE) - y)

prior_term = deep_prior(x, unet)

objective = data_term + prior_term + nonneg(x)

p = Problem(objective)

where different colors are used to distinguish primitives especially
ProxFn, LinOp and Params. In the following, we describe the core
primitives and their functionality in the ∇-Prox language.

Tensor Variables. Variable in ∇-Prox can refer to multidimen-
sional arrays or single-dimensional vectors, though there is no need
to specify the shape beforehand. This tensor definition contrasts
ProxImaL, where a problem is specifically bound to a given input
shape, and users have to create new problems for inputs with dif-
ferent shapes. ∇-Prox instead provides a built-in mechanism to
automatically infer and propagate the shape into each LinOp and
ProxFn for necessary initializations before problem-solving. This
new feature not only eases user burden but also allows for optimiza-
tion over different input shapes in multi-task training.

Linear Operator. LinOp K maps data from a multidimensional
space R𝑛1×···×𝑛𝑘 to another multidimensional space R𝑚1×···×𝑚𝑙 .
All linear operators in ∇-Prox (e.g., grad, conv, subsample) are differ-
entiable and allow to evaluate the forward operation x → Kx and
adjoint operation x → K𝑇 x. ∇-Prox supports the composition of
the arbitrary number of existing linear operators and automatically

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

6 • Lai, Z. et al

Policy
Network

Learnable
Tensors

Parameter Schedulers Proxable Functions

Deep Prior

Total Variation

Sum Square
! −𝑏 !

∇ !

Linear
Operators

Proxable
Functions

Parameter
Scheduler

XK

X0

TRAINING
CRITERION

Initializer

ADMM [Gabay 1976]

HQS [Geman 1995]

Proximal Algorithms

Pock-Chambolle [2011]

∇-Prox Solver Pipeline

Observations Y

Backward
Forward

Targets X∗

Evaluation Only

Proximal
Update

Least Square/Gradient
Update

Proximal
Algorithm

Algorithm Unrolling

Training Strategies

Reinforcement Learning

Equilibrium Learning

Fig. 2. Overview of the general forward and backward (gradient) computation of the compiled solver (problem-solving stage). Given the observation 𝑌 , the
solver utilizes an initializer to obtain a guess 𝑋 0 for the optimization variable 𝑋 . The proxable functions and the linear operators interact with the proximal
algorithm with a possible additional algorithm parameter scheduler to obtain the final prediction 𝑋𝑁 . The gradient can backpropagate through the solver to
the learning-based components (green parts) by either unrolling the iterations or implicit differentiation.

converts them to a directed acyclic graph (DAG) for evaluating its
linear function and adjoint, following [Diamond and Boyd 2015].

Proxable Function. ProxFn represents the penalty function in our
canonical problem form that possesses a corresponding proximal
operator, which we call the proxable function. Each proxable penalty
function in ∇-Prox (e.g., sum_squares, norm1, deep_prior3) inherits
the base class ProxFn and implements the fn.eval() and fn.prox()

for evaluating the function and its proximal operator, though the
fn.eval() can be omitted if the function cannot be explicitly evalu-
ated, as with the deep_prior. The proximal operator of a weighted
function 𝜇𝑓 is defined in (6). All proximal operators in ∇-Prox are
differentiable and effectively act as building blocks to construct the
proximal differentiable solver.

Placeholder. Placeholder is a new primitive that is not present in
ProxImaL. As the name implies, it is a placeholder for the actual data
it represents. Placeholders can be reused when a problem has to be
solved multiple times with different input measurements, a common
pattern encountered in traversing an entire dataset for training or
evaluation. Using the Placeholder y, users can freely modify the
underlying data of y via the assignment, i.e., y.value = input, after
the problem creation, thereby avoiding problem redefinition.

Latent Parameters. Params serves as a primitive to enable dif-
ferentiable optimization which is not supported by ProxImaL. It
encodes learnable parameters associated with differentiable oper-
ators in ∇-Prox (such as LinOp and ProxFn), allowing us to adapt
the behavior of the operators to the problem, given a higher-level
dataset that the entire solver is optimized over. Params can either
be explicitly defined by users (for example, manually constructing
a denoising neural network unet as a deep prior, or parameteriz-
ing optical aberrations psf_DOE with DOE parameters via an image
formation model) or be implicitly defined within an operator itself.

4 COMPILING DIFFERENTIABLE PROXIMAL SOLVERS
With a problem in the canonical form (1), we describe in this sec-
tion how we compile it into an efficient differentiable solver with

3See Supplementary Material for a complete list of linear operators and proxable
functions implemented in ∇-Prox.

the designated proximal algorithm that ∇-Prox supports, including
ADMM [Boyd et al. 2011], Pock-Chambolle [Chambolle and Pock
2011], Half Quadratic Splitting [Geman and Yang 1995], Proximal
Gradient Descent [Bruck Jr 1975], and their preconditioned and
linearized versions [Benning et al. 2015; Liu et al. 2019].

Once the optimization objective is specified and encompassed in
the Problem class, it is compiled either just-in-time on a function
call or explicitly via a compile primitive to construct a solver object
that enables reusable batch processing.

p = Problem(objective)

out = p.solve(method='admm')

s = compile(p, method='admm')

out = s.solve({y: input})

To solve the problem, ∇-Prox first internally compiles the problem
into the designated solver through a series of compilation stages
(Section 4.1) and then runs the resulting solver to obtain the solu-
tion. A key difference between ∇-Prox and ProxImaL [Heide et al.
2016] is that the solve routine is fully differentiable so that users
can seamlessly acquire the gradient of learnable components, e.g.,
a parameterized PSF psf_DOE and learning-based prior unet, with
respect to e.g., a scalar cost function L, through a single call of
L.backward(). This enables new capabilities, e.g., the specialization
of existing solvers into hybrid learning-based ones via a bi-level
optimization [Blondel et al. 2021] utilizing the gradients, which
greatly increases the solving capabilities.

∇-Prox supports a variety of approaches for differentiating through
the solver, including not only vanilla backpropagation-through-
time (BPTT)/algorithm unrolling (Section 4.2) but also options for
computing gradients via implicit differentiation/deep equilibrium
learning (Section 4.4) or crossing the non-differentiable bottleneck
with deep reinforcement learning (Section 4.5). The gradient calcu-
lations for frequently used routines are also optimized to exploit
the problem structure (Section 4.3).

∇-Prox also takes care of the solver pipeline that embeds solver
iterations. For example, our compiler provides a fallback option
for estimating the initial guess of the solution and internal solver
parameters in an automated fashion if they are not provided by the
user. The termination of the optimization loop can also be deter-
mined manually or automatically with built-in termination criteria.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 7

ALGORITHM 1: Generalized ADMM for Problem (1)
Input: Parameters 𝜌 , 𝜆𝑗 , ∀ 𝑗 ∈ Φ, number of iterations𝑇

1 Initialize x, v𝑗 = x, 𝑢 𝑗 = 0 ∀ 𝑗 ∈ Ψ ;
2 for 𝑡 = 1, 2, ...,𝑇 do

3 x(𝑡+1) = argmin
x

∑
𝑖∈Ω 𝑓𝑖 (x) +

∑
𝑗 ∈Ψ

𝜌

2

K𝑗x − (v𝑡
𝑗
− u𝑡

𝑗
)

2;

4 v(𝑡+1)
𝑗

= prox𝑓𝑗 ,𝜆𝑗

(
K𝑗x(𝑡+1) + u(𝑡+1)

𝑗

)
∀ 𝑗 ∈ Ψ;

5 u(𝑡+1)
𝑗

= u(𝑡)
𝑗

+
(
K𝑗x(𝑡+1) − v(𝑡+1)

𝑗

)
∀ 𝑗 ∈ Ψ;

∇-Prox supports not only conventional termination criteria based
on relative and absolute residual but also learning-based termination
that relies on deep reinforcement learning [Wei et al. 2022a], thanks
to the differentiability of the compiled solver.

4.1 Solver Compilation Pipeline
Compiling differentiable solvers in ∇-Prox typically involves a se-
ries of stages for (a) transforming a given optimization problem
into an equivalent simplified one and (b) generating efficient dif-
ferentiable routines for evaluating linear operators, proxable func-
tions, and optimization updates of proximal algorithms. These in-
clude problem transformation, problem partition, preconditioning,
and solver generation. The problem transformation stage intel-
ligently translates the original problem into an equivalent form
that can be solved more efficiently. The problem partition step
splits the penalty functions

∑
𝑖 𝑓𝑖 (x) of the problem into two parts

𝑔(x) = ∑
𝑓𝑖 ∈Ω 𝑓𝑖 (x), ℎ(z) = ∑

𝑓𝑖 ∈Ψ 𝑓𝑖 (z)4 considering the selected
proximal algorithm. The preconditioning scales the problem to ac-
celerate the algorithm convergence, and the final solver generation
stage handles the generation of the code of the optimization loop.
Note that these concepts for solver construction are directly inher-
ited from ProxImaL, see Supplementary Material for details.

4.2 Differentiating Compiled Solvers
One of the key contributions of ∇-Prox is the differentiability of
the entire solver. As shown in Figure 2, our compiler generates
solvers that can backpropagate gradients through solvers to train-
able parameters of learning-based components, e.g., learnable linear
operators [Tseng et al. 2021], proximal regularizers [Zhang et al.
2021], and internal algorithm parameter schedulers [Wei et al. 2020].

In the following, we take Alternative Direction Method of Multi-
plier (ADMM)5 as an example for illustrating the basic forward and
backward (gradient) computation through the solver (a.k.a. algo-
rithm unrolling). The pseudo-code for ADMM is given in Algorithm
1, which, at a high level, repeatedly iterates over sequential up-
dates on the primal variable x, v𝑗 , and dual variables/multipliers
u𝑗 . The problem partition of ADMM leaves only the sum_squares

penalty/proxable functions for the Ω group and all other functions
for the Ψ group, thus the x update reduces to a least-square problem,
which can be solved in close-formed or via iterative linear solvers,

4Ω and Ψ are a partition of the set of functions { 𝑓1, ..., 𝑓𝐼 } from Problem (1)
5Other proximal algorithms are detailed in the Supplementary Material.

LEAST SQUARE

PROX UPDATE

DUAL UPDATE

Xt+1

Vt+1

Ut+1

Xt

Vt

Ut

K(x; θ) LEAST SQUARE

PROX UPDATE

DUAL UPDATE

Xt+2Xt+1 K(x; θ)

Fig. 3. Differentiation through proximal solvers can be implemented with
algorithm unrolling by applying chain rule of derivatives, illustrated for two
iterations here, but it often requires manual case-by-case implementation
for each algorithm. With ∇-Prox, the unrolling of the proximal solver is
implemented automatically for users who can just provide problem descrip-
tions and selected algorithms. Blue arrows indicate forward computational
flow and red arrows illustrate backward flow.

e.g., conjugate gradient method. All v updates call the proximal op-
erators of the given penalty functions, and u updates are performed
with a single-step gradient ascent.

Differentiating the Optimization Loop. Figure 3 provides the com-
putational graph of the unrolled ADMM algorithm 1 truncated to
two iterations. It can be observed that all the optimization variables
x𝑡+1, v𝑡+1, u𝑡+1 at the next step depend on variables at the current
step x𝑡 , v𝑡 , u𝑡 through the least square, the proximal, as well as the
dual update. Thus, to differentiate through the optimization loop, we
have to make every update on subproblems differentiable. ∇-Prox
provides a library of differentiable linear operators and proximal
functions that can be used for describing an optimization problem.
Custom operators and functions can also be easily implemented
with minimal code changes. Least squares subproblems appear in
many proximal algorithms, including HQS, Pock-Chambolle, and
ADMM. In many cases, they cannot be easily solved with exact
methods that would require inverting a large-scale matrix. As such,
iterative methods are often adopted, which only require the forward
and adjoint evaluation of linear operators. However, differentiating
these iterative routines can be non-trivial and might be less efficient
with auto-diff [Baydin et al. 2018] as we usually need a large number
of iterations to ensure the precision of solving results. We later show
that the gradient calculation for a linear solver can be optimized
with implicit differentiation on both sides of a linear system.

Differentiating Linear Operators. Many linear operators can be
represented by matrix-free routines for evaluating their forward

operations x → Kx and adjoint operations x → K𝑇 x. For exam-
ple, the convolution linear operator conv can be implemented as
element-wise multiplication between inputs and convolution kernel
in the frequency domain, instead of costly general matrix multipli-
cation. This allows for reverse-mode auto-diff [Baydin et al. 2018]
to efficiently differentiate through these routines. As ∇-Prox sup-
ports automatic transformation from composite linear operators to
a directed acyclic graph, the differentiation through them can be
achieved by evaluating their linear forward function and performing
the reversed auto-diff.

Differentiating Proximal Functions. Proximal algorithms utilize
the proximal operator of the penalty function to perform updates
on primal variables, e.g., 𝑣 in ADMM. This mandates differentiabil-
ity of the routines for evaluating the proximal operators to ensure
the differentiability of the entire solver. It should be noted that the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

8 • Lai, Z. et al

proximal operator itself is an optimization problem, as shown in
(6). At first glance, differentiating the proximal operator might be
as difficult as differentiating the solver itself. Fortunately, most fre-
quently used proximal operators can be expressed in closed form or
represented with conventional neural networks, and ∇-Prox subse-
quently provides auto-diff-compatible implementations of a series
of differentiable routines for common proximal operators/functions,
e.g., sum_squares, norm1, deep_prior.

4.3 Optimizing Gradient Calculations
Unrolling optimization as a computational graph allows for auto-
differentiation [Paszke et al. 2019] for gradient computation. Despite
the convenience and versatility, this approach results in clock time
and memory complexity that scales with the number of variables
(e.g., millions for image optimization problems) and the number of
algorithm iterations for forward-mode and backward-mode auto-
diff, respectively. This makes vanilla auto-diff impractical for the
large-scale solvers we focus on in this work. Next, we demonstrate
how gradient calculations are optimized in ∇-Prox to facilitate large-
scale gradient evaluations in the proposed proximal solvers.

Matrix-free Differentiable Linear Solver. Solving a linear system
Kx = b is frequently encountered in proximal algorithms. ∇-Prox
supports both direct and iterative methods for solving this problem.
For example, consider Problem (4), if we choose the problem par-
tition Ω = {𝑓1}, Ψ = {𝑓2, 𝑓3}, then we can solve the least square
subproblem of ADMM exactly by solving a linear system (the hy-
perparameters 𝜌 and 𝜆 are omitted for brevity).

x𝑡+1 = argmin
x


D
I
I

 x −


y
v𝑡2 − u𝑡2
v𝑡3 − u𝑡3



2

2

=

(
D𝑇D + 2I

)−1 ©­«D𝑇 y +
2∑︁
𝑗

(v𝑘𝑗 − u𝑘𝑗)
ª®¬ ,

(7)

where K = [D; I; I] and b = [y; v𝑡2 − u𝑡2; v
𝑡
3 − u𝑡3] The solution above

relies on being mappable to a fast implementation for computing
matrix inverse (D𝑇D + 2I)−1, which can generally be accessible
if the Gram matrices of all the linear operators (D and I in this
case) are diagonal or diagonal in the frequency domain6. If a fast
implementation is unavailable, the default choice resorts to iterative
methods like the conjugate gradient method.

Auto-diff can be used to efficiently differentiate fast direct linear
solvers but is often intractable for iterative linear solvers. In ∇-Prox,
we provide an optimized routine to compute the analytic derivatives
of linear (iterative) solver outputs with respect to the parameters of
linear operators 𝜃 and b. Specifically, we differentiate both sides of
Kx = b to obtain the derivatives 𝜕x

𝜕b and 𝜕x
𝜕𝜃

as

𝜕K x + K 𝜕x = 𝜕b

𝜕x = K−1 (−𝜕K x + 𝜕b),

from which the gradient 𝜕x
𝜕b = K−1 can be easily derived. Typi-

cally, we are more interested in the gradient of b with respect to a

6∇-Prox also implements several special fast solutions of the linear system even when
the Gram matrices of the linear operators are not all diagonal.

scalar loss function L, which can be obtained with the chain rule
of differential calculus.

𝜕L
𝜕b

=
𝜕L
𝜕x

𝜕x
𝜕b

=
𝜕L
𝜕x

K−1 (8)

Since all the linear operators in our system are matrix-free, we
cannot directly evaluate (8) for gradient computing. Instead, we
transform (8) into

K𝑇
𝜕L
𝜕b

𝑇

=
𝜕L
𝜕x

𝑇

(9)

where the right-hand-side is the Jacobian of L with respect to x that
can be efficiently evaluated with auto-diff systems. The calculation
of gradient 𝜕L

𝜕b has thus been converted to solving a linear system,
requiring significantly less memory.
Similarly, the gradient 𝜕L

𝜕𝜃
with respect to the parameters 𝜃 of

the linear operator K can be derived as

𝜕L
𝜕𝜃

=
𝜕L
𝜕x

𝜕x
𝜕𝜃

,
𝜕x
𝜕𝜃

= −K−1 𝜕K
𝜕𝜃

x. (10)

Again, 𝜕K
𝜕𝜃

cannot be evaluated directly as we consider matrix-free
linear operators. To circumvent this obstacle, we use the fact that
𝜕K
𝜕𝜃

x = 𝜕b
𝜕𝜃

to transform (10) into

K
𝜕x
𝜕𝜃

= − 𝜕b
𝜕𝜃

, (11)

where 𝜕b
𝜕𝜃

can be computed by backpropagating the forward compu-
tation Kx = b. As such, the calculation of gradients 𝜕L

𝜕b and 𝜕L
𝜕𝜃

is
converted to solving linear systems during backpropagation without
requiring storing intermediate states, thereby significantly reducing
memory consumption meanwhile saving computation time.

Eliminating Calculations. Linear system solver aside, ∇-Prox
automatically detects and removes duplicate or unnecessary forward
and gradient computations to further increase efficiency. This is
achieved by traversing a computational graph that encompasses
all linear operators and proxable functions of a given problem, and
iteratively performing constant folding, proxable function fusion,
and linear operator absorption on the graph. Please refer to the
Supplementary Material for details.

4.4 Implicit Differentiation for Proximal Algorithms
Vanilla algorithm unrolling is suitable for optimization problems
that are solved with a fixed and small number of iterations. However,
as the number of iterations increases, the computational and mem-
ory cost of algorithm unrolling quickly becomes impractical since
we need to store all the intermediate variables along the forward
iteration trajectory for the backward automatic differentiation.

To address this, ∇-Prox supports deep equilibrium learning (DEQ)
[Bai et al. 2019; Gilton et al. 2021] that incorporates implicit differen-
tiation to effectively backpropagate the gradient through a proximal
optimization solver with, conceptually, an infinite number of itera-
tions, as shown in Figure 4a. The adaptation from the original solver
into its DEQ version can be easily achieved with a single line of
code in ∇-Prox using a specialize primitive.

s2 = specialize(s, method='deq')

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 9

X0

Linear Operator

Proxable Function

X∞PROXIMAL
ITERATION

BACKWARD
SOLVER

PROXIMAL
ITERATION

×∞

𝜕𝑥!/𝜕𝜃

𝜕𝑥!/𝜕𝑥"

(a) ∇-Prox with Deep equilibrium Learning

PROXIMAL
SOLVER

LEARNABLE BLOCK
(e.g. Scheduler)

STATEt

(X,V,U)

𝜌, 𝜆

Stop?

STATEt+1

(X,V,U)

CRITIC
NETWORK

MULTIPLE
LOSS

(b) ∇-Prox with Deep Reinforcement Learning

Fig. 4. (a) ∇-Prox makes it possible to specialize the solver into deep equilibrium solvers whose gradients can be computed directly without the need of
reversing the entire forward optimization iterations. The specialized solver requires significantly less memory and is often more favorable for cases where
backpropagating the long iteration is prohibitive. (b) Our compiler utilizes deep reinforcement learning to cross the non-differentiable routines, e.g., the
stopping signal predicted by an internal parameter scheduler (parameterized by a policy network).

With this specialization, the forward process of the new solver is
translated into solving a fixed-point problem7,

X∞ = 𝑓𝜃
(
X∞;M

)
, (12)

where X∞ is a compound variable absorbing all optimization vari-
ables, e.g., x, v, u for ADMM, 𝑓𝜃 represents a composite update of
optimization variables x, v, u, and M denotes any other auxiliary
inputs, e.g., hyperparameters 𝜌 and observation y.
This fixed-point problem can be solved via vanilla fixed-point

iteration or Anderson acceleration [Walker and Ni 2011]. The gradi-
ent of the parameters 𝜃 with respect to some scalar loss L can be
derived using the implicit differentiation theorem without the need
of going backward the entire forward trajectory. Specifically, the
backward process first applies the chain rule as,

𝜕L
𝜕𝜃

=
𝜕L
𝜕X∞

𝜕X∞

𝜕𝜃
. (13)

The first term 𝜕L
𝜕X∞ is the gradient of the scalar loss with respect to

the equilibrium point, which can usually be analytically computed
or tracked by auto-diff. The second term 𝜕X∞

𝜕𝜃
is the gradient of

the equilibrium point with respect to the parameters, which can
be computationally expensive to derive with auto-differentiation.
To compute it efficiently, we differentiate both sides of (12) with
respect to 𝜃 to obtain

𝜕X∞

𝜕𝜃
=

(
I − 𝜕𝑓𝜃 (X∞;M)

𝜕X∞

)−1
𝜕𝑓𝜃 (X∞;M)

𝜕𝜃
. (14)

By plugging (14) into (13), we derive an equation for computing 𝜕L
𝜕𝜃

𝜕L
𝜕𝜃

=
𝜕𝑓𝜃 (x∞;M)

𝜕𝜃︸ ︷︷ ︸
Single-step Gradient

(
I − 𝜕𝑓𝜃 (x∞;M)

𝜕x∞

)−1
𝜕L
𝜕x∞︸ ︷︷ ︸

Inverse Jacobian-vector

. (15)

The inverse Jacobian-vector product can be approximated by an-
other fixed-point problem as the step 2 in Algorithm 2, while the
single-step gradient can be computed via auto-diff.
To wrap up, DEQ (Algorithm 2) takes a fixed-point iteration

view of the infinite loop of proximal algorithms and utilizes the

7Note that DEQ has been proposed for infinite-depth networks, an area orthogonal to
optimization. In the Supplementary Material, we detail how to transform the proximal
optimization routines into a fixed-point iteration.

ALGORITHM 2: Backward Gradient Calculation with DEQ.
Input: Composed iterative mapping 𝑓𝜃 , Equilibrium point X∞,

Auxiliary input M, Loss function L.
1 Evaluate 𝜕L

𝜕X∞ through auto-differentiation.
2 Derive an approximate fixed-point 𝛽∞ of the equation

𝛽 =
𝜕𝑓𝜃 (X∞ ;M)

𝜕X∞ 𝛽 + 𝜕L
𝜕X∞ .

3 Return 𝜕L
𝜕𝜃

=
𝜕𝑓𝜃 (X∞ ;M)

𝜕𝜃
𝛽∞

implicit differentiation theorem to allow for analytic gradient back-
propagation through an infinite number of iterations, avoiding the
prohibitive memory incurred by vanilla algorithm unrolling.

4.5 Reinforcement Learning for Proximal Algorithms
The selection of algorithm parameters (e.g., the penalty strength
𝜌 of the multipliers and balancing parameters 𝜆), as well as the
termination criterion, are important aspects that significantly affect
the performance of proximal algorithms. However, in practice, the
optimal parameters for different problems in different proximal al-
gorithms often require tedious case-by-case tuning. To address this
issue, learning-based internal parameter schedulers [Wei et al. 2020]
have been proposed to automatically estimate the best parameters
and terminal time based on the observation of intermediate states
of optimization iterations. In practice, training these schedulers is
non-trivial because the subsequence of the optimal parameter se-
quence might not be optimal, which means the greedy search can
hardly be effectively used. However, to obtain better schedulers with
naïve backpropagation, one would need to backpropagate through
the entire optimization loop, resulting in exploding memory con-
sumption. Moreover, learning the sample-dependent termination
criterion entails backpropagation through non-differentiable termi-
nal time, which cannot be handled in algorithm unrolling and/or
deep equilibrium learning.

To tackle this challenge,∇-Prox allows for reinforcement-learning-
based training strategies, which can be called with two lines of code.

s2 = specialize(s, method='rl', policy='resnet')

s2 = s2.train(dataset, {'val': val_dataset}, ...)

Specifically, users first specialize the original solver by specifying
the method as rl and choosing the policy/scheduler network, e.g.,
a vanilla resnet [He et al. 2016]. Then, the training of the policy

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

10 • Lai, Z. et al

network can be easily done by calling the train method of the
specialized solver.
One of the advantages of deep reinforcement learning over ex-

isting algorithm unrolling is that we do not need to evaluate the
entire optimization trajectory to train the learned components of
the solver. Similar to deep equilibrium learning, this reduces the
memory requirement for backpropagating the gradients. Another
advantage of deep reinforcement learning is the feasibility to by-
pass the non-differentiable parts, e.g., the termination signal of the
optimization loop, to train the required learning-based components.

To learn proximal algorithms in a deep reinforcement approach,
we formulate the input and output of learnable parts as a series
of state and action and treat the optimization loop as an environ-
ment. Then, we can decouple the evaluation of the entire trajectory
and the update of trainable parameters into two separate stages.
The former stage collects the training data of states and can be per-
formed without any gradient calculation. The second stage performs
the parameter update with different deep reinforcement learning
algorithms, e.g., advantage actor-critic [Mnih et al. 2016] and de-
terministic policy gradient [Silver et al. 2014]. We note that one of
the important advantages of these methods is that we only need
to evaluate the optimization loop for only one or a few iterations,
and another network, e.g., the critic network in the actor-critic al-
gorithm, predicts the long-term reward to achieve the end-to-end
training. Please refer to the Supplementary Material for more details
on how these algorithms apply to our proximal framework.

4.6 Implementation
∇-Prox is embedded in Python and works as an external library.
All the routines of solver algorithms, linear operators, and prox-
imal operators are implemented following the PyTorch standard
on nn.Module, so that ∇-Prox can seamlessly be integrated into Py-
Torch to embrace the broader learning-based components created
by the PyTorch community. We utilize the basic operators of Py-
Torch to build up the ∇-Prox’s operators whenever it is possible.
Differentiation through these basic routines can then be handled by
PyTorch auto-diff without reinventing the wheels. For other rou-
tines that are non-differentiable or slow to be differentiated with
vanilla PyTorch, we customize their backward/training processes
with gradient optimizations, deep equilibrium learning, and deep
reinforcement learning. We implement the backward customization
with a backward hook in PyTorch so that the internal differentiation
is transparent to users.

5 APPLICATIONS AND ANALYSIS
In this section, we evaluate ∇-Prox applied ot diverse large-scale op-
timization problems in imaging and energy system optimization. We
validate that, by relying on bi-level optimization using the proposed
differentiable solvers, we can compile hybrid solvers that achieve
state-of-the-art quality with a few lines of code for each application.
Each application benefits from different aspects of differentiability,
including model parameters optimization, solver hyperparameter
setting, or learning effective priors in an end-to-end fashion. We
discuss each of these benefits for the respective application. We

also discuss the effect of different proximal algorithms, priors, and
parameter set strategies.

5.1 End-to-End Computational Optics — Learning Model
Parameters and Priors

Conventional imaging systems employ compound refractive lens
systems that are typically hand-engineered for image quality in
isolation of the downstream camera task. Departing from this de-
sign paradigm, a growing body of work in computational imag-
ing [Haim et al. 2018; Horstmeyer et al. 2017; Peng et al. 2019; Shi
et al. 2022; Sitzmann et al. 2018; Sun et al. 2020a] has explored
the design of specialized lens system with diffractive optical ele-
ments (DOEs). These DOEs allow for fine-grained modulation of
the phase of incident light via diffraction, at the cost of added chro-
matic aberration that these methods aim to eliminate post-capture.
Employing a learnable reconstruction algorithm along with a dif-
ferentiable wave optics forward model, task-specific computational
cameras methods have been proposed for diverse applications from
microscopy [Horstmeyer et al. 2017] to single-shot high-dynamic
range imaging [Sun et al. 2020a].
Here, we use ∇-Prox to model reconstruction algorithms with a

differentiable proximal solver that we co-design with a single thin
lens, parameterized by a diffractive phase plate. We adopt a Fourier
optics image formation model assuming paraxial optics (i.e. small
field of view) and incident plane wave (that implies objects at optical
infinity), which renders sensor measurement as a shift-invariant
convolution of an image and a point spread function (PSF) param-
eterized by the DOE. Off-axis aberrations like comatic aberration
are neglected. The on-axis PSF can then be derived by simulating a
free-space wave propagation of a wavefront (plane wave modulated
by wavelength-dependent phase profiles of the DOE) propagated
to the sensor plane, see [Goodman and Sutton 1996; Sitzmann et al.
2018] for details.
In this experiment, we consider a lens-to-sensor distance of 15

mm, and an aperture size of 3 mm, implying an f-number of 5. The
sensor is modeled with a resolution of 748×748 and a pixel pitch of
4 𝜇m. The wave propagation simulation is discretized in a 2𝜇m grid
(1496×1496), which meets the computational sampling requirements
of a transfer-function-based Fresnel propagator, see again [Good-
man and Sutton 1996]. The DOE is modeled as an unconstrained
height map. Given the refractive index of the DOE material, we
can compute the phase delay in each pixel with respect to different
wavelengths, for which we consider 460, 550, 640 nm wavelengths
for color imaging. As such, we simulate a three-channel PSF param-
eterized by the DOE height map 𝜃ℎ . Since all operations involved
are differentiable, we implement this model as a differentiable linear
operator with learnable parameters 𝜃ℎ that can be jointly optimized
with a learnable image prior and parameters of the proximal solver
within ∇-Prox. The problem of co-designing the DOE and a proxi-
mal algorithm that performs image reconstruction can be expressed
in a few lines of code:

x = Variable()

psf = build_doe_model().psf

data_term = sum_squares(conv(x, psf) - y)

reg_term = deep_prior(x, 'ffdnet', trainable=True)

objective = data_term + reg_term

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 11

JD2 [Xing and Egiazarian 2021]

DeepOptics-UNet [Metzler et al. 2020]

∇-Prox (Ours)

0.2

0.0

Ground Truth

Ground Truth

Ground Truth

Incident Wave

Optical

Element

Fr
es

ne
l P

ro
pa

ga
tio

n

Sensor

PSF

Intensity

Fig. 5. Visual examples of three state-of-the-art approaches for computational thin-lens imaging. JD2 directly post-processes imaging measurements from a
green-focused Fresnel lens (row 1), while DeepOptics-UNet (row 2) and Our ∇-Prox (row 3) co-design the imager parameters (DOE) and the reconstruction
algorithm. The PSFs of imaging systems are displayed in the top right-hand corners of measurement images. It can be seen DeepOptics-UNet designs a PSF
with a smaller kernel size compared to the Fresnel baseline, while our ∇-Prox finds an ideal delta-function-like PSF with different spatial shifts for different
wavelengths.

out = compile(objective, method='admm').solve()

Here we use an unrolled ADMM solver, which is the default train-
ing strategy in ∇-Prox, with an FFDNet [Zhang et al. 2018] as a
deep prior that we train alongside the DOE. We train and vali-
date the method on image datasets CBSD68 [Martin et al. 2001]
and Urban100 [Huang et al. 2015]. The quantitative and qualita-
tive findings reported in Table 1 and Figure 5 confirm that ∇-Prox
achieves state-of-the-art results and compares favorably not only to
recent post-processing methods applied on an unoptimized Fresnel
lens profile, including DPIR [Zhang et al. 2021] and JD2 [Xing and
Egiazarian 2021]8, and deep optics methods, such as DeepOptics-
UNet [Metzler et al. 2020], that utilize a UNet [Ronneberger et al.
2015] for reconstruction. We note that all baseline methods we com-
pare here have been fine-tuned on the same dataset we use for a
fair comparison.

Of note, Figure 5 (rows 2 and 3) highlights that the optimized PSF
resulting from the end-to-end optimization problem from above dras-
tically differs from the one optimized with a UNet post-processor.
Specifically, the phase pattern we learn focuses three wavelength
bands as highly chromatic PSFs for each channel, that is, the red,
green, and blue PSFs only focus the specific channel while spreading
out energy for other wavelengths over the entire sensor. By spatially
separating the corresponding phase patterns, our co-designed net-
work is able to find these chromatic PSFs. As such, ∇-Prox allowed
us to find a novel point in the design space – turning an out-of-
focus deconvolution problem into a transverse chromatic alignment

8Note that these post-processing methods do not jointly optimize the optical element,
instead, they use a green-focused Fresnel lens for imaging.

Table 1. Numerical comparison of differentmethods for single thin-lens com-
putational imaging, where DPIR and JD2 perform joint deconvolution and
denoising on measurements from a green-focused Fresnel lens, DeepOptics-
UNet and ∇-Prox jointly optimize the DOE and the reconstruction algorithm.
"T" and "M" refer to running time (s) and memory consumption (GB).

Method CBSD68 Urban100
PSNR SSIM PSNR SSIM T M

DPIR [2021] 21.01 0.614 18.56 0.602 0.62 3.1
JD2 [2021] 25.94 0.903 23.78 0.872 0.54 12.7
DeepOptics-UNet [2020] 29.69 0.924 28.37 0.914 0.48 6.1
∇-Prox 32.01 0.942 30.83 0.944 0.64 3.2

problem. Specifically, the model-based proximal optimization solver
compiled with ∇-Prox finds a better local minimum with a signifi-
cantly improved end-to-end loss (2.3 dB higher than DeepOptics-
UNet) validating the effectiveness of the differentiable pipelines we
compile.

5.2 Image Deraining — Learning Unknown Forward
Models and Initializer

Departing from image restoration problems that possess structured
forward models, such as the computational optics problem above,
we next tackle a problem where the forward model is unknown
and learned alongside the optimization. We consider here image
deraining, i.e., the removal of rain streaks from an image, as an
example for this class of problems. This problem is severely ill-
posed as the assignment to a rain layer and latent background layer

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

12 • Lai, Z. et al

Restormer [Zamir et al. 2022] PreNet [Ren et al. 2019] MPRNet [Zamir et al. 2021] DGUNet [Mou et al. 2022] ∇-Prox (Ours)Rainy Input

0.2

0.0Ground Truth

Ground Truth

Fig. 6. Qualitative Evaluation for Image Deraining. The outputs from ∇-Prox correspond to "Learn LinOp + Initializer" in Table 2. Combining a transformer-based
initializer and a differentiable proximal solver with the learnable forward model, the differentiable solvers that ∇-Prox finds achieve high-quality deraining
predictions improving on state-of-the-art methods. The predictions using ∇-Prox accurately recover structure (the cross in row 1) and patterns (the tiger
stripes in row 2) that can be easily confused with rain streaks.

is unknown a-priori. As such, researchers typically employ end-to-
end black-box neural networks that learn to predict latent clean
images from paired datasets. Being able to compile differentiable
solvers, ∇-Prox facilitates learnable forward operators by making
LinOp learnable to encode the raining forward process. Using an
unrolled prior [Mou et al. 2022] that considers the prior knowledge
interaction between iterations, one can formulate image deraining
in ∇-Prox as,

x = Variable()

data_term = sum_squares(LearnedLinOp(x) - y)

prior_term = unrolled_prior(x)

solver = compile(data_term + prior_term, method='admm')

init = Initializer()

out = solver.solve(x0=init(b))

Here, the unrolled prior and the learned forward operator both
have implicit trainable parameters. In ∇-Prox, any parameterized
function approximators can be used to model the unknown forward
model of the raining process, e.g., convolutional neural networks,
and/or transformers. In our example, we use an implementation of
the learnable forward operator with two residual blocks to model
unknown forward and adjoint models. Please refer to the Supple-
mentary Material for network architecture details.
We report quantitative results in Table 2. ∇-Prox shows that

the formal optimization pipeline ("Learn LinOp" in Table 2) can
be a robust solver for problems with unknown forward models by
learning them. The method achieves competitive performance with
state-of-the-art methods out of the box, including very recent ap-
proaches such as MPRNet [2021] and DGUNet [2022]. Furthermore,
∇-Prox indicates another interesting direction that integrates an
existing (black-box) model as a learnable initializer. By incorporat-
ing Restormer [2022] as a learnable initializer, we show that our
unrolled optimization pipeline can further post-process the results
towards better performance ("Learn LinOp + Initializer" in Table 2

Table 2. Quantitative results (PSNR and SSIM) of image deraining. The best
and second-best scores are highlighted and underlined.

Method Rain100H Test1200
PSNR SSIM PSNR SSIM

PreNet [Ren et al. 2019] 26.77 0.858 31.36 0.911
MPRNet [Zamir et al. 2021] 30.41 0.890 32.91 0.916
DGUNet [Mou et al. 2022] 30.66 0.891 33.23 0.920
Restormer [Zamir et al. 2022] 31.46 0.904 33.19 0.926
MHNet [Gao and Dang 2023] 30.34 0.903 33.42 0.924
∇-Prox (Learn LinOp) 31.08 0.897 32.95 0.913
∇-Prox (Learn LinOp + Initializer) 31.62 0.905 33.25 0.926

as well as Figure 6). We note that the advantage of our approach
over cascading two networks is that we do not need to retrain the
entire pipeline as the output of the initializer is the input of the
subsequent optimization process. With differentiable optimization
powered by ∇-Prox, our approach can be fine-tuned faster and more
reliably.
This application highlights the unified interface and flexibility

of differentiable proximal solvers in ∇-Prox for a diverse range of
problems. The same solver can quickly be transferred from one task
to another, and users can rely on the differentiation to learn the
unknown part of the optimization process, e.g., switching from a
fixed operator to a learnable one if the forward model is unknown
beforehand.

5.3 Compressive Magnetic Resonance Imaging — Learning
Solver Parameter Scheduler

Magnetic resonance imaging (MRI) [Liang and Lauterbur 2000] is
a widely deployed medical imaging modality for diagnosing and
disease monitoring. MRI scanners are prohibitively expensive, and
their scanning time directly correlates with the accessibility of MRI

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 13

∇-Prox (Ours) Ground TruthIRCNN [Zhang et al. 2017b]ISTANet [Zhang 2018]RecPF [Yang et al. 2010] TFPnP [Wei et al. 2022]CSMRI

Observation Reconstruction

Fig. 7. Qualitative comparisons of CS-MRI reconstruction for human brain scans. The predictions of ∇-Prox correspond to "Learning Scheduler for DRUNet" in
Table 3. Using a PnP prior (DRUNet) and an RL-based parameter selection policy, the trained solver output from ∇-Prox achieves unprecedented reconstruction
quality compared to state-of-the-art methods. For example, it precisely recovers the cerebral ravine and brain tissues that are inaccurately reconstructed or
totally missed in other methods.

scanners to the broader class of patients. Compressed sensing MRI
(CS-MRI) accelerates scans by skipping parts of the data-collection
process, subsampling K-space, and recovering this data later with
computational methods. Recovering high-quality images from un-
dersampled MRI data is an ill-posed inverse imaging problem with
a forward model that can be mathematically expressed as

y = F𝑝 (x) + 𝜖, (16)

where x ∈ C𝑁 is the underlying image, the operator F𝑝 : C𝑁 →
C𝑀 , with𝑀 < 𝑁 , denotes the partially-sampled Fourier transform,
and 𝜖 ∼ N (0, 𝜎𝑛𝐼𝑀) is the additive white Gaussian noise. The data-
fidelity term, for the MRI reconstruction, isD(x) = 1

2 ∥y−F𝑝 (x) ∥2
whose proximal operator is described in [Eksioglu 2016].

With this forward model in hand, ∇-Prox facilitates using ADMM
with learned plug-and-play (PnP) denoising prior via the following
lines of code

x = Variable()

objective = csmri(x, b) + deep_prior(x, 'unet')

out = Problem(objective).solve(method='admm')

As an initial setting, we use a learned denoiser based on a UNet
[Ronneberger et al. 2015] as a deep PnP prior, to quickly achieve com-
petitive quantitative and qualitative results. We report our findings
in Table 3. To further improve the performance, ∇-Prox implements
several denoising prior architectures and allows users to switch to
more advanced DRUNet [Zhang et al. 2021] by setting the option of
deep_prior from 'unet' to 'drunet'9 to obtain an improvement of
about 0.3 dB on PSNR.
It is often beneficial to specialize the deep prior to the specific

problem at hand.With the variety of differentiable solvers supported
in ∇-Prox, users can optimize the deep prior by either unrolling
optimization iterations or using deep equilibrium learning. As dis-
cussed above, both approaches can be implemented with only a few
additional lines of code, specializing the solver and calling the train-
ing procedures. Table 3 lists the results achieved by utilizing these
9∇-Prox supports several built-in denoiser. For custom denoiser, users can pass a
denoiser instance that implements a denoise function.

Table 3. Quantitative evaluation (PSNR) of CS-MRI reconstruction. The
best and second-best scores are highlighted and underlined.

Method Medical7 MICCA
4x/n5 4x/n15 4x/n5 8x/n5

RecPF [Yang et al. 2010] 28.67 25.58 33.05 28.35
ISTANet [Zhang and Ghanem 2018] 31.34 28.38 35.46 31.62
IRCNN [Zhang et al. 2017b] 31.36 27.94 35.80 31.66
TFPnP [Wei et al. 2022a] 31.81 28.58 36.17 32.69

∇-Prox

PnP with UNet 31.42 28.18 35.04 31.66
DRUNet 31.78 28.43 35.57 32.19

Learn Prior with Unroll 31.86 28.66 36.25 32.56
DEQ 31.32 28.52 35.80 32.28

Learn Scheduler for UNet 31.82 28.57 36.21 32.70
DRUNet 32.66 28.91 36.64 33.22

two strategies for prior learning in ∇-Prox. We observe consistent
improvements over the vanilla PnP (UNet) solver in all tested CS-
MRI settings with unrolling while there is one exception for DEQ.
However, we note the DEQ solver requires less than a third video
memory (e.g. 6 GB versus 20 GB in our case), making it particularly
amenable to handling large-scale problems.

Automatic Parameter Tuning and Termination Time Prediction.
Learning an internal algorithm parameter schedule is another es-
sential task in proximal algorithm development. ∇-Prox allows for
automatic parameter tuning with reinforcement learning [Wei et al.
2022a]. With a few lines of code, our vanilla PnP solver can be
equipped with a policy network for optimal parameters and termi-
nation time prediction. The training is efficient and can be completed
within in a few hours on one modern GPU device. The findings in
Table 3, "Learn Scheduler for DRUNet", indicate that the resulting
solver can achieve favorable performance just by parameter tun-
ing. The qualitative results in Figure 7 also confirm this finding,
highlighting the benefit of parameter and prior optimization using
differentiable proximal algorithms.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

14 • Lai, Z. et al

5.4 Integrated Energy System Planning — Learning
Efficient Solvers

Next, we demonstrate ∇-Prox on a seemingly orthogonal problem
domain, integrated energy system planning domain — a field that
describes the energy system in mathematical models typically for-
mulated as optimization problems. Solving energy planning tasks
is essential in the transition to climate neutrality of regional and
global energy systems, providing decision support to policymak-
ers by gaining insights into complex interactions and dynamics of
increasingly integrated energy systems [Böttger and Härtel 2022;
Craig et al. 2022; Frischmuth et al. 2022; Härtel and Korpås 2021].

The planning problems corresponding to large-scale energy sys-
tems (easily up to 100million decision variables) are typically formu-
lated as continuous linear programming (LP) [Vanderbei et al. 2020].
Evenwith tailored decomposition approaches and high-performance
linear optimization solvers, such as Gurobi [Gurobi Optimization
2018], the solution to energy system planning problems has ap-
proached limits in practice due to increasing complexity and uncer-
tainty in real-world applications. In extremely large instances, the
state-of-the-art simplex and interior-point methods (e.g., HiGHS
[Huangfu and Hall 2018] and Gurobi Barrier solvers) become in-
tractable in practice due to memory-intensive matrix factorizations.
A computationally-tractable alternative is to employ first-order
solvers, such as ADMM-based ones (e.g., SCS [O’Donoghue 2021]
and OSQP [Stellato et al. 2020]), that use efficient matrix-vector op-
erations at cores. However, the performance of first-order methods,
especially the convergence speed, is highly susceptible to its pa-
rameter setting, where a bad choice of parameters often leads to an
exponentially lengthy optimization trajectory toward convergence.
This is particularly pronounced in energy system planning, where
the constraint matrices tend to be poorly scaled and ill-conditioned.
Here, we demonstrate that ∇-Prox, albeit initially developed for

large-scale visual problems, is also especially suited to cope with
the challenges above. It provides differentiable first-order proximal
solvers that can be readily applied to large-scale linear programming
problems without requiring excessive memory. Solver differentia-
bility naturally provides a tool for automating parameter selection,
which is key to our approach. We use ∇-Prox to find a simple yet
effective instance-specific parameter tuning strategy motivated by
self-supervised learning [Sun et al. 2020b]. For any test LP instance at
hand, we first perform a fast test-time parameter adaption that seeks
internal parameters specifically tailored to the tackled problem and
then run the solver until convergence with the searched parameters.
In the parameter adaptation phase, we unroll the proximal solver
with a small number of fixed iterations (e.g., 10 iterations) and use
the unrolled solver to tackle the target LP problem. We measure the
convergence behavior (i.e., the primal and dual residuals and their
relative convergence tolerance) and we define a convergence loss
(see Supplementary Material for details) that can be backpropagated
to algorithm parameters to encourage fast convergence, owing to
the differentiable nature of our solver. In practice, we find only 10
gradient updates using Adam optimizer [Kingma and Ba 2014] is
sufficient to find an optimal parameter setting, where the extra over-
head of this training phase is marginal compared with the solving
phase.

Table 4. Problem scales (the sparse constraint matrix size𝑚 × 𝑛 with the
total number of nonzero elements𝑛𝑛𝑧) of integrated energy system analysis
and planning test instances (P1/P2/P3).𝑚 and 𝑛 indicate the number of
constraints and the dimension of decision variables, respectively.

Problem Scale P1 P2 P3
𝑚 70,884 683,312 44,785,224
𝑛 35,176 324,150 23,234,424
𝑛𝑛𝑧 167,783 1,422,090 110,066,529

Table 5. Quantitative comparison of different LP solvers on three energy
system analysis and planning instances (P1/P2/P3) with different problem
scales (small/medium/large). We report memory consumption (M / GB) and
running time (T / s) for quantitative comparison. All problem instances are
solved in moderate precision (relative tolerance 𝜖rel = 10−6). We set the
maximum iterations to 106, and the peak memory usage to 32 GB. "OOM"
and "OOT" denote out-of-memory and out-of-time errors respectively. Note
that memory use and running time are measured on the solvers’ compute
hardware: NVIDIA A100 GPU for ∇-Prox, and Intel(R) Xeon(R) Gold 6246R
CPU @ 3.40GHz (32 physical cores) for others.

Solver P1 P2 P3
M T M T M T

Gurobi 10.0 [2018] 2.2 4.4 3.3 153.0 OOM N/A
HiGHS 1.2.2 [2018] 1.6 30.4 1.7 2800.1 OOM N/A
CVXPY-SCS [2021] 1.7 2150.0 2.0 OOT 19.6 OOT
CVXPY-OSQP [2020] 1.5 594.3 1.6 OOT 26.8 OOT
∇-Prox (native) 1.3 150.0 1.5 238.3 14.3 17695.2
∇-Prox (params adapted) 1.8 101.8 8.7 192.7 OOM N/A

Next, we test the energy system planning problem instances10
with diverse problem scales, whose decision variable dimension
ranges from 104 to 107 (See Table 4 for a summary). Implementing
linear programming in ∇-Prox can be achieved via

x = Variable()

prob = Problem(c @ x, [A_ub @ x <= b_ub, A_eq @ x == b_eq])

out = prob.solve(method='admm', adapt_params=True)

where c denotes the cost vector, A_ub, b_ub and A_eq, b_eq form the
inequality and equality constraints, respectively. The quantitative
results of different LP solvers on three representative integrated
energy system planning instances are summarized in Table 5. It can
be seen that the state-of-the-art solvers Gurobi (Barrier) and HiGHS
perform well on small (P1) and medium (P2) scale problems but
struggle to tackle the large-scale problem (P3) which runs out-of-
memory. Off-the-shelf first-order solvers (SCS and OSQP), on the
other hand, are stuck in tailing-off scenarios with slow converge.
Without bells and whistles tailored for LP (e.g., the advanced Pre-
solve techniques [Achterberg et al. 2020; Andersen and Andersen
1995] employed by Gurobi), ∇-Prox provides the only solver that
successfully tackles all problem instances within reasonable runtime
and memory constraints. Its convergence can be further improved
by fast parameter adaptation exploiting its differentiable structure,

10These instances are created by a modeling framework similar to established single-
period energy system models, e.g., SCOPE SD [Härtel and Ghosh 2022] or PyPSA-Eur-
Sec [Neumann et al. 2022]. Please see Supplementary Material for a detailed problem
description of the underlying modeling framework.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 15

Table 6. Quantitative comparison (PSNR) of different parameter setting
strategies. With only two lines of extra code in ∇-Prox, we show stronger
performance for a number of image processing tasks. We abbreviate the
single image super-resolution and hyperspectral compressive sensing [Fu
et al. 2022] as SISR and HCS respectively. See Supplementary Material for
the detailed setting of each task.

Strategy Deblur Demosaic Inpainting SISR HCS

Fixed 33.43 35.97 36.78 34.89 34.48
Log Descent 33.43 37.22 36.78 34.89 34.48
RL (∇-Prox) 39.54 40.04 39.56 35.25 34.86

which suggests a promising direction toward learning-based solvers
for time-honored linear programming problems. It is also worth
noting that state-of-the-art LP solvers (Gurobi and HiGHS) algorith-
mically better map to CPU-model computing rather than the GPU
model. This is an application domain where GPU-based implemen-
tations are often inferior to CPU-based implementations. To the
best of our knowledge, our work is the first demonstration of GPU-
accelerated proximal algorithms outperforming state-of-the-art LP
solvers in large-scale LP problems.

5.5 Rapid Differentiable Solver Prototyping Analysis
In the following, we perform additional analysis of the rapid pro-
totyping capabilities of ∇-Prox with respect to solver parameter
setting strategies, choice of proximal algorithm, and choice of regu-
larizers. We validate that these knobs, which can be changed with a
few lines of code in ∇-Prox, play an essential role in rapid algorithm
development.

Effect of Solver Parameter Setting Strategies. The proximal algo-
rithms in ∇-Proxcan be sensitive to their hyperparameters. This
traditionally requires a large bunch of trial-and-error for finding
the optimal ones. With the differentiable solvers in ∇-Prox, this
process can be automated using the learned automatic scheduler, as
previously discussed in Section 4.5. Specifically, we here compare
the automatic parameter tuning with fixed manual tuned param-
eter settings [Heide et al. 2014], i.e., a single value is used across
iterations for each parameter, and log-descent parameter setting
strategy [Zhang et al. 2021] where parameters are gradually de-
cayed in log space from an upper bound to a lower bound. We find
the optimal value and bounds for fixed and log-descent parameter
setting strategies via brute-force search, and train the automatic
parameter schedulers with a small calibration dataset that contains
only 200 images in hours. All the experiments for different tasks are
conducted with a single deep denoising prior [Lai et al. 2022; Zhang
et al. 2018, 2022] and the ADMM algorithm. The experimental re-
sults are reported in Table 6. We see that the performance of our
automatic strategy consistently outperforms the fixed parameter
setting and log-descent strategies on a variety of tasks, with only
two lines of extra code for each task, illustrating the advantage of
∇-Prox for rapid prototyping.

Effect of Different Proximal Algorithm Choices. The abstraction
of proximal algorithms and automatic parameter tuning of the pro-
posed DSL facilitates employing different proximal algorithms. In

Table 7. Quantitative comparison (PSNR) of different proximal algorithms
on color image demosaicking and deblurring. The parameters of all algo-
rithms are fully automatically set via ∇-Prox using RL-based schedulers.

Tasks Demosaic Deblur CSMRI

ADMM [Boyd et al. 2011] 40.72 36.56 28.58
HQS [Geman and Yang 1995] 40.77 39.61 27.91
Linearized ADMM [Boyd et al. 2011] 41.34 40.71 28.50
Pock Chambolle [Chambolle and Pock 2011] 35.11 40.18 25.48

Table 8. Quantitative comparison (PSNR) of rapid prototyping with different
regularizers on color image deblurring. We use ADMM with an RL-based
automatic parameter scheduler for solving the problem.

TV Non-Negativity Deep Prior PSNR

✓ ✗ ✗ 33.79
✓ ✓ ✗ 34.48
✗ ✗ ✓ 36.12
✓ ✓ ✓ 36.80

practice, an algorithm can be changed via the change of a single line
of code, e.g., switch solver='admm' to solver='hqs'. We experi-
ment with four different proximal algorithms, i.e., ADMM [Boyd
et al. 2011], linearized ADMM [Boyd et al. 2011], HQS [Geman and
Yang 1995], and Pock Chambolle [Chambolle and Pock 2011], on
three image reconstruction tasks, deblurring, demosaicking, and
CSMRI. The experimental results are shown in Table 7. We observe
that linearized ADMM generally works best in conventional deblur-
ring and demosaicing, but worse than vanilla ADMM in CSMRI.
Overall, the key finding is that different algorithms perform differ-
ently for different applications, and ∇-Prox facilitates fast experi-
mentation with them.

Effect of Regularizers. The most successful existing methods [Wei
et al. 2022a; Zhang et al. 2021] in learned image optimization focus
on designing a single regularizer and applying it to different tasks.
This approach is largely due to the fact that designing different reg-
ularizers is laborious, especially due to extensive manual parameter
tuning, and implementing algorithms with different regularizers
is complex and error-prone. Enhanced with automatic parameter
tuning, we validate that ∇-Prox facilitates testing the effect of dif-
ferent regularizers with the change of a line of code, see Table 8.
With a margin of 3 dB, we show that rapidly changing and adding
regularizers can drastically improve image quality in conventional
image reconstruction problems.

5.6 Discussion and Limitations
∇-Prox versus ProxImaL. ∇-Prox takes a step towards bridging

the gap between model-based proximal optimization and learning-
based deep-learning algorithms. Built on top of ProxImaL [Heide
et al. 2016], ∇-Prox is equipped with numerous algorithmic and
engineering improvements that lift its modeling capabilities to sup-
port a wide spectrum of features and applications beyond the reach

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

16 • Lai, Z. et al

of ProxImaL. Specifically, ∇-Prox decouples the proximal optimiza-
tion modeling into three-layer abstractions: problem formulation,
solver choices, and training strategies. Components from different
layers can be freely chosen and combined, rendering it flexible to
experiment with various algorithms in lieu of conventional coupled
implementations. The design space is substantially larger than Prox-
ImaL as a result of the new layer of abstraction (training) enabled
by full differentiability, thus opening up new solvers and applica-
tions (e.g. forward optical model optimization, model-free image
processing, and non-visual tasks).

Limitations. The RL strategy supported in ∇-Prox is tailored
mainly towards determining sample-specific optimal termination
time and other optimization-specific parameters. In the future, RL-
based solver optimization could be used to optimize entire algo-
rithmic blocks (such as update rules) in the solver. The compila-
tion could be further improved by taking the distributed nature
of variable-splitting-style proximal algorithms into account [Boyd
et al. 2011]. In this work, we focus on the algorithmic designs for
reducing memory consumption incurred by optimization loop differ-
entiation, while compiler techniques, such as checkpointing, are not
fully explored in ∇-Prox. Finally, the high degree of encapsulation
in ∇-Prox programming can make solver debugging challenging.
To facilitate solver development, several debugging utilities had to
be built into ∇-Prox.

6 CONCLUSION
We introduce ∇-Prox as a domain-specific modeling language and
compiler for differentiable proximal algorithms that solve large-scale
optimization problems. ∇-Prox allows users to specify optimiza-
tion objective functions of unknowns concisely at a high level and
compiles the problem into compute- and memory-efficient differen-
tiable solvers. To make proximal algorithms efficiently differentiable,
∇-Prox looks beyond classic auto-differentiation mechanisms and
relies on equilibrium learning and reinforcement learning-based bi-
level optimization schemes that do not require unrolling algorithms
into lengthy compute graphs. As such, the proposed DSL supports
hybrid model-based and learning-based solvers that merge proximal
optimization with deep neural network pipelines — seamlessly inte-
grating with modern deep learning frameworks such as PyTorch.
We assess ∇-Prox on visual computing problems and large-scale
planning problems with findings that demonstrate the DSL allows
for rapid experimentation with a variety of learned solvers and train-
ing approaches without the pain of manually implementing these
methods and training schemes. With a few lines of code, we find
that ∇-Prox can generate solvers for diverse problems from com-
putational optics to integrated energy system planning of Europe’s
energy grid towards climate neutrality – each with state-of-the-art
performance, task-optimized as a result of the differentiable solvers
that allow for parameter and model optimization using stochastic
gradient bi-level optimization. Exciting areas for future research
include modeling the forward model, or the proximal algorithm
itself, as a learnable program and the symbiosis of the proposed dif-
ferentiable algorithms with differentiable rendering forward models
– challenging research areas we hope this work can accelerate with
its rapid prototyping capabilities.

ACKNOWLEDGMENTS
We thank Ethan Tseng and Ilya Chugunov for discussion on this
work. Felix Heidewas supported by anNSFCAREERAward (2047359),
a Packard Foundation Fellowship, a Sloan Research Fellowship, a
Sony Young Faculty Award, a Project X Innovation Award, and an
Amazon Science Research Award. Philipp Härtel was supported
by the German Federal Ministry for Economic Affairs and Climate
Action (BMWK) in the 7. Energieforschungsprogramm (03EI1027).
Ying Fu was supported by the National Natural Science Foundation
of China under Grants No.62171038, No.62088101, and No.62006023.

REFERENCES
Tobias Achterberg, Robert E Bixby, ZonghaoGu, Edward Rothberg, andDieterWeninger.

2020. Presolve reductions in mixed integer programming. INFORMS Journal on
Computing 32, 2 (2020), 473–506.

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël
Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, et al.
2019. Learning to optimize halide with tree search and random programs. ACM
Transactions on Graphics (TOG) 38, 4 (2019), 1–12.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and
J Zico Kolter. 2019a. Differentiable convex optimization layers. Advances in neural
information processing systems 32 (2019).

Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa M Moursi.
2019b. Differentiating through a cone program. arXiv preprint arXiv:1904.09043
(2019).

José Juan Almagro Armenteros, Konstantinos D Tsirigos, Casper Kaae Sønderby,
Thomas Nordahl Petersen, Ole Winther, Søren Brunak, Gunnar von Heijne, and
Henrik Nielsen. 2019. SignalP 5.0 improves signal peptide predictions using deep
neural networks. Nature biotechnology 37, 4 (2019), 420–423.

Brandon Amos and J Zico Kolter. 2017. Optnet: Differentiable optimization as a layer in
neural networks. In International Conference on Machine Learning. PMLR, 136–145.

Erling D Andersen and Knud D Andersen. 1995. Presolving in linear programming.
Mathematical Programming 71, 2 (1995), 221–245.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. 2016. Learning to learn
by gradient descent by gradient descent. Advances in neural information processing
systems 29 (2016).

Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. 2013. Convergence of descent meth-
ods for semi-algebraic and tame problems: proximal algorithms, forward–backward
splitting, and regularized Gauss–Seidel methods. Mathematical Programming 137, 1
(2013), 91–129.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2019. Deep equilibriummodels. Advances
in Neural Information Processing Systems 32 (2019).

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and JeffreyMark
Siskind. 2018. Automatic differentiation in machine learning: a survey. Journal of
Marchine Learning Research 18 (2018), 1–43.

Amir Beck and Marc Teboulle. 2009. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM journal on imaging sciences 2, 1 (2009), 183–202.

Stephen R Becker, Emmanuel J Candès, and Michael C Grant. 2011. Templates for
convex cone problems with applications to sparse signal recovery. Mathematical
programming computation 3, 3 (2011), 165–218.

Martin Benning, Florian Knoll, Carola-Bibiane Schönlieb, and Tuomo Valkonen. 2015.
Preconditioned ADMM with nonlinear operator constraint. In IFIP Conference on
System Modeling and Optimization. Springer, 117–126.

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for physical simulation on
CPUs and GPUs. ACM Transactions on Graphics (TOG) 35, 2 (2016), 1–12.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Fe-
lipe Llinares-López, Fabian Pedregosa, and Jean-Philippe Vert. 2021. Efficient and
modular implicit differentiation. arXiv preprint arXiv:2105.15183 (2021).

Diana Böttger and Philipp Härtel. 2022. On wholesale electricity prices and market
values in a carbon-neutral energy system. Energy Economics 106 (2022), 105709.
https://doi.org/10.1016/j.eneco.2021.105709

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011.
Distributed optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends® in Machine learning 3, 1 (2011), 1–122.

Ronald E Bruck Jr. 1975. An iterative solution of a variational inequality for certain
monotone operators in Hilbert space. Bull. Amer. Math. Soc. 81, 5 (1975), 890–892.

Antoni Buades, Bartomeu Coll, and J-M Morel. 2005. A non-local algorithm for image
denoising. In 2005 IEEE computer society conference on computer vision and pattern
recognition (CVPR’05), Vol. 2. Ieee, 60–65.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

https://doi.org/10.1016/j .eneco.2021.105709

∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 17

Antonin Chambolle and Thomas Pock. 2011. A first-order primal-dual algorithm for
convex problems with applications to imaging. Journal of mathematical imaging
and vision 40, 1 (2011), 120–145.

Antonin Chambolle and Thomas Pock. 2016. An introduction to continuous optimiza-
tion for imaging. Acta Numerica 25 (2016), 161–319.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang
Wang, and Wotao Yin. 2021. Learning to optimize: A primer and a benchmark. arXiv
preprint arXiv:2103.12828 (2021).

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep nets
with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

Michael T. Craig, Jan Wohland, Laurens P. Stoop, Alexander Kies, Bryn Pickering, Han-
nah C. Bloomfield, Jethro Browell, Matteo de Felice, Chris J. Dent, Adrien Deroubaix,
Felix Frischmuth, Paula L.M. Gonzalez, Aleksander Grochowicz, Katharina Gruber,
Philipp Härtel, Martin Kittel, Leander Kotzur, Inga Labuhn, Julie K. Lundquist, Noah
Pflugradt, Karin van der Wiel, Marianne Zeyringer, and David J. Brayshaw. 2022.
Overcoming the disconnect between energy system and climate modeling. Joule 6,
7 (2022), 1405–1417. https://doi.org/10.1016/j.joule.2022.05.010

Zachary DeVito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-
Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Niessner.
2017. Opt: A domain specific language for non-linear least squares optimization in
graphics and imaging. ACM Transactions on Graphics (TOG) 36, 5 (2017), 1–27.

Steven Diamond and Stephen Boyd. 2015. Convex optimization with abstract linear
operators. In Proceedings of the IEEE International Conference on Computer Vision.
675–683.

Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling
language for convex optimization. The Journal of Machine Learning Research 17, 1
(2016), 2909–2913.

Steven Diamond, Vincent Sitzmann, Felix Heide, and Gordon Wetzstein. 2017. Unrolled
optimization with deep priors. arXiv preprint arXiv:1705.08041 (2017).

Weisheng Dong, PeiyaoWang, Wotao Yin, Guangming Shi, FangfangWu, and Xiaotong
Lu. 2018. Denoising prior driven deep neural network for image restoration. IEEE
transactions on pattern analysis and machine intelligence 41, 10 (2018), 2305–2318.

Ender M Eksioglu. 2016. Decoupled algorithm for MRI reconstruction using nonlocal
block matching model: BM3D-MRI. Journal of Mathematical Imaging and Vision 56,
3 (2016), 430–440.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle
Pineau, et al. 2018. An introduction to deep reinforcement learning. Foundations
and Trends® in Machine Learning 11, 3-4 (2018), 219–354.

Felix Frischmuth, Richard Schmitz, and Philipp Härtel. 2022. IMAGINE – Market-based
multi-period planning of European hydrogen and natural gas infrastructure. 2022
18th International Conference on the European Energy Market (EEM) (2022), 1–11.
https://doi.org/10.1109/EEM54602.2022.9921154

Ying Fu, Tao Zhang, Lizhi Wang, and Hua Huang. 2022. Coded hyperspectral image
reconstruction using deep external and internal learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence 44, 7 (2022), 3404–3420.

Daniel Gabay and BertrandMercier. 1976. A dual algorithm for the solution of nonlinear
variational problems via finite element approximation. Computers & mathematics
with applications 2, 1 (1976), 17–40.

Hu Gao and Depeng Dang. 2023. Mixed Hierarchy Network for Image Restoration.
arXiv preprint arXiv:2302.09554 (2023).

Donald Geman and Chengda Yang. 1995. Nonlinear image recovery with half-quadratic
regularization. IEEE transactions on Image Processing 4, 7 (1995), 932–946.

Joachim Giesen and Sören Laue. 2016. Distributed convex optimization with many
convex constraints. arXiv preprint arXiv:1610.02967 (2016).

Davis Gilton, Gregory Ongie, and RebeccaWillett. 2021. Deep equilibrium architectures
for inverse problems in imaging. IEEE Transactions on Computational Imaging 7
(2021), 1123–1133.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT press.
Joseph W Goodman and P Sutton. 1996. Introduction to Fourier optics. Quantum and

Semiclassical Optics-Journal of the European Optical Society Part B 8, 5 (1996), 1095.
Michael Grant and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined Convex

Programming, version 2.1. http://cvxr.com/cvx.
Karol Gregor and Yann LeCun. 2010. Learning fast approximations of sparse coding.

In Proceedings of the 27th international conference on international conference on
machine learning. 399–406.

Shuhang Gu, Qi Xie, Deyu Meng, Wangmeng Zuo, Xiangchu Feng, and Lei Zhang.
2017. Weighted nuclear norm minimization and its applications to low level vision.
International journal of computer vision 121, 2 (2017), 183–208.

LLC Gurobi Optimization. 2018. Gurobi optimizer reference manual.
Harel Haim, Shay Elmalem, Raja Giryes, Alex Bronstein, and Emanuel Marom. 2018.

Depth Estimation From a Single Image Using Deep Learned Phase Coded Mask.
IEEE Transactions on Computational Imaging 4 (2018), 298–310.

Philipp Härtel and Debraj Ghosh. 2022. Modelling Heat Pump Systems in Low-Carbon
Energy Systems With Significant Cross-Sectoral Integration. IEEE Transactions on
Power Systems 37, 4 (2022), 3259–3273. https://doi.org/10.1109/TPWRS.2020.3023474

Philipp Härtel and Magnus Korpås. 2021. Demystifying market clearing and price
setting effects in low-carbon energy systems. Energy Economics 93 (2021), 105051.
https://doi.org/10.1016/j.eneco.2020.105051

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 770–778.

James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen,
Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. 2014. Darkroom:
compiling high-level image processing code into hardware pipelines. ACM Trans.
Graph. 33, 4 (2014), 144–1.

Felix Heide, Steven Diamond, Matthias Nießner, Jonathan Ragan-Kelley, Wolfgang
Heidrich, and Gordon Wetzstein. 2016. Proximal: Efficient image optimization using
proximal algorithms. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–15.

Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur Rouf, Dawid Pająk, Dikpal
Reddy, Orazio Gallo, Jing Liu, Wolfgang Heidrich, Karen Egiazarian, et al. 2014.
Flexisp: A flexible camera image processing framework. ACM Transactions on
Graphics (ToG) 33, 6 (2014), 1–13.

John R Hershey, Jonathan Le Roux, and Felix Weninger. 2014. Deep unfolding: Model-
based inspiration of novel deep architectures. arXiv preprint arXiv:1409.2574 (2014).

Roarke Horstmeyer, Richard Y. Chen, Barbara Kappes, and Benjamin Judkewitz. 2017.
Convolutional neural networks that teach microscopes how to image. ArXiv
abs/1709.07223 (2017).

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Frédo Durand. 2019a. Difftaichi: Differentiable programming for physical
simulation. arXiv preprint arXiv:1910.00935 (2019).

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
2019b. Taichi: a language for high-performance computation on spatially sparse
data structures. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–16.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. 2015. Single image super-
resolution from transformed self-exemplars. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 5197–5206.

Qi Huangfu and JA Julian Hall. 2018. Parallelizing the dual revised simplex method.
Mathematical Programming Computation 10, 1 (2018), 119–142.

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo,
Francesco Borrelli, Joseph E Gonzalez, Ion Stoica, and Ken Goldberg. 2021. Ac-
celerating quadratic optimization with reinforcement learning. Advances in Neural
Information Processing Systems 34 (2021), 21043–21055.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. DR. JIT: a
just-in-time compiler for differentiable rendering. ACM Transactions on Graphics
(TOG) 41, 4 (2022), 1–19.

Ulugbek S Kamilov, Charles B Bouman, Gregery T Buzzard, and Brendt Wohlberg.
2023. Plug-and-Play Methods for Integrating Physical and Learned Models in
Computational Imaging. IEEE Signal Process. Mag. 40, 1 (January 2023), 85–97.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin, Shinjiro Sueda,
Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej Kanwar, Wojciech Matusik,
et al. 2016. Simit: A language for physical simulation. ACM Transactions on Graphics
(TOG) 35, 2 (2016), 1–21.

Nikos Komodakis and Jean-Christophe Pesquet. 2015. Playingwith duality: An overview
of recent primal? dual approaches for solving large-scale optimization problems.
IEEE Signal Processing Magazine 32, 6 (2015), 31–54.

Zeqiang Lai, Kaixuan Wei, and Ying Fu. 2022. Deep Plug-and-Play Prior for Hyperspec-
tral Image Restoration. Neurocomputing (2022).

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521,
7553 (2015), 436–444.

Guoyin Li and Ting Kei Pong. 2015. Global convergence of splitting methods for
nonconvex composite optimization. SIAM Journal on Optimization 25, 4 (2015),
2434–2460.

Ke Li and Jitendra Malik. 2016. Learning to optimize. arXiv preprint arXiv:1606.01885
(2016).

Qunwei Li, Yi Zhou, Yingbin Liang, and Pramod K Varshney. 2017. Convergence
analysis of proximal gradient with momentum for nonconvex optimization. In
International Conference on Machine Learning. PMLR, 2111–2119.

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-
Kelley. 2018. Differentiable programming for image processing and deep learning
in Halide. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–13.

Zhi-Pei Liang and Paul C Lauterbur. 2000. Principles of magnetic resonance imaging.
SPIE Optical Engineering Press Bellingham.

Jiaming Liu, Xiaojian Xu, Weijie Gan, Shirin Shoushtari, and Ulugbek S Kamilov. 2022.
Online Deep Equilibrium Learning for Regularization by Denoising. arXiv preprint
arXiv:2205.13051 (2022).

Qinghua Liu, Xinyue Shen, and Yuantao Gu. 2019. Linearized ADMM for nonconvex
nonsmooth optimization with convergence analysis. IEEE Access 7 (2019), 76131–
76144.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

https://doi.org/10.1016/j.joule.2022.05.010
https://doi.org/10.1109/EEM54602.2022.9921154
http://cvxr.com/cvx
https://doi.org/10.1109/TPWRS.2020.3023474
https://doi.org/10.1016/j. eneco.2020.105051

18 • Lai, Z. et al

Julien Mairal, Michael Elad, and Guillermo Sapiro. 2007. Sparse representation for color
image restoration. IEEE Transactions on image processing 17, 1 (2007), 53–69.

Michael Mara, Felix Heide, Michael Zollhöfer, Matthias Nießner, and Pat Hanrahan.
2021. Thallo–scheduling for high-performance large-scale non-linear least-squares
solvers. ACM Transactions on Graphics (TOG) 40, 5 (2021), 1–14.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. 2001. A database of
human segmented natural images and its application to evaluating segmentation al-
gorithms andmeasuring ecological statistics. In Proceedings Eighth IEEE International
Conference on Computer Vision. ICCV 2001, Vol. 2. IEEE, 416–423.

LukeMetz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Brad-
bury, Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. 2022. VeLO:
Training Versatile Learned Optimizers by Scaling Up. arXiv preprint arXiv:2211.09760
(2022).

Christopher A Metzler, Hayato Ikoma, Yifan Peng, and Gordon Wetzstein. 2020. Deep
optics for single-shot high-dynamic-range imaging. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 1375–1385.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchronous
methods for deep reinforcement learning. In International conference on machine
learning. PMLR, 1928–1937.

Thomas Mollenhoff, Evgeny Strekalovskiy, Michael Moeller, and Daniel Cremers. 2015.
The primal-dual hybrid gradient method for semiconvex splittings. SIAM Journal
on Imaging Sciences 8, 2 (2015), 827–857.

Vishal Monga, Yuelong Li, and Yonina C Eldar. 2021. Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing. IEEE Signal Processing
Magazine 38, 2 (2021), 18–44.

Jean-Jacques Moreau. 1965. Proximité et dualité dans un espace hilbertien. Bulletin de
la Société mathématique de France 93 (1965), 273–299.

Chong Mou, Qian Wang, and Jian Zhang. 2022. Deep Generalized Unfolding Networks
for Image Restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 17399–17410.

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. 2016. Automatically scheduling halide image processing
pipelines. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–11.

Fabian Neumann, Elisabeth Zeyen, Marta Victoria, and Tom Brown. 2022. Benefits of a
Hydrogen Network in Europe. SSRN Electronic Journal (2022). https://doi.org/10.
2139/ssrn.4173442

Robert Nishihara, Laurent Lessard, Ben Recht, Andrew Packard, and Michael Jordan.
2015. A general analysis of the convergence of ADMM. In International Conference
on Machine Learning. PMLR, 343–352.

Brendan O’Donoghue. 2021. Operator splitting for a homogeneous embedding of
the linear complementarity problem. SIAM Journal on Optimization 31, 3 (2021),
1999–2023.

Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexandros G
Dimakis, and Rebecca Willett. 2020. Deep learning techniques for inverse problems
in imaging. IEEE Journal on Selected Areas in Information Theory 1, 1 (2020), 39–56.

Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao Yin. 2005. An it-
erative regularization method for total variation-based image restoration. Multiscale
Modeling & Simulation 4, 2 (2005), 460–489.

Tulin Ozturk, Muhammed Talo, Eylul Azra Yildirim, Ulas Baran Baloglu, Ozal Yildirim,
and U Rajendra Acharya. 2020. Automated detection of COVID-19 cases using deep
neural networks with X-ray images. Computers in biology and medicine 121 (2020),
103792.

Neal Parikh and Stephen Boyd. 2014. Proximal algorithms. Foundations and Trends in
optimization 1, 3 (2014), 127–239.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in pytorch. (2017).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances in
neural information processing systems 32 (2019).

Yifan Peng, Qilin Sun, Xiong Dun, Gordon Wetzstein, Wolfgang Heidrich, and Felix
Heide. 2019. Learned large field-of-view imaging with thin-plate optics. ACM Trans.
Graph. 38, 6 (2019), 219–1.

Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi,
Ricky Chen, Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, et al.
2022. Theseus: A library for differentiable nonlinear optimization. arXiv preprint
arXiv:2207.09442 (2022).

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. 2013. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. Acm Sigplan
Notices 48, 6 (2013), 519–530.

Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu, and Deyu Meng. 2019.
Progressive image deraining networks: A better and simpler baseline. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3937–
3946.

R Tyrrell Rockafellar. 1976. Augmented Lagrangians and applications of the proximal
point algorithm in convex programming. Mathematics of operations research 1, 2
(1976), 97–116.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention. Springer, 234–241.

Mark Segal and Kurt Akeley. 1999. The OpenGL graphics system: A specification
(version 1.1).

Zheng Shi, Yuval Bahat, Seung-Hwan Baek, Qiang Fu, Hadi Amata, Xiao Li, Praneeth
Chakravarthula, Wolfgang Heidrich, and Felix Heide. 2022. Seeing through obstruc-
tions with diffractive cloaking. ACM Transactions on Graphics (TOG) 41, 4 (2022),
1–15.

Nir Shlezinger, Jay Whang, Yonina C Eldar, and Alexandros G Dimakis. 2020. Model-
based deep learning. arXiv preprint arXiv:2012.08405 (2020).

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, DaanWierstra, andMartin Ried-
miller. 2014. Deterministic policy gradient algorithms. In International conference
on machine learning. PMLR, 387–395.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. 2017.
Mastering the game of Go without human knowledge. Nature 550, 7676 (2017),
354–359.

Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun, Stephen Boyd, Wolfgang
Heidrich, Felix Heide, andGordonWetzstein. 2018. End-to-end optimization of optics
and image processing for achromatic extended depth of field and super-resolution
imaging. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–13.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd.
2020. OSQP: An operator splitting solver for quadratic programs. Mathematical
Programming Computation 12, 4 (2020), 637–672.

Jian Sun, Huibin Li, Zongben Xu, et al. 2016. Deep ADMM-Net for compressive sensing
MRI. Advances in neural information processing systems 29 (2016).

Qilin Sun, Ethan Tseng, Qiang Fu, Wolfgang Heidrich, and Felix Heide. 2020a. Learning
Rank-1 Diffractive Optics for Single-shot High Dynamic Range Imaging. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. 2020b.
Test-time training with self-supervision for generalization under distribution shifts.
In International conference on machine learning. PMLR, 9229–9248.

Chunwei Tian, Lunke Fei, Wenxian Zheng, Yong Xu, Wangmeng Zuo, and Chia-Wen
Lin. 2020. Deep learning on image denoising: An overview. Neural Networks 131
(2020), 251–275.

Ethan Tseng, Ali Mosleh, Fahim Mannan, Karl St-Arnaud, Avinash Sharma, Yifan Peng,
Alexander Braun, Derek Nowrouzezahrai, Jean-Francois Lalonde, and Felix Heide.
2021. Differentiable compound optics and processing pipeline optimization for
end-to-end camera design. ACM Transactions on Graphics (TOG) 40, 2 (2021), 1–19.

Madeleine Udell, Karanveer Mohan, David Zeng, Jenny Hong, Steven Diamond, and
Stephen Boyd. 2014. Convex optimization in Julia. In 2014 First Workshop for High
Performance Technical Computing in Dynamic Languages. IEEE, 18–28.

Robert J Vanderbei et al. 2020. Linear programming. Springer.
Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. 2013. Plug-

and-play priors for model based reconstruction. In 2013 IEEE Global Conference on
Signal and Information Processing. IEEE, 945–948.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path replay backpropagation:
differentiating light paths using constant memory and linear time. ACM Transactions
on Graphics (TOG) 40, 4 (2021), 1–14.

Homer F Walker and Peng Ni. 2011. Anderson acceleration for fixed-point iterations.
SIAM J. Numer. Anal. 49, 4 (2011), 1715–1735.

Yu Wang, Wotao Yin, and Jinshan Zeng. 2019. Global convergence of ADMM in
nonconvex nonsmooth optimization. Journal of Scientific Computing 78, 1 (2019),
29–63.

Kaixuan Wei, Angelica Aviles-Rivero, Jingwei Liang, Ying Fu, Hua Huang, and Carola-
Bibiane Schönlieb. 2022a. TFPNP: Tuning-free plug-and-play proximal algorithms
with applications to inverse imaging problems. Journal of Machine Learning Research
23, 16 (2022), 1–48.

Kaixuan Wei, Angelica Aviles-Rivero, Jingwei Liang, Ying Fu, Carola-Bibiane Schönlieb,
and Hua Huang. 2020. Tuning-free plug-and-play proximal algorithm for inverse
imaging problems. In International Conference on Machine Learning. PMLR, 10158–
10169.

Kaixuan Wei, Ying Fu, Yinqiang Zheng, and Jiaolong Yang. 2022b. Physics-based noise
modeling for extreme low-light photography. IEEE Transactions on Pattern Analysis
and Machine Intelligence 44, 11 (2022), 8520–8537.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Col-
menarejo, Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. 2017. Learned
optimizers that scale and generalize. In International Conference on Machine Learning.
PMLR, 3751–3760.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

https://doi.org/10.2139/ssrn.4173442
https://doi.org/10.2139/ssrn.4173442

∇-Prox: Differentiable Proximal Algorithm Modeling for Large-Scale Optimization • 19

Stephen Wright, Jorge Nocedal, et al. 1999. Numerical optimization. Springer Science
35, 67-68 (1999), 7.

Wenzhu Xing and Karen Egiazarian. 2021. End-to-end learning for joint image demo-
saicing, denoising and super-resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 3507–3516.

Xiaojian Xu, Yu Sun, Jiaming Liu, Brendt Wohlberg, and Ulugbek S Kamilov. 2020.
Provable convergence of plug-and-play priors with MMSE denoisers. IEEE Signal
Processing Letters 27 (2020), 1280–1284.

Junfeng Yang, Yin Zhang, and Wotao Yin. 2010. A fast alternating direction method for
TVL1-L2 signal reconstruction from partial Fourier data. IEEE Journal of Selected
Topics in Signal Processing 4, 2 (2010), 288–297.

Raymond A Yeh, Yuan-Ting Hu, Zhongzheng Ren, and Alexander G Schwing. 2022.
Total Variation Optimization Layers for Computer Vision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 711–721.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
and Ming-Hsuan Yang. 2022. Restormer: Efficient transformer for high-resolution
image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 5728–5739.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
Ming-Hsuan Yang, and Ling Shao. 2021. Multi-stage progressive image restoration.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 14821–14831.

Jian Zhang and Bernard Ghanem. 2018. ISTA-Net: Interpretable optimization-inspired
deep network for image compressive sensing. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 1828–1837.

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte.
2021. Plug-and-play image restoration with deep denoiser prior. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2021).

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. 2017a. Beyond
a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE
transactions on image processing 26, 7 (2017), 3142–3155.

Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. 2017b. Learning deep CNN
denoiser prior for image restoration. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 3929–3938.

Kai Zhang, Wangmeng Zuo, and Lei Zhang. 2018. FFDNet: Toward a fast and flexible
solution for CNN-based image denoising. IEEE Transactions on Image Processing 27,
9 (2018), 4608–4622.

Tao Zhang, Ying Fu, and Jun Zhang. 2022. Guided Hyperspectral Image Denoising with
Realistic Data. International Journal of Computer Vision 130, 11 (2022), 2885–2901.

Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. 2019. Object detection
with deep learning: A review. IEEE transactions on neural networks and learning
systems 30, 11 (2019), 3212–3232.

Daniel Zoran and Yair Weiss. 2011. From learning models of natural image patches to
whole image restoration. In 2011 international conference on computer vision. IEEE,
479–486.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Formulating Proximal Optimization
	3.1 Canonical Form
	3.2 Programming Interface

	4 Compiling Differentiable Proximal Solvers
	4.1 Solver Compilation Pipeline
	4.2 Differentiating Compiled Solvers
	4.3 Optimizing Gradient Calculations
	4.4 Implicit Differentiation for Proximal Algorithms
	4.5 Reinforcement Learning for Proximal Algorithms
	4.6 Implementation

	5 Applications and Analysis
	5.1 End-to-End Computational Optics — Learning Model Parameters and Priors
	5.2 Image Deraining — Learning Unknown Forward Models and Initializer
	5.3 Compressive Magnetic Resonance Imaging — Learning Solver Parameter Scheduler
	5.4 Integrated Energy System Planning — Learning Efficient Solvers
	5.5 Rapid Differentiable Solver Prototyping Analysis
	5.6 Discussion and Limitations

	6 Conclusion
	Acknowledgments
	References

