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This supplemental document provides additional information in support of the findings in the main manuscript. Specif-
ically, Section 1 describes the stereo gated imaging dataset. Section 2 provides further quantitative and depth-resolved
evaluations. Section 3 details the network architecture of the proposed method and Section 4 describes the training proce-
dure. In Section 6, the gated reconstruction loss is described and Section 7 introduces the ambient consistency in more depth
with additional qualitative examples. Section 8 shows the differences between illumination view consistency and left-right
warping and Section 9 demonstrates qualitative advantages of fusing mono and stereo depth predictions. Finally, Section 10
provides further qualitative evaluations in support of the investigation from the main document.
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Figure 1. Experimental sensor setup of the prototype vehicle for data acquisition. The car is equipped with a stereo gated imaging system
with a baseline of 0.76 m, consisting of two gated imagers and a flood-light flash source, a standard RGB automotive stereo camera and a
scanning LiDAR Velodyne VLS128 as reference.

1. Stereo Gated Dataset

In this section, we provide more details on the sensor setup and the statistics of the captured long-range gated stereo
dataset. As described in the main document, we use this dataset (after splitting) into train, validate, and test the proposed
method.

The sensor setup of our testing vehicle is shown in Figure 1 and consists of an automotive RGB stereo camera (OnSemi
ARO0230), areference LiDAR system (Velodyne VLS128), and a stereo gated imaging system consisting of two gated cameras
(Brightway Vision BrightEye) and a flood-light flash laser source. The experimental setup is mounted in two sensor boxes on
top of the roof of an electric test vehicle. The left sensor box can be considered the master sensing box, with one gated camera
in here and the second one mounted in the satellite box with a wide baseline of 0.76 m. The gated imagers have a pixel pitch
of 10 um and provide 10bit images, captured in the NIR band at 808 nm with a resolution of 1280x720. The optics of the
cameras provide field-of-view of 31.1°x17.8° (horizontal x vertical), and run at 120 Hz, which we split up into three active
slices and two HDR-like passive images captured without any active illumination. This results in an overall system repetition
rate of 24 Hz. The two vertical-cavity surface-emitting laser (VCSEL) modules required for active illumination of the scene
are mounted on the front tow hitch of the car. Both lasers have a pulsed optical output peak power of 500 W. Number of
pulses and pulse length are limited according to eye-safety regulations. We use the left gated camera as master for triggering
laser pulse emission and acquisition of the right camera. The RGB Stereo system is mounted with a baseline of 0.23 m in
the left master sensor cube and runs at 30Hz. This baseline corresponds to a typical multi-view and stereo systems in related
literature [2, 3] and in typical ADAS systems. As such, in our comparisons, existing stereo models have also been trained
with similar setups. The two On-Semi AR0230 imagers provide a resolution of 1920x 1024 and a 12 bit quantization. We use
Lensagon B5M8018C optics with a focal length of 8mm to obtain a field-of-view of 39.6°x21.7°(HxV). Both stereo camera
systems are synchronized and calibrated with aligned horizontal epipolar lines for efficient disparity matching along one axis
of the image.

For ground-truth depth annotation, we use a Velodyne VLS128 which has a spec sheet range larger then 200 m for high

reflective targets. This LiDAR operates at 905 nm and runs at 10 Hz. Furthermore, the LiDAR provides a vertical field-
of-view of 40° with 128 non-linear distributed scanning lines with a minimum angular resolution of 0.11°. The sensor
setup is implemented using the Robot Operating System (ROS) as middleware allowing to record all sensors in a common
framework. For time synchronization, we extended the ROS approximate time synchronizer such that the sequential gated
slices are assembled through a filter before time synchronizing with the LiDAR system and the stereo camera. This ensures
that the gated slices are always kept in order with ascending illumination slices scanning from short to long distances.
In total, our dataset contains more than 100,000 samples (54,429 day/52,919 night) captured in southern Germany covering
a wide variety of urban, highway, and overland scenarios. After selecting only samples in sync, we split the dataset into
54,302 (26,010 day/28,292 night) samples for training, 728 (415 day/313 night) samples for validation, and 2,463 (1,269
day/1,194 night) samples for testing. A small subset of our dataset, containing all the different sensor modalities, is shown in
Figures 16, 17, and 18.



2. Additional Quantitative Evaluations

In this section, we provide additional quantitative evaluations for the proposed Gated Stereo and baseline state-of-the-art
methods. See Sec. 10 for additional qualitative results.

2.1. Additional Depth-Resolved Quantitative Evaluation

Next, we present additional quantitative results for the proposed gated stereo method and alternate state-of-the-art methods.
For depth ground-truth annotation, we use a Velodyne VLS-128 LiDAR. This allows us to evaluate the performance of depth
estimation algorithms for distances up to 160 m which is twice as far as in previous works [9,22,23]. The evaluation results
of the proposed Gated Stereo and other state-of-the-art methods are reported in Table 1. We here also provide depth-resolved
evaluation results, proposed by [8]. Gruber et al. [8] have demonstrated that depth maps are usually not uniformly distributed,
but instead close distances are more frequent than long distances due to the camera frustum. Thus, when calculating the mean
error of depth maps, errors at shorter distances (which are typically smaller) contribute more to the mean than errors at large
distances, resulting in an overall smaller error. In order to weigh distances more equally, we provide binned evaluations,
where the different metrics are calculated in bins of approximately 16m, and the mean of the bins yields the final result. This
ensures that every distance contributes equally to the evaluation metric. The quantitative results of the binned and not binned
metrics are shown in Table 1. For all reference methods, the performance drops significantly for the binned metrics due to
larger errors in further distances. Only Gated Stereo is able to maintain nearly constant quality over all distances resulting
in only a slight increase in the binned metrics. This is also reflected in Figure 2, which visualizes the depth-dependent MAE
for the different methods. While the MAE increases for all reference methods over long distances, Gated Stereo is able to
maintain its performance at day and night.

Gated Stereo - - - Gated2Gated [23] Sparse2Dense [17]
= = = Monodepth2 [7] = = = DepthFormer [13] = = = Raft-Stereo [15]
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(b) Binned MAE calculated at nighttime.

Figure 2. MAE calculated over depth bins of approximately 16 m in day and nighttime conditions. Gated Stereo outperforms all other
methods especially for far distances.



Test Data - Night Test Data - Day

METHOD Modality Train RMSE ARD MAE & 52 53 RMSE ARD MAE 4 52 53
GATED2DEPTH [9]  Mono-Gated D 1615 0.17 807 7570 9274 9647 28.68 022 1476 66.68 8276 87.96
GATED2GATED [23] Mono-Gated MG 1408 0.19 7.95 79.84 9295 9659 16.87 021 951 7393 9215 96.10
SPARSE2DENSE [17] Mono-Sparse D 997 0.1 522 8706 9577 9820 1005 0.1 477 8806 96.57 98.63
KBNET [25] Mono-Sparse D 1377 0.16 873 8098 99.33 99.67 1527 0.7 954 7854 9931 99.63
NLSPN [18] Mono-Sparse D 1219 0.09 542 89.63 96.84 99.03 11.78 008 499 9141 97.70 99.24
PENET [11] Mono-Sparse D 7.81  0.09 3.59 93.68 97.90 99.16 854 009 3.82 9378 97.69 98.94
GUIDENET [21] Mono-Sparse D 7.50  0.09 3.63 9270 98.16 99.35 8.03 009 3.70 9323 98.12 9921
E PACKNET [10] Mono-RGB M 17.82 020 1021 6635 8785 9561 17.69 021 977 7212 9065 96.51
£ MoNODEPTH2 [7] Mono-RGB M 1844 0.18 947 7570 9046 9568 2078 022 1006 79.05 90.66 94.69
= SIMIPU[12] Mono-RGB D 1578 0.18 871 7625 9084 9644 1433 0.14 750 8177 9401 97.92
S ADABINS [1] Mono-RGB D 1445 0.15 758 8147 9375 9739 1276 0.12 653 8615 9577 9841
DPT [19] Mono-RGB D 1215 0.2 631 8538 9594 9842 1128 0.09 552 89.56 96.83 98.80
DEPTHFORMER [13] Mono-RGB D 1215 0.1 620 8518 9576 9847 1059 0.09 506 90.65 9746 99.02
PSMNET [4] Stereo-RGB D 2798 027 1602 5077 7477 8593 3213 028 18.09 53.82 7491 84.96
HSMNET [27] Stereo-RGB D 1242 0.09 587 8841 9608 9850 1036 0.08 4.69 9247 97.93 99.11
ACVNET [26] Stereo-RGB D 1170  0.08 525 8991 9633 9847 940 0.07 4.08 94.61 9836 99.12
RAFT-STEREO [15]  Stereo-RGB D 1089  0.09 510 9047 9671 98.64 940 007 407 9376 98.15 99.09
GATED STEREO Stereo-Gated DGS 639  0.05 225 9640 9844 9924 7.1 0.05 225 9687 9846 99.11
GATED2DEPTH [9]  Mono-Gated D 19.98 0.17 1345 79.09 92.67 9692 28.60 023 2034 6376 8848 93.62
GATED2GATED [23] Mono-Gated MG 2039 022 1506 7372 9215 9609 2576 030 18.12 67.96 86.86 92.56
SPARSE2DENSE [17] Mono-Sparse D 1434 0.12 983 8620 9640 9850 1404 0.1 893 8795 96.60 98.43
KBNET [25] Mono-Sparse D 1979  0.26 18.63 48.10 9917 99.69 2021 026 18.81 4745 9918  99.66
NLSPN [18] Mono-Sparse D 21.13  0.14 1660 68.86 9571 9897 19.04 0.3 1462 7097 97.09 99.16
PENET[11] Mono-Sparse D 1279 0.10 7.05 9125 9676 98.53 13.04 0.0 6.82 9178 96.62 98.26
GUIDENET [21] Mono-Sparse D 12.07 0.09 7.03 91.51 9736 9891 1208 0.9 6.62 9221 9734 98.72
= PACKNET [10] Mono-RGB M 29.19 030 2208 5498 8191 93.89 2737 032 2031 60.54 83.86 93.23
§ MONODEPTH2 [7] Mono-RGB M 3489 045 26.18 5756 80.05 88.65 3130 044 2253 6751 8325 8878
2 SIMIPU [12] Mono-RGB D 2337 025 17.63 6490 8681 9554 2048 020 1504 7287 9175 97.32
ADABINS [1] Mono-RGB D 2261 024 1664 68.03 89.03 9593 1894 0.17 13.37 7844 9417 97.93
DPT [19] Mono-RGB D 20.14 0.19 1459 7453 9248 9708 1698 0.14 11.69 8292 9575 98.58
DEPTHFORMER [13] Mono-RGB D 1933  0.17 1390 7582 93.59 98.00 1594 0.13 1094 8445 9647 98.80
PSMNET [4] StereoRGB D 47.79 0.60 39.48 3130 5523 73.04 4658 056 38.19 3051 53.16 7421
HSMNET [27] SterecoRGB D 19.93 0.5 13.84 7848 9421 9834 1625 0.2 10.88 8599 97.03 98.95
ACVNET [26] SterecoRGB D 19.60 0.14 13.04 8049 9426 98.14 1507 0.1 955 90.11 97.70 98.74
RAFT-STEREO [15]  Stereo-RGB D 1881 0.15 1281 80.66 9423 9802 1501 0.1 925 8945 9748 98.83
GATED STEREO Stereo-Gated DGS 975  0.06 4.16 9591 9834 9920 1042 0.06 3.87 9622 98.09 98.86

Table 1. Comparison of our proposed method and state-of-the-art methods on the Gated Stereo test dataset. We compare our model to
supervised and unsupervised approaches. M refers to methods that use temporal data for training, S for stereo supervision, G for gated
consistency and D for depth supervision. Best results in each category are in bold and second best are underlined. All metrics are also
evaluated for bins of approximately 16m to weight all distances equally.

3. Additional Network Details

In this section, we provide detailed descriptions of the network architecture for the stereo, monocular, and fusion branches
of the proposed model.

3.1. Stereo Network Branch

Our stereo network builds on the RAFT-Stereo [15] architecture consisting of three main components: a feature extractor,
a correlation pyramid, and a GRU-based update operator. Instead of using series of residual blocks for extracting features as
in [15], we use an HRFormer [28] variant to learn dense multi-resolution representation from 5-channel active and passive
inputs. In particular, we have used the HRFormer-S model to generate features at 1/4, 1/8, 1/16, and 1/32 of input image
resolution. This is followed by aggregating features from each level after up-sampling to generate multi-level representation,
similar to [20]. Following [15], we also use two separate feature extractors - feature encoder for extracting features from



both input views, and one context encoder for extracting features only from the target view (i.e., left) to be passed as input to
GRU during each iteration. Both feature extractors generate a 256-channel final feature representation at 1/4 of input spatial
resolution.

3.2. Ambient and Albedo Network Details

In addition to depth, we predict ambient and albedo information. This allows us to reconstruct a gated image using the
range intensity profile information for the cyclic loss. The reconstruction process is described in more detail in Section 6. We
jointly estimate ambient and albedo utilizing the intermediate feature representations from the context network and pass them
through a decoder module for ambient and albedo estimation. The feature decoder network architecture is listed in Table 2.

INTERMEDIATE FEATURES (CONTEXT ENCODER)

Layer # Output Shape
la 64 x HXx W
H W
2a 96 X o5 X 5
3a 128 x & x ¥
4a 128 x £ x W
5a 128 x £ x &
ALBEDO (DECODER) AMBIENT (DECODER)
Layer # Layer Description Output Shape Layer Description Output Shape
. ConvTranspose2D (kernel = 2) H w . ConvTranspose2D (kernel = 2) H w
6a Upsampling-1 128 x = = Upsampling-1 128 x & X &
! psampiing BatchNorm2D XF X s psampiing BatchNorm2D XEXE
6b Concat-1 Layer #6a & Layer #4a 256 X % X % Concat-1 Layer #6a & Layer #4a 256 X % X %
Conv (3x3) Conv (3x3)
LeakyReLU (o = 0.2) LeakyReLU (o = 0.2)
6c UpConvBlock-1 BatchNorm2D 128 x % X % UpConvBlock-1 BatchNorm2D 128 x % X %
Conv (3x3) Conv (3x3)
LeakyReLU (o = 0.2) LeakyReLU (o = 0.2)
BatchNorm2D BatchNorm2D
Ta Upsampling-2 128 x % X 4 Upsampling-2 128 x % X
7b Concat-2 [Layer #7a & Layer #3a [256 X % X G Concat-2 [Layer #7a @ Layer #3a 256 X % X G
7c UpConvBlock-2 128 x L x W UpConvBlock-2 128 x & x
8a Upsampling-3 96 X % X % Upsampling-3 96 X % X %
8b Concat-3 [Layer #8a @ Layer #2a [ 192 x % X % Concat-3 [Layer #8a @ Layer #2a [ 192 x % X %
8¢ UpConvBlock-3 96 x I x W UpConvBlock-3 96 x L x ¥
9a Upsampling-4 64 x Hx W Upsampling-4 64 x Hx W
% Concat-4  [Layer #9a @ Layer #1a [128 x H x W Concat-4  [Layer #9a @ Layer #1a [128 x H x W
9c UpConvBlock-3 64 x H x W UpConvBlock-3 64 x Hx W
10 ConvlD 1x HxW ConvlD 1x HxW

Table 2. Encoder-Decoder based architecture for fa.. Here, @ defines channel concatenation across feature tensors, « defines the slope
of a LeakyReLU. For the features obtained from the context network, we pass it to two decoder heads which predict albedo and ambient
for the scene. Here, H and W represent the height and width of the input.

3.3. Monocular Network Branch Details

For monocular depth estimation from active and passive gated inputs, we depart from Walia et al. [23] and employ a
DPT-Hybrid [19] as the choice of architecture for its ability to preserve fine-grained details and predicting globally coherent
results, in contrast to PackNet used in [23]. The network architecture is adapted at the first input layer to accept 5-channel
(active + passive gated channels) as input (as compared to 3-channel RGB).

3.4. Fusion Network Details

To merge the results obtained from monocular and stereo depth modality, we pass the gated image input, that consists our
of 3 active gated slices + 2 passive slices, stereo depth, and monocular depth to a fusion network. The network applies an
encoder-decoder architecture. We report the architecture for the encoder and decoder blocks of the proposed fusion network
in Table 3 and 4. The depth outputs are obtained at multiple resolutions and scaled to the original input dimensions. The final
output is obtained from the last stage, i.e., Outputl.



FusION ENCODER

Layer # Layer Name output channels ‘ kernel ‘ stride ‘ Pad ‘ BatchNorm | Non-Linearity | MaxPool2D | Output Shape
0 Input Tx HxW
la Convl 64 7 2 |3 v ReLU v 64 x L W

Layer1.0.0 64 3 1 1 v ReLU - 64 x L W
Layer 1.0 er = - é - W
Layer1.0.1 64 3 1 1 v - - 64 x T X T
2a  Layerl W
Layer1.1.0 64 3 1 1 v ReLU - 64 x T X
Layerl.1 TR
Layerl.1.1 64 3 1 1 v - - 64 x T x
Layer 2.0 128 3 2 1 v ReLU - 128 x & x W
3a  Layer2 ayer ¢ a £ o 5
Layer2.1 128 3 1 1 v ReLU - 128 x g X T
Layer3.0 256 3 2 1 v ReLU - 256 x £ x W
4a  Layer3 ayer € X 16 X e
Layer3.1 256 3 1 1 v ReLU - 256 X 15 X 1
b H w
Sa Layerd Layer4.0 512 3 2 1 4 ReLU - 512 x % x ?
Layer4.1 512 3 1 1 v ReLU - 512 X 35 X 33

Table 3. Architecture for encoder stage of the proposed fusion network block. All convolution operations refer to 2D-convolution opera-
tions. Features extracted from the encoder stage, which are used in fusion decoder stage, are listed in Table 4.

FUSION DECODER

Layer # Layer Name output channels | kernel | stride pad Non_linearity | Output Shape
. i _ H ., W
ConvBlock0 256 3 1 (Reflection)(1,1) | ELU(a = 1.0) | 256 x 33 X 33
H ., W
6 Decoder( Upsample + Concat (4a) 512X 15 X 75
ConvBlock1 256 3 1 (Reflection)(1,1) | ELU(a = 1.0) | 256 x % X %
ConvBlock0 128 3 1| (Reflection)(1,1) | ELU(a = 1.0) [ 128 x {L x W
Decoderl Upsample + Concat (3a) 256 x % X %
7 7
ConvBlockl 128 3 1 |(Reflection)(1,1) | ELU(cx = 1.0) | 128 x % X %
Ouputd depthconv4 1 3 1 1 ReLU Ix 4w
Upsample 1xHxW
Decoder2 ,
ecoder 64 3 | 1 |(Reflection)(1,1)| ELU(a = 1.0) | 64 x L x I
3 (ConvBlock0, Upsample + Concat (2a), ConvBlock1)
H ., W
Output3 depthconv3 1 3 1 1 ReLU 1x 7 x
Upsample I1xHxW
Decoder3 . H o w
32 3 1 (Reflection)(1,1) | ELU(a = 1.0) | 32 x 5 X 5~
9 (ConvBlock0, Upsample + Concat (1a), ConvBlock1)
H., W
Outpu2 depthconv2 1 3 1 1 ReLU 1x 5 x5
Upsample I1xHxW
Decoder4 . i
16 3 1 (Reflection)(1,1) ReLU 16 x H x W
10 (ConvBlock0, Upsample, ConvBlock1)
Output] | depthconv1 1 3 1 1 ReLU IxHxW

Table 4. Architecture for fusion network decoder. Here, the upsample operation is a bilinear interpolation resizing towards the output
shape, the concat operation stacks the features obtained from Table 3 along the feature dimension. Output{1-4} refers to depth output at
multiple resolutions resized to input dimensions.

4. Additional Training Details

In this section, we provide details on the loss function, pretraining and relevant hyperparameters.
For training, we use the following overall loss,

Lmono = €1 Lrecon + 2Lsup + c3Lsmooth, (D
Lsterco = Calreproj + ¢5Lrecon + 6 Lilium

+ c7Lsup + c8Lsmooth, (2)

L fusion = €9Lms + c10Lsup + €11 Lsmooths 3)

with constants cq ... 11. Those values are chosen to be ¢; = 0.01, ¢ = 1.0, c3 = 0.001, ¢4 = 0.01, c¢5 = 0.01, ¢ = 0.002,
cy = 1.0, cg = 0.001, cg = 0.1, ¢19 = 1.0, and ¢1; = 0.005.
As an effective training strategy, we first independently optimize the monocular and stereo networks using the losses



presented in Eq. (1), (2), and (3). The monocular network is optimized with the £,,,,,,, loss for 12 epochs using ADAMW [16]
with 8, = 0.9, By = 0.999, learning rate of 10~* and of weight decay 10~2. The stereo network is trained with £ereo for
12 epochs using ADAMW [16] with 3; = 0.9 and B, = 0.999, learning rate of 10~* and weight decay of 10~2. Finally,
the fusion network is trained with frozen monocular and stereo networks with the loss £ ¢,si0n for 5 epochs using ADAMW
and the losses described in Eq. (3) with a learning rate of 3 - 10~%.

We use 7 = 0.05 for generating occlusion masks referred in Equation (4) of the main paper. The gating mask M, and
signal-to-noise ratio mask Mgy is defined in Section 6. For the Mg r mask we set the parameter 6 to 0.04 and and ~ to
0.98. All methods are trained on NVIDIA A100 GPUs with 80GB memory.

4.1. Training for Baseline Methods

To provide a fair comparison of the proposed model against state-of-the-art methods, all the baseline methods that we
compare to use the same training, validation and testing dataset as used for Gated Stereo.
The four sparse depth-completion algorithms, namely Sparse2Dense [ | 7], Calibrated Backprojection Network (KBNet) [25],
NLSPN [18], PENet [I1], and GuideNet [21] have been finetuned using the RGB left frame and a subset of the LiDAR
pointcloud, created by randomly sampling five hundred points from the pointcloud. The monocular RGB methods PackNet
[10] and Monodepth2 [7] have been finetuned through the use of temporal data of the left camera, following their respective
proposed training methodologies. The other monocular algorithms SimIPU [12], AdaBins [1], DPT [19] and DepthFormer
[13] have been finetuned using the sparse depth supervision provided by the LiDAR, in an analogous way to how Gated
Stereo has been trained. A similar approach has been employed also for the stereo depth-supervised models PSMNet [4],
STereo TRansformer (STTR) [14], HSMNet [27], ACVNet [26] and RAFT-Stereo [ | 5], using the highest possible resolution.
For all the methods mentioned above, instead of training from scratch, we start from the publicly available pretrained models
best fit for our use case, which typically are the ones finetuned on the KITTI dataset, and finetune it on our data.

5. Runtime

Our optimized full network is bottlenecked by the stereo branch and optimized in our prototype system with two parallel
A100 GPUs, one for the monocular branch and one for the stereo branch, and operates at 14.5Hz for FP32 and 23Hz for FP16,
matching the recording rate of the sensor. The addition of the HRFormer block comes at a reduction of 27.4% in runtime.
The addition of a 5-channel input tensor, including the two passive slices, to the Mono and Stereo branches comes at a
runtime cost of 10% and for 1.7%, respectively. Gated2Gated [55] runs on the same hardware at 90Hz. Our non-optimized
components are the following (runtime included): Fusion Stage (175Hz), MonoGated (DPTHybrid with 5 Gated slices as
input) (55.18Hz), Stereo (RaftStereo+HRFormer) (6.74Hz), Stereo (RaftStereo) (9.28Hz).

6. Gated Reconstruction Consistency

In the following, before describing gated reconstruction consistency, we first demonstrate the accuracy of the proposed
ambient and albedo estimation network — both components are required for the proposed gated reconstruction loss. Figure
3 shows examples of the input gated slices, the estimated depths, the estimated ambient, and albedo maps for representative
scenes. The first two examples show results in nighttime scenes and the last three examples in daytime conditions. In the
first two examples, the estimated mean ambient light is correctly estimated as very close to zero. Only single light sources
are visible in the ambient image, such as car headlights. In daytime conditions, the ambient component is strongly present
and takes a good portion of the total intensity of the gated slices. The estimated albedo maps are consistent in both day and
night time conditions. Here, it is also important to note that the shadow visible behind close objects such as pedestrian and
vehicles are due to the non-negligible distance between gated camera and illuminator, mounted at different positions of the
vehicle as shown in Figure 4 of the main paper.

With adequately estimated albedo & and ambient A terms in hand, the gated reconstruction can be derived from the gated
image formation, that is, ~ ~
I¥(2) = aCr(z)+ A+ Df, @)

with I being the outputted image, k the slice number, v the image view, & being the albedo, C'; the range intensity profile, 2
the scene distance, A being the passive and DF the dark current.
Here, the estimated ambient A captures the measurement noise,

A= Ng + Mp + Anoiseless (@)
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Figure 3. Qualitative examples of the three input gated slices and their passive component, and the corresponding predicted ambient,
albedo, and depth for left and right images. Since we use a gated reconstruction loss [23] for additional depth supervision, as a by-product,
our method reconstructs albedo and ambient illumination of the scene in addition to the depth information. While albedo represents the
NIR reflectivity of objects and the laser illumination, the ambient image captures sunlight and active light sources.

where 7, models the signal-dependent Poisson photon shot noise and 7, Gaussian read-out noise [5].
The estimation of the ambient A can be directly supervised through the passive captured gated images I4, I5 and the
estimated A*o. Specifically, we use the formulation derived in the main manuscript for the ambient consistency,

AR =y (I* + I° — Dy = D)/ (pa + pis), (6)



| Night | Day |

‘ Laser duration  Gate duration Delay ¢ Pulses ‘ Laser duration  Gate duration Delay ¢ Pulses ‘

It 240ns 220ns 260 ns 202 240ns 220ns 260 ns 101
I? 280ns 420 ns 400 ns 591 280ns 420ns 400 ns 296
g 370ns 420ns 750ns 770 370ns 420ns 750ns 385
It - 1000 ns - 805 - 120ns - 175
» - 1000 ns - 1745 - 120 ns - 900

Table 5. Definitions of the gating parameters that we use for the experimental acquisition in this work.

with exposure times ji4 5 ; for the passive images and k for the active gated slices. With this in mind, the ambient term can
be directly supervised using the photometric loss £, [6], with Structural Similarity (SSIM) [24] and £1 norm,

L,y(A,AR) =0.85- 1*35“5("“‘”

+0.15 - ||A—A*o0]|;. (7)

For each slice, we use the parameters camera gate, laser duration, laser delay and number of pulses as in [9,23]. The
parameters are reported in Table 5. The profiles C(z) are measured experimentally with calibrated targets and approximated
with Chebyshev polynomials T,

To = 1; T = z, Tn+1 = 22T, — Tn—la 3

up to order of N = 6.

To guide the loss better when reconstructing the gated images we employ the mask M, from [23] which filters for low
signal-to-noise areas, saturated areas, and multi-path effects, not modeled by Eq. 4. We derive the specific mask employed in
our loss in the following.

Signal-to-noise Ratio. Areas with little to no illumination, e.g., due to occlusion, the pixel variation between the three
active slices is minimal. For each pixel p,,, at coordinate position (u, v) we can therefore define the binary mask Mgy g,

M r(u,v){ (u,v) | (max (pl,) — min (p},,)) > 0}. ©)

Saturated Pixels. Saturated pixels are caused by retro reflectors and introduce a non-linearity clipping all intensity values
to the image maximum value. This causes that the underlying true albedo cannot be estimated. Such pixels are suppressed
by the mask S(u,v),

S(u, v){ (u, v) | max(py,) <7} (10)

Multipath Correction. We also remove multipath effects from the cyclic supervision. In most cases, such multi-path
effects are the second-order reflections from strong reflectors as traffic signs on the road surface. Such points are projected
underneath the road surface. Using the camera intrinsics K, we are able to estimate a constant ground plane with normal n

and height h. Using the predicted depth z, we can filter which points are projected underneath the road and should be omitted
for supervision. We define the set E of incorrectly predicted pixels (u, v) as,

E(u,v){ (u,v) | (2K a;)n < h}, (11)

where x; = [u, v, 1] represent the homogeneous pixel coordinate.
The final gated reconstruction mask M|, then is defined as,

1 if (w,v) ¢ E(u,v) A (u,v) € S(u,) A (u,v) € Msyr(u,v)

. (12)
0 otherwise.

Mg (u,v) = {

The gated reconstruction loss is defined as,

Lrceon = Lp(My © I*(2), My © I*) + L, (A, A*). (13)



7. Ambient Estimation and Suppression

We briefly describe the method used to modulate the ambient light component, illustrated in Figure 4. Starting from the
HDR passive captures I* and I°, the ambient illumination term Ao is computed. Then this estimate is used to increase
or decrease the ambient light in all frames, depending on the factor u, uniformly sampled from the interval [0.5p, 1.5pk],
where py is the exposure time of the active slices. This is equivalent to capturing between 50% and 150% of the original
ambient component. To increase the accuracy of the ambient light modulation, we consider additionally the dark level (also
referred as dark current) D¥. The DF is assumed to be solely dependent on the camera and gating settings, and was calibrated
offline.

Original Image Without Dark Level Ambient Light Enhanced With Dark Level
. |
=
<
o
o -
= a ik P i ‘les
g —_ >+ > -
2 . AN

Figure 4. Illustration of the suppression of ambient illumination by estimation and subtracting the ambient term, under the consideration
of the dark level, from the gated slice measurements.

Figure 5 reports examples of scene captures with an increased or decreased ambient light component. The second and third

Original Scene - 70% Ambient Light - 30% Ambient Light + 30% Ambient Light + 70% Ambient Light

Figure 5. Example measurements with modulated ambient light components using the estimated ambient illumination term.

columns of the first three rows demonstrate that this process allows to modify images taken in normal daylight conditions
to get captures closer to (less frequent) twilight or dawn conditions. On the other hand, as can be seen in the last column, a
strong increase in ambient light might lead to a saturation of the capture and hence loss of details.



8. Illuminator View Consistency vs. Left-Right Warping

In this section, we illustrate the advantage of the illuminator view consistency. In Figure 6 qualitative warping results
are depicted, showing left-right, camera-to-illuminator, and error maps. Here in sample (a) and (b), the shadow cast by the
vehicle leads to inaccuracies in the left-right warping (second row), while it is completely absent in the illuminator view
(third row). This behavior is because the shadows cast by the emitted light from the illuminator field of view are not visible
from its view. Hence, the matching is more stable. Please also note, especially in the last example, the presence of multi-path
effects on the roads, which are not the same between left and right frames. Due to this inconsistency, such effects are clearly
visible in the left-right warping error. On the other hand, these effects are minor in the case of illuminator projections.



LEFT FRAME RIGHT FRAME ESTIMATED DEPTH

RIGHT-TO-LEFT LEFT-TO-RIGHT LEFT-TO-RIGHT ERROR

LEFT-TO-ILLUMINATOR RIGHT-TO-ILLUMINATOR CONSISTENCY ERROR

LEFT FRAME RIGHT FRAME ESTIMATED DEPTH

RIGHT-TO-LEFT LEFT-TO-RIGHT LEFT-TO-RIGHT ERROR

LEFT-TO-ILLUMINATOR RIGHT-TO-ILLUMINATOR CONSISTENCY ERROR

(b)
Figure 6. Examples of left-right and illuminator projections computed using the estimated depth map with corresponding error maps. For
shadow areas and multi-path regions, the illuminator projections have less errors than the left-right warps.

9. Fusion Network for Mono and Stereo

In this section, we describe our approach toward fusing monocular and stereo depth. We also experimentally validate the
effectiveness of our fusion module.



9.1. Depth Fusion

Stereo depth estimation computes depth by finding dense correspondence of pixels in left and right views. Given a pair
of rectified stereo images with baseline B, we compute the disparity d for each pixel in the reference image, then the stereo
depth z° is calculated using %. Although current state-of-the-art methods provide accurate depth estimates, stereo methods
usually struggle to find correct correspondences in occluded and texture-less regions of the scene. Furthermore, the depth
accuracy also depends on the baseline between the stereo camera setup. Monocular depth estimation relies on image-level
cues like texture variations, gradients, occlusions, object sizes, etc. to estimate scale-ambiguous depth estimates of the scene.

To combine the strengths of two depth estimation techniques, we propose a fusion network that acts as an additional
refinement stage to improve the final predicted depth. The architecture of the fusion network is discussed in Section 3.4.
The central idea behind fusing the two depth maps is that monocular depth estimates are often more reliable in occluded
regions, whereas non-occluded regions, especially far-away objects which are visible in both left and right views have more
accurate depth estimate in the stereo depth modality. Figure 7 presents qualitative examples showing how monocular and
stereo depth can be fused using occlusion masks to construct a pseudo ground-truth for the fusion stage training. In addition
to quantitative improvements, we have presented a set of qualitative examples in Section 9.2.

Monocular Depth, 2" Stereo Depth, 2° Occlusion Mask, M, Fused Depth, Z 7

Figure 7. Qualitative example showing how occlusion masks can be used to fuse monocular depth 2z and stereo depth z°,i.e. Zy =

;"rzm +(1 - ﬂr)zs. Stereo depth estimation fails to correctly estimate depth in occluded and untextured regions (incomplete
structure annotated with black box), whereas monocular depth performs poorly for structures located at far distance (indicated with a white
box).

9.2. Qualitative Evaluation of Stereo-Mono Fusion

In this section, we provide qualitative examples to show how our fusion approach leads to significant qualitative improve-
ments in depth estimation. The following Figs. 8 and 9 validate the effectiveness of the proposed fusion module at long and
close distances.



Fusion at Long Range

RGB LIDAR
STEREO MoNoO FfJSION ‘

(a) Even in daylight conditions, a car located at far-away distance is only visible in the stereo and fused depth

RGB

GATED LIDAR
STEREO MoNoO FuUsION

(b) Far-away signboard is merged with background for monocular depth but visible in stereo and fused depth.

RGB LIDAR

STEREO MonNo FusIiON
(c) Stereo and Fused depth maps capture thin structure located at long range.

Figure 8. Qualitative examples (a-c) showing significant improvements in depth maps for objects located at far distances. Since stereo-
based depth is better suited for objects located at long distances, our fusion module is able to implicitly emphasize more on stereo-depth
information for such objects, as shown by the marked regions.

10. Additional Qualitative Evaluation

In this section, we present additional qualitative results of the proposed Gated Stereo and other state-of-the-art methods,
including monocular gated [9, 23], monocular RGB [7, 10, 13, 19], sparse-depth-completion [17,25], and stereo RGB [15,
26,27] approaches. Figure 10, 11, 12, 13, 14, and 15 show the depth map predictions of the different approaches with the



Close-Range Fusion for Thin Structures

LIDAR
STEREO MONO FusioN

(a) Close-range thin structures are better captured by monocular and fused depth in daylight conditions.

RGB GATED LIDAR

STEREO MonNo FusIioN
(b) For night, signboard pole is more visible in monocular and fused depth.

GATED LIDAR
STEREO MONO FUsION

(c) For close range illuminated structures, stereo depth performs poorly as compared to monocular and fused depth.

Figure 9. Qualitative examples (a-c) showing close-range depth-map improvements. Using monocular depth, our fusion network is able to
improve the depth estimates for close-range thin objects which are not captured by the stereo-based branch, as shown by marked regions.

corresponding RGB and gated image as well as the LIDAR measurements. The results demonstrate that our method is able
to predict much sharper edges and less washed-out depth estimates than the other methods, especially for far distances. For
example in Figure 10 and 12, Gated Stereo is the only method that is able to provide distinct object contours for the far away
cars in the scenes. Furthermore, due to the additional HDR-like passive input, Gated Stereo is able to handle sunlight and
maintain its performance even in the presence of strong ambient light. This is shown in Figure 13, 14, and 15, where Gated
Stereo is able to provide depth maps with fine details including thin poles of traffic lights and traffic signs. We notice that the



self-supervised methods Packnet [10] and Monodepth2 [7] struggle to estimate correct depth values for moving objects (see
Figure 11 and 15). Moreover, LiDAR depth completion methods [17,25] are not able to interpolate plausible depth maps,
revealed by truncated object edges, for example in Figure 14 and 15. In general, monocular and stereo RGB approaches are
able to capture fine structures for close distances but have difficulty in determining exact depth for far distances. In contrast,
the proposed method is able to provide accurate and detailed depth maps for near and far distances during day and night.

| -

GatedStereo GatedRGated

.‘

Gated2Depth Sparse2Dense KBNet Packnet Monodepth2

DepthFormer HSMNet ACVNet Raft—Stereo
Flgure 10. Qualitative comparison of the proposed Gated Stereo approach and state-of-the-art methods. For each example, we show the
corresponding RGB image, the colored gated image, and the LIDAR measurements. Gated Stereo predicts fine details and sharper object
contours than the other approaches.




GatedStereo GatedRGated

Gated2Depth Sparse2Dense Packnet Monodepth2
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PT DepthFormer HSMNet ACVNet Raft—Stereo

Figure 11. Additional qualitative comparison of our Gated Stereo approach and state-of-the-art methods for thin structure (red) and distant

small object (blue).

GatedStereo GatedRGated

Sparse2Dense Monodepth2

PT DepthFormer HSMNet ACVNet Raft—Stereo
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Figure 12. Additional qualitative comparison of our Gated Stereo approach and state-of-the-art methods.



GatedStereo Gated2Gated

GatedZDepth SparseZDense Monodepth?2

DepthFormer HSMNet ACVNet Raft—Stereo

Figure 13. Additional qualitative comparison of our Gated Stereo approach and state-of-the-art methods.

GatedStereo Gated2Gated

“— -
FE%EL

Packnet Monodepth?2

DPT DepthFormer HSMNet ACVNet Raft—Stereo

Gated2Depth SparselDense

Figure 14. Additional qualitative comparison of our Gated Stereo approach and state-of-the-art methods.
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Figure 15. Additional qualitative comparison of our Gated Stereo approach and state-of-the-art methods.
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Figure 16. Random samples of our proposed Gated Stereo dataset to illustrate the diversity of scenes, illumination, and sensor modalities.
From left to right: RGB; gated I'* with red for I', green for 12, and blue for I®; gated passive with low exposure time I*; gated passive
with high exposure time I°; LiDAR.



Figure 17. Random samples of our proposed Gated Stereo dataset to illustrate the diversity of scenes, illumination, and sensor modalities.
From left to right: RGB; gated I'* with red for I', green for 12, and blue for I®; gated passive with low exposure time I*; gated passive
with high exposure time I°; LiDAR.



Figure 18. Random samples of our proposed Gated Stereo dataset to illustrate the diversity of scenes, illumination, and sensor modalities.
From left to right: RGB; gated I'* with red for I', green for 12, and blue for I®; gated passive with low exposure time I*; gated passive
with high exposure time I°; LiDAR.
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