
Gated Stereo:
Joint Depth Estimation from Gated and Wide-Baseline Active Stereo Cues

Stefanie Walz1 Mario Bijelic2 Andrea Ramazzina1 Amanpreet Walia3 Fahim Mannan3 Felix Heide2,3
1Mercedes-Benz 2Princeton University 3Algolux

Abstract
We propose Gated Stereo, a high-resolution and long-

range depth estimation technique that operates on active
gated stereo images. Using active and high dynamic range
passive captures, Gated Stereo exploits multi-view cues
alongside time-of-flight intensity cues from active gating.
To this end, we propose a depth estimation method with a
monocular and stereo depth prediction branch which are
combined in a final fusion stage. Each block is super-
vised through a combination of supervised and gated self-
supervision losses. To facilitate training and validation, we
acquire a long-range synchronized gated stereo dataset for
automotive scenarios. We find that the method achieves an
improvement of more than 50 % MAE compared to the next
best RGB stereo method, and 74 % MAE to existing monoc-
ular gated methods for distances up to 160 m. Our code,
models and datasets are available here1.

1. Introduction
Long-range high-resolution depth estimation is critical

for autonomous drones, robotics, and driver assistance sys-
tems. Most existing fully autonomous vehicles strongly rely
on scanning LiDAR for depth estimation [51, 52]. While
these sensors are effective for obstacle avoidance the mea-
surements are often not as semantically rich as RGB im-
ages. LiDAR sensing also has to make trade-offs due to
physical limitations, especially beyond 100 meters range,
including range range versus eye-safety and spatial reso-
lution. Although recent advances in LiDAR sensors such
as, MEMS scanning [60] and photodiode technology [58]
have drastically reduced the cost and led to a number of sen-
sor designs with ≈ 100 - 200 scanlines, these are still sig-
nificantly lower resolutions than modern HDR megapixel
camera sensors with a vertical resolution more than ≈ 5000
pixels. However, extracting depth from RGB images with
monocular methods is challenging as existing estimation
methods suffer from a fundamental scale ambiguity [16].
Stereo-based depth estimation methods resolve this issue
but need to be well calibrated and often fail on texture-less

1https://light.princeton.edu/gatedstereo/

regions and in low-light scenarios when no reliable features,
and hence triangulation candidate, can be found.

To overcome the limitations of existing scanning LiDAR
and RGB stereo depth estimation methods, a body of work
has explored gated imaging [2, 7–9, 22, 27]. Gated im-
agers integrate the transient response from flash-illuminated
scenes in broad temporal bins, see Section 3 for more de-
tails. This imaging technique is robust to low-light, and
adverse weather conditions [7] and the embedded time-of-
flight information can be decoded as depth. Specifically,
Gated2Depth [23] estimates depth from three gated slices
and learns the prediction through a combination of simula-
tion and LiDAR supervision. Building on these findings, re-
cently, Walia et al. [59] proposed a self-supervised training
approach predicting higher-quality depth maps. However,
both methods have in common that they often fail in condi-
tions where the signal-to-noise ratio is low, e.g., in the case
of strong ambient light.

We propose a depth estimation method from gated stereo
observations that exploits both multi-view and time-of-
flight cues to estimate high-resolution depth maps. We
propose a depth reconstruction network that consists of a
monocular depth network per gated camera and a stereo
network that utilizes both active and passive slices from the
gated stereo pair. The monocular network exploits depth-
dependent gated intensity cues to estimate depth in monoc-
ular and low-light regions while the stereo network relies
on active stereo cues. Both network branches are fused in a
learned fusion block. Using passive slices allows us to per-
form robustly under bright daylight where active cues have
a low signal-to-noise ratio due to ambient illumination. To
train our network, we rely on supervised and self-supervised
losses tailored to the stereo-gated setup, including ambient-
aware and illuminator-aware consistency along with multi-
camera consistency. To capture training data and assess the
method, we built a custom prototype vehicle and captured a
stereo-gated dataset under different lighting conditions and
automotive driving scenarios in urban, suburban and high-
way environments across 1000 km of driving.

Specifically, we make the following contributions:

• We propose a novel depth estimation approach us-
ing gated stereo images that generates high-resolution



dense depth maps from multi-view and time-of-flight
depth cues.

• We introduce a depth estimation network with two
different branches for depth estimation, a monocular
branch and a stereo branch, that use active and passive
measurement, and a semi-supervised training scheme
to train the estimator.

• We built a prototype vehicle to capture test and training
data, allowing us to assess the method in long-range
automotive scenes, where we reduce the MAE error by
50 % to the next best RGB stereo method and by 74 %
on existing monocular gated methods for distances up
to 160 m.

2. Related Work

Depth from Time-of-Flight. Time-of-Flight (ToF) sensors
acquire depth by estimating the round travel time of light
emitted into a scene and returned to the detector. Broadly
adopted approaches to time-of-flight sensing include corre-
lation time of flight cameras [26, 32, 33], pulsed ToF sen-
sors [51] and gated illumination with wide depth measuring
bins [22, 27]. Correlation time-of-flight sensors [26, 32, 33]
flood-illuminate a scene and estimate the depth from the
phase difference of the emitted and received light. This
allows for precise depth estimation with high spatial res-
olution but due to its sensitivity to ambient light exist-
ing correlation time-of-flight detectors have been limited
to indoor applications. In contrast, pulsed light ToF sys-
tems [51] measure the round trip time directly from a sin-
gle light pulse emitted to a single point in the scene. Al-
though a single point measurement offers high depth preci-
sion and signal-to-noise ratio, this acquisition process man-
dates scanning to allow long outdoor distances and, as such,
drastically reduces spatial resolution in dynamic scenes. In
addition, pulsed LiDAR measurements can drastically de-
grade in adverse weather [6, 10, 30] due to backscattered
light from fog or snow. Gated cameras [7, 22, 27] accumu-
late flood-illuminated light over short temporal bins limiting
the visible scene to certain depth ranges. As a result, gated
cameras gate-out backscatter and at short-range [7] and re-
construct coarse depth [2, 8, 9].
Depth Estimation from Monocular and Stereo Intensity
Images. Depth estimation from single [19,25,37,38], single
images with sparse LiDAR points [28,47,53,54,62], stereo
image pairs [3, 11, 39, 65] or stereo with sparse LiDAR
[14, 68] is explored in a large body of work. Monoc-
ular depth imaging approaches [38] offer low cost when
a single CMOS camera is used, reduced footprint, espe-
cially compared to LiDAR systems, and, hence, also can
be applied across application domains. However, monoc-
ular depth estimation methods inherit a fundamental scale
ambiguity problem that can only be resolved by vehicle

speed or LiDAR ground-truth depth measurements at test-
time [25]. Stereo approaches, on the other hand, allow
triangulating between two different views resolving the
scale ambiguity [11]. As a result, these methods allow
for accurate long-range depth prediction when active sen-
sors are not present. To learn the depth prediction from
stereo intensity images, existing methods employ super-
vised [11, 11, 16, 29, 31, 37, 38, 44, 45] and unsupervised
learning techniques [17, 19, 21, 25, 70]. Supervised stereo
techniques often rely on time-of-flight data [11, 16, 29, 44]
or multi-view data [31, 38, 45] for supervision. As a re-
sult, the collection of suitable dense ground-truth data can
be challenging. Specifically, existing work [18, 55] aims
to compensate for the sparsity of LiDAR ground-truth mea-
surements through ego-motion correction and acquisition of
multiple point clouds. Moreover, such aggregated LiDAR
“ground-truth” depth is incorrect in scattering media [5]. To
tackle this challenge and exploit large datasets of video data
without ground-truth LiDAR depth present, self-supervised
stereo approaches exploit multiview geometry by aligning
stereo image pairs [17, 19] or they make use of image view
synthesis between temporally consecutive frames [21, 25,
70]. Garg et al. [17] train a network to predict disparities
from monocular camera images by encouraging consistency
when warped to stereo images. Followup work [19, 56] ex-
tends this idea to warp temporally consecutive stereo cap-
tures. To perform the warping correctly for these methods,
two networks are necessary one predicting the depth and a
second one predicting a rigid body transformation between
two temporally adjacent frames. Existing work on depth
prediction has investigated diverse neural architectures for
depth estimation networks [3, 17, 21, 25, 37, 39, 65] and ex-
tensions in the loss formulation [15,19,21,25,43,49,57,66].
Recently, RAFT-Stereo [41] relies on iterative refinement
over the cost volume at high resolution, thanks to the con-
struction of a lighter cost volume and the employment of 2D
convolution instead of 3D convolutions, which are mem-
ory and computationally intensive. All depth estimation
methods discussed above, which are based on passive imag-
ing, can fail in low-light or low-contrast scenarios that
active gated methods [23] tackle using illumination. Al-
ternate approaches employ sparse LiDAR measurements
[14, 28, 47, 53, 54, 62, 68] not only for supervised training
but also during inference time to overcome the scale ambi-
guity from monocular approaches, but they come with the
drawback that temporal LiDAR distortions and scan pattern
artefacts are passed through.

Depth Estimation from Gated Images. Gated depth esti-
mation methods with analytical solutions guiding the depth
estimation [34,35,63] had been first proposed over a decade
ago. Recently, learned Bayesian approaches [1, 50] and
approaches employing deep neural networks [23, 59] have
achieved dense depth estimation at long-range outdoor sce-



Figure 1. The proposed stereo gated camera consists of two gated
cameras and a single flood-lit pulsed illumination source. Vary-
ing the delay between illumination and the synchronized cameras
results in different range-intensity profiles Ck describing the pixel-
intensity for distance z for each camera in addition to disparity d.
For image formation in bright airlight, an additional passive com-
ponent Λ is required. The resulting images for left and right cam-
era positions illustrating gating and parallax in an example scene
are illustrated at the bottom.

narios and in low-light environments. All of these existing
methods rely on monocular gated imaging systems, which
are able to deliver similar performances to passive color
stereo approaches [23, 59]. Gruber et al. [23] introduce a
fully supervised depth prediction network leveraging pre-
training on fully synthetic data performing on par with tra-
ditional stereo approaches. Recently Walia et al. [59] pro-
posed a self-supervised gated depth estimation method. Al-
though their approach resolves the scale ambiguity, it still
suffers in bright daylight in the absence of depth cue, and
at long ranges due to depth quantization and lack of relative
motion during training. In this work, we tackle these issues
with a wide-baseline stereo-gated camera to estimate accu-
rate depth in all illumination conditions and at long ranges.

3. Gated Stereo Imaging
This section introduces the proposed gated stereo cam-

era. We propose a synchronized gated camera setup with
a wide baseline of b =0.76 m. After flood-illuminating the
scene with a single illuminator, we capture three synchro-
nized gated and passive slices with two gated cameras. Syn-
chronizing two gated cameras requires not only the trigger
of individual single exposures as for traditional stereo cam-
eras, but the transfer of gate information for each slice with
nano-second accuracy. This level of synchronization allows
us to extract slices with gated multi-view cues.

Specifically, after the emission of a laser pulse p at time
t = 0, the reflection of the scene gets integrated on both
camera sensors after a predefined time delay ξ identical on
both cameras. Only photons arriving in a given tempo-
ral gate are captured with the gate function g allowing to
integrate implicit depth information into 2D images. Fol-
lowing Gruber et al. [24], the distance-dependent pixel in-
tensities are described by so-called range-intensity-profiles

Ck(z) which are independent of the scene and given by,

Ik(z, t) = αCk(z, t),

= α

∞∫
−∞

gk(t− ξ)pk

(
t −

2z

c

)
β(z)dt,

(1)

where Ik(z, t) is the gated exposure, indexed by k for the
slice index at distance z and time t; α is the surface re-
flectance (albedo), and β the attenuation along a given path
due to atmospheric effects. Both image stacks are rectified
and calibrated such that epipolar lines in both cameras are
aligned along the image width and disparities d can be es-
timated. Epipolar disparity is consistent with the distance
z = bf

d , where f is the focal length, providing a depth cue
across all modulated and unmodulated slices.

In the presence of ambient light or other light sources
as sunlight or vehicle headlamps, unmodulated photons are
acquired as a constant Λ and added to the Eq. 1,

Ik(z) = αCk(z) + Λ. (2)

Independently from ambient light, a dark current Dk
v de-

pending on the gate settings is added to the intensity count,

Ikv (z) = αCk(z) + Λ +Dk
v , (3)

which we calibrate for each gate k and camera v. We adopt
the Poisson-Gaussian noise model from [59]. In contrast to
prior work [23, 59], we also capture two unmodulated pas-
sive exposures in an HDR acquisition scheme. So specif-
ically, we use three gated exposures C1, C2, C3 with the
same profile as in [23] and two additional passive images
without illumination, that is, C4 = C5 = 0, and HDR-
like fixed exposure times of 21 µs and 108 µs at daytime and
805 µs and 1745 µs at night time. This allows us to recover
depth simultaneously from stereo-gated slices and passive
stereo intensity cues with the same camera setup. The pro-
posed system captures these images at 120 Hz, natively, al-
lowing for a per-frame update of 24 Hz, which is about 2×
the update rate of recent commercial scanning LiDAR sys-
tems, e.g., Luminar Hydra or Velodyne Alpha Puck.

4. Depth from Gated Stereo
In this section, we propose a depth estimation method

that exploits active and passive multi-view cues from gated
images. Specifically, we introduce a joint stereo and
monocular network that we semi-supervise this network us-
ing several consistency losses tailored to gated stereo data.
In the following, we first describe the proposed network ar-
chitecture before describing the semi-supervision scheme.

4.1. Joint Stereo-Mono Depth Network

The proposed depth estimation network is illustrated in
Fig. 2, which has a stereo and monocular branches, and a



Figure 2. The proposed model architecture is composed of a stereo (fs
z ), two monocular (fm

z ), and two fusion (fr
z ) networks with shared

weight. The fusion network combines the output of the monocular and stereo networks to obtain the final depth image for each view.
Both stereo and monocular networks use active and passive slices as input, with the stereo network using the passive slices as context and
includes a decoder (fΛα) for albedo and ambient estimation which are used for gated reconstruction. The loss terms are applied to the
appropriate pixels using masks that are estimated from the inputs and outputs of the networks.

final fusion network that combines the outputs from these
branches to produce the final depth map.

Monocular Branch. The monocular network, fm
z : I →

zm, estimates absolute depth for a single gated image I
from either of the two imagers. Unlike monocular RGB im-
ages, monocular gated images encode depth-dependent in-
tensities which can be used by monocular depth networks to
estimate scale-accurate depth maps [23, 59]. The proposed
monocular gated network uses a DPT [48]-type architecture
and outputs inverse depth bounded in [0, 1] which results in
absolute depth between [1,∞]. For network details, we re-
fer to the Supplemental Material.

Stereo Branch. The stereo branch, fs
z : (Il, Ir) → (zsl , z

s
r),

estimates disparity from a pair of stereo images and outputs
the depth for the left and right images zl and zr respectively.
The network architecture is based on RAFT-Stereo [41]
with all three active gated slices and two passive captures
concatenated to a 5-dimensional input. The feature extrac-
tor is replaced with HRFormer [67], which is able to ex-
tract robust high-resolution features for downstream stereo
matching. The left and right slice features fs

f,l and fs
f,r are

given as input to the correlation pyramid module and the
context feature fs

c,l are used as input for the GRU layers
(see Fig. 2 bottom-left). Furthermore, the context features
are fed to a decoder, fΛα, to estimate the albedo and ambi-
ent components for gated slice reconstruction.

Stereo-Mono Fusion. Monocular gated depth estimates
suffer from depth quantization due to the depth binning of
gated slices, failure in the presence of strong ambient illu-
mination, and illuminator occlusion. Stereo methods, in iso-
lation, suffer from inherent ambiguity in partially occluded
regions and can fail when one of the views is completely

obstructed, e.g., by lens occlusions and bright illumination.
Previous work [13] proposed distilling the monocular net-
work with the stereo output, and distilling the stereo net-
work with fused pseudo-labels. Departing from that ap-
proach, we use a light-weight 4-layer ResUNet [69] net-
work, fr

z : (zm, zs, I) → zf , that takes in monocular
and stereo depth with the corresponding active and passive
slices as input and produce a single fused depth map as out-
put. The active and passive slices provide additional cues
for the fusion network.

With the proposed depth estimation network in hand, we
propose a set of stereo and monocular semi-supervised
training signals for actively illuminated gated stereo pairs
along with high dynamic passive captures.

4.2. Depth and Photometric Consistency

We rely on self-supervised consistency losses and sparse
supervised losses as following.
Left-Right Reprojection Consistency. This loss enforces
the photometric consistency between the left and right gated
images given the per-pixel disparity,

Lreproj = Lp(Mo
l|r ⊙ Il,Mo

l|r ⊙ Il|r), (4)

with Il|r the left image warped into the right view using
the predicted disparity dl. Here, Lp [19] is a similarity loss
based on the structural similarity (SSIM) metric [61] and the
L1 norm, Lp(a, b) = 0.85 1−SSIM(a,b)

2 +0.15∥a−b∥1. The
occlusion mask Mo

l|r indicates pixels in the left image that
are occluded in the right image and is defined as a soft mask
for better gradient flow, Mo

l|r = 1 − exp
(
−η |dl + dl|r|

)
,

where dl is the left disparity and dl|r is the disparity of the
right image projected to the left view.



Figure 3. Scene regions occluded in the illuminator view will be
in shadow in the two views (left, middle), and shadowless after
projecting to the illuminator viewpoint (right).

Stereo-Mono Fusion Loss. The mono-stereo fusion loss
Lms guides the fusion network at depth discontinuities with
the occlusion mask to obtain a fused depth map, z̃f =
Mo

l|rz
m + (1−Mo

l|r)z
s, using the following loss,

Lms = ∥zf − z̃f∥1. (5)

Ambient Image Consistency. The ambient luminance in a
scene can vary by 14 orders of magnitude, inside a dark
tunnel with bright sun at a tunnel exit, all in the same
scene [46]. To tackle this extreme dynamic range, we recon-
struct the ambient Λk0 in the scene from the short exposure
slice µk, and sample ΛHDR from the HDR passive captures
I4, I5. Then, novel scene images Îkv can be expressed as,

ΛHDR
v = µs(I

4
v + I5v −D4

v −D5
v)/(µ4 + µ5), (6)

Λk0
v = µk(I

4
v + I5v −D4

v −D5
v)/(µ4 + µ5), (7)

Îkv = clip
(
Ikv − Λk0

v + ΛHDR
v , 0, 210

)
, (8)

with µs uniformly sampled in the interval from
[0.5µk, 1.5µk]. We supervise the network by enforc-
ing the depth to be consistent across different ambient
illumination levels.
Gated Reconstruction Loss. We adopt the cyclic gated re-
construction loss from [59], which uses measured range in-
tensity profiles Ck(z) to reconstruct the input gated images
from the predicted depth z, the albedo α̃ and the ambient Λ̃.
We estimate the α̃ and Λ̃ from the context encoder through
an additional U-Net like decoder, see Figure 2 and Supple-
mental Material. Specifically, the consistency loss models a
gated slice as,

Ĩk(z) = α̃ Ck(z) + Λ̃. (9)

The loss term is based on the per-pixel difference and struc-

tural similarity as follows,

Lrecon = Lp(Mg ⊙ Ĩk(z),Mg ⊙ Ik) + Lp(Λ̃,Λ
k0).

(10)
Similar to [59] we utilize per-pixel SNR to obtain the gated
consistency mask Mg . See the Supplemental Material for
a detailed derivation. This loss enforces that the predicted
depth is consistent with the simulated gated measurements.

Illuminator View Consistency. In the proposed gated
stereo setup, we can enforce an additional depth consistency
from the illuminator field of view. In this virtual camera
view no shadows are visible as illustrated in Figure 3. This
effectively makes the regions that are visible to the two cam-
eras and the illuminator consistent. We use the gated con-
sistency mask Mg to supervise only regions that are illumi-
nated by the laser and project the gated views Il,r into the
laser field of view Iil|r,l, resulting in the loss,

Lillum = Lp(Mg ⊙ Iil|l,Mg ⊙ Iil|r). (11)

Image Guided Depth Regularization. Following binoc-
ular and multi-view stereo methods [20, 70], we add an
edge-aware smoothness loss Lsmooth as regularization to
the mean normalized inverse depth estimates d,

Lsmooth = |∇xd|e−|∇xI| + |∇yd|e−|∇yI|. (12)

Sparse LiDAR Supervision. The proposed gated stereo
system has a higher update rate (24 Hz) than typical scan-
ning LiDAR (10 Hz). Therefore, sparse LiDAR supervision
can only be applied to samples fully in sync while all the
previously presented self-supervised losses are applied to
all samples. The LiDAR returns are first compensated for
ego-motion, and then projected onto the image space. The
supervision loss Lsup for view v is,

Lsup = Mv|s ⊙ ∥zv − z∗v|s∥1, (13)

where Mv|s is a binary mask indicating the projection of
LiDAR points on the image, and z∗v|s is the ground-truth
depth from a single LiDAR scan projected into the image v.

Overall Training Loss. Combining all self-supervised
and supervised loss components from above, we arrive at
the following loss terms,

Lmono = c1Lrecon + c2Lsup + c3Lsmooth, (14)
Lstereo = c4Lreproj + c5Lrecon + c6Lillum

+ c7Lsup + c8Lsmooth, (15)
Lfusion = c9Lms + c10Lsup + c11Lsmooth, (16)

which we combine with scalar weights c1,...,11 provided in
the Supplemental Material.



Figure 4. Illustration of the used sensor setup (left) and example captures from the wide-base gated stereo dataset (right). From top to
bottom: RGB, Gated with red for slice 1, green for slice 2 and blue for slice 3, Gated Passive with low exposure time I4, Gated Passive
with high exposure time I5, LiDAR. Note, the availability of a large number of frames with αCk < Ik.

4.3. Implementation Details

We first independently optimize the monocular and
stereo networks using the losses presented in Sec. 4.2.
Both the stereo and monocular networks are trained using
the same protocol using ADAMW [42] with β1 = 0.9,
β2 = 0.999, learning rate of 10−4 and of weight decay
10−2. Finally, the fusion network is trained for 5 epochs
using ADAMW and the losses described in Eq. 16 with a
learning rate of 3 · 10−4. We used η = 0.05 for generating
occlusion masks referred in Equation 4. For gated consis-
tency masks, we set γ = 0.98, θ = 0.04. All models are
trained with input/output resolution of 1024× 512.

5. Dataset
In this section, we describe the long-range depth dataset

that we captured for training and testing. The dataset was
acquired during a data collection campaign covering more
than one thousand kilometers of driving in Southern Ger-
many. We have equipped a testing vehicle with a long-
range LiDAR system (Velodyne VLS128) with a range
of up to 200 m, an automotive RGB stereo camera (On-
Semi AR0230 sensor) and a NIR gated stereo camera setup
(BrightWayVision) with synchronization. The sensor setup
is shown in Figure 4 with all sensors mounted in a portable
sensor cube, except for the LiDAR sensor. The RGB stereo
camera has a resolution of 1920x1080 pixels and runs at
30 Hz capturing 12bit HDR images. The gated camera pro-
vides 10 bit images with a resolution of 1280x720 at a fram-
erate of 120 Hz, which we split up into three slices plus two
HDR-like additional ambient captures without active illu-
mination. We use two vertical-cavity surface-emitting laser
(VCSEL) modules as active illumination mounted on the
front tow hitch. The lasers flood illuminate the scene at a
peak power of 500 W each, a wavelength of 808 nm and
laser pulse durations of 240-370 ns. The maximum peak
power is thereby limited due to eye-safety regulations. The
mounted reference LiDAR system is running with 10 Hz
and yields 128 lines. All sensors are calibrated and time-
synchronized and Fig. 4 provides visual examples. The
dataset contains 107348 samples in day, nighttime, and
varying weather conditions. After sub-selection for sce-

METHOD
Modality Train RMSE ARD MAE δ1 δ2 δ3

[m] [m] [%] [%] [%]

Test Data – Night (Evaluated on LiDAR Ground-Truth Points)
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GATED2DEPTH [23] Mono-Gated D 16.15 0.17 8.07 75.70 92.74 96.47
GATED2GATED [59] Mono-Gated MG 14.08 0.19 7.95 79.84 92.95 96.59
SPARSE2DENSE [44] Mono-Sparse D 9.97 0.11 5.22 87.06 95.77 98.20
KBNET [62] Mono-Sparse D 13.52 0.16 8.56 81.41 99.33 99.66
NLSPN [47] Mono-Sparse D 12.19 0.09 5.42 89.63 96.84 99.03
PENET [28] Mono-Sparse D 7.81 0.09 3.59 93.68 97.90 99.16
GUIDENET [54] Mono-Sparse D 7.50 0.09 3.63 92.70 98.16 99.35
PACKNET [25] Mono-RGB M 17.82 0.20 10.21 66.35 87.85 95.61
MONODEPTH2 [21] Mono-RGB M 18.44 0.18 9.47 75.70 90.46 95.68
SIMIPU [36] Mono-RGB D 15.78 0.18 8.71 76.25 90.84 96.44
ADABINS [4] Mono-RGB D 14.45 0.15 7.58 81.47 93.75 97.39
DPT [48] Mono-RGB D 12.15 0.12 6.31 85.38 95.94 98.42
DEPTHFORMER [37] Mono-RGB D 12.15 0.11 6.20 85.18 95.76 98.47
PSMNET [12] Stereo-RGB D 27.98 0.27 16.02 50.77 74.77 85.93
STTR [40] Stereo-RGB D 20.99 0.19 11.14 70.84 87.70 93.46
HSMNET [65] Stereo-RGB D 12.42 0.09 5.87 88.41 96.08 98.50
ACVNET [64] Stereo-RGB D 11.70 0.08 5.25 89.91 96.33 98.47
RAFT-STEREO [41] Stereo-RGB D 10.89 0.09 5.10 90.47 96.71 98.64
GATED STEREO Stereo-Gated DGS 6.39 0.05 2.25 96.40 98.44 99.24

Test Data – Day (Evaluated on LiDAR Ground-Truth Points)

C
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GATED2DEPTH [23] Mono-Gated D 28.68 0.22 14.76 66.68 82.76 87.96
GATED2GATED [59] Mono-Gated MG 16.87 0.21 9.51 73.93 92.15 96.10
SPARSE2DENSE [44] Mono-Sparse D 10.05 0.11 4.77 88.06 96.57 98.63
KBNET [62] Mono-Sparse D 15.27 0.17 9.54 78.54 99.31 99.63
NLSPN [47] Mono-Sparse D 11.78 0.08 4.99 91.41 97.70 99.24
PENET [28] Mono-Sparse D 8.54 0.09 3.82 93.78 97.69 98.94
GUIDENET [54] Mono-Sparse D 8.03 0.09 3.70 93.23 98.12 99.21
PACKNET [25] Mono-RGB M 17.69 0.21 9.77 72.12 90.65 96.51
MONODEPTH2 [21] Mono-RGB M 20.78 0.22 10.06 79.05 90.66 94.69
SIMIPU [36] Mono-RGB D 14.33 0.14 7.50 81.77 94.01 97.92
ADABINS [4] Mono-RGB D 12.76 0.12 6.53 86.15 95.77 98.41
DPT [48] Mono-RGB D 11.29 0.09 5.52 89.56 96.83 98.79
DEPTHFORMER [37] Mono-RGB D 10.59 0.09 5.06 90.65 97.46 99.02
PSMNET [12] Stereo-RGB D 32.13 0.28 18.09 53.82 74.91 84.96
STTR [40] Stereo-RGB D 16.77 0.16 8.99 78.44 93.53 98.01
HSMNET [65] Stereo-RGB D 10.36 0.08 4.69 92.47 97.93 99.11
ACVNET [64] Stereo-RGB D 9.40 0.07 4.08 94.61 98.36 99.12
RAFT-STEREO [41] Stereo-RGB D 9.40 0.07 4.07 93.76 98.15 99.09
GATED STEREO Stereo-Gated DGS 7.11 0.05 2.25 96.87 98.46 99.11

Table 1. Comparison of our proposed framework and state-of-
the-art methods on the Gated Stereo test dataset. We compare
our model to supervised and unsupervised approaches. M refers
to methods that use temporal data for training, S for stereo su-
pervision, G for gated consistency and D for depth supervision.
* marked method are scaled with LiDAR ground-truth. Best re-
sults in each category are in bold and second best are underlined.

nario diversity, we split the dataset into 54320 samples for
training, 728 samples for validation and, 2463 samples for
testing, see Supplemental Material for details.



Figure 5. The top row for each example shows the concatenated gated image I1,2,3 and the corresponding passive images I4 and I5. The
second row shows the depth map of our proposed method, the third row illustrates the results of Gated2Gated (G2G) [59], and the bottom
row depicts the projected LiDAR point cloud into the gated view. Our method handles shadow areas and high-reflectivity targets much
better than G2G. Furthermore, the HDR input allows to predict accurate depth even in bright conditions.

Modality HDR Ambient Cycle Warp RMSE MAE δ1 δ2 δ3
Con. Con. Con. [m] [m] [%] [%] [%]

Test Data – Night (Evaluated on LiDAR Ground-Truth Points)

A
B

L
A

T
IO

N

Mono-Gated ✗ ✗ ✗ ✗ 8.03 3.36 93.45 97.56 98.91
Mono-Gated ✓ ✓ ✓ ✗ 7.07 2.60 95.91 98.14 99.09
Stereo-Gated [41] ✗ ✗ ✗ ✗ 7.92 3.06 95.23 97.98 99.00
Stereo-Gated ✓ ✓ ✗ ✗ 7.38 2.41 95.63 98.01 99.02
Stereo-Gated ✓ ✓ ✓ ✗ 7.72 2.55 95.31 97.86 98.89
Stereo-Gated ✓ ✓ ✓ ✓ 7.33 2.39 95.84 98.09 99.02
Mono+Stereo-Gated ✓ ✓ ✓ ✓ 6.39 2.25 96.40 98.44 99.24

Test Data – Day (Evaluated on LiDAR Ground-Truth Points)

A
B

L
A

T
IO

N

Mono-Gated ✗ ✗ ✗ ✗ 11.93 5.31 90.15 95.62 97.73
Mono-Gated ✓ ✓ ✓ ✗ 9.26 3.66 94.69 97.84 98.88
Stereo-Gated [41] ✗ ✗ ✗ ✗ 9.77 4.03 92.15 96.69 98.28
Stereo-Gated ✓ ✓ ✗ ✗ 7.63 2.31 96.42 98.18 98.98
Stereo-Gated ✓ ✓ ✓ ✗ 7.87 2.27 96.46 98.13 98.92
Stereo-Gated ✓ ✓ ✓ ✓ 7.47 2.15 96.72 98.29 99.00
Mono+Stereo-Gated ✓ ✓ ✓ ✓ 7.11 2.25 96.87 98.46 99.11

Table 2. Ablation studies evaluated on the proposed Gated Stereo
test dataset. We investigate different input modalities, feature en-
coders, and loss combinations for the monocular and stereo net-
work. Our final fusion model outperforms all other methods by a
significant margin.

6. Assessment
In this section, we validate the proposed method experi-

mentally. We investigate depth estimation at night, day and
compared to existing depth estimation methods. Moreover,
we validate design choices with ablation experiments.
Experimental Setup. We evaluate on the proposed test set
consisting of 2463 (1269 day/1194 night) frames with high-
resolution 128-layer LiDAR ground-truth measurements up
to 200 m. Unlike existing work [23, 55, 59] which was lim-
ited to 80 m, we are therefore able to report results up to
a distance of 160 m to asses long-range depth prediction.
Following [16], we evaluate depth using the metrics RMSE,
MAE, ARD, and δi < 1.25i for i ∈ 1, 2, 3 and split results
for day and night. For fair comparison, all methods we com-
pare to have been fine-tuned on our dataset. Details on the
fine-tuning of reference methods are given in Section 4.1.
of the Supplemental Material.
Depth Reconstruction. Qualitative results are presented in

Figure 6 and quantitative results in Table 1. Here, we com-
pare against two recent gated [23, 59], six monocular RGB
[4,21,25,36,37,48], five stereo RGB [12,40,41,64,65] and
five monocular+LiDAR [28, 44, 47, 54, 62] methods. Com-
paring Gated Stereo to the next best stereo method RAFT-
Stereo [41], our method reduces error by 45 % and 1.8 m in
MAE in day conditions. In night conditions, the error is re-
duced by 56 % and 2.9 m MAE. Qualitatively this improve-
ment is visible in sharper edges and less washed-out depth
estimates. Fine details, including thin poles, are better visi-
ble due to the structure-aware refinement achieved through
the monocular depth outputs. The next best gated method,
Gated2Gated [59] achieves a 9.51 m MAE in day conditions
and 7.95 m MAE in night conditions. Here, the performance
drops significantly in day conditions due to strong ambient
illumination, while Gated Stereo is capable of making use
of the passive captures. This is also visible in the shown
qualitative Figure 5, where Gated Stereo maintains high-
quality depth outputs, while Gated2Gated fails. Overall,
we report a reduction of 74 % in MAE error compared to
existing gated methods. Comparing to the best monocular
RGB method, Depthformer [37], textures are often wrongly
interpreted as rough surfaces missing smoothness. Lastly,
we compare to monocular + LiDAR methods. Note, that
the methods are fed with ground-truth points and therefore
achieve competitive quantitative results on par with the best
stereo methods. Qualitatively, the methods are not capa-
ble of interpolating plausible depth maps, which are instead
washed out, and we find that problematic texture interpreta-
tion is carried over from monocular depth estimation meth-
ods.

Ablation Experiments. To validate the contributions of
each component of the proposed method, we report abla-
tion experiments in Table 2, see Supplemental Material for
qualitative results. In the following, we compare the MAE
of the different models averaged over day and night. The
starting point for our analysis is the monocular gated esti-



(a) Night: Gated Stereo is able to predict fine grained details even for far distances.
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(b) Day: Gated Stereo is able to handle bright sunlight conditions.
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Figure 6. Qualitative comparison of Gated Stereo and existing methods. For (a) night and (b) day conditions, Gated Stereo predicts
sharper depth maps than existing methods. (In the gated image red refers to I1, green to I2, and blue to I3).

mation using the proposed monocular branch with LiDAR
supervision only. This method outperforms the best monoc-
ular RGB approach [37] by 23 % lower MAE error. Next,
the concatenated passive images and the active slices re-
sult in an added reduction of 28 % MAE error. We analyze
RAFT-Stereo with stereo gated images and HDR-like pas-
sive frames as input. With additional Ambient Aware Con-
sistency and the proposed backbone, we reduce the MAE
error by 25 % compared to the next monocular gated ap-
proach and by 36 % to a native RAFT Stereo network with
gated input. The HR-Former backbone alone contributes
about 10 % of the 33 % reduction in MAE. By adding the
Gated Consistency loss and the warping losses for left-right
consistency across views and illuminator the error further
decreased by 4 %. Finally, the fusion stage combining the
monocular and stereo outputs preserves the fine structures
from the monocular model and the long-range accuracy of
the stereo model, results in an reduction of 48 % in MAE
error when compared to monocular gating.

7. Conclusion
We present Gated Stereo, a long-range active multi-view

depth estimation method. The proposed method predicts
dense depth from synchronized gated stereo pairs acquired
in a wide-baseline setup. The architecture comprises a
stereo network and per-view monocular and stereo-mono
fusion networks. All of these sub-networks utilize both ac-
tive and passive images to extract depth cues. Stereo cues
can be ambiguous, e.g., due to occlusion and repeated struc-

ture. Similarly, monocular gated cues can be insufficient
in bright ambient illumination and at long range. To this
end, our proposed approach predicts stereo and per-camera
monocular depth and finally fuses the two to obtain a single
high-quality depth map. The different parts of the network
are semi-supervised with sparse LiDAR supervision and a
set of self-supervised losses that ensures consistency be-
tween different predicted outputs. We train and validate the
proposed method on a new long-range automotive dataset
with a maximum depth range twice as long as prior work.
The proposed method achieves 50 % better mean absolute
depth error than the next best method on stereo RGB images
and 74 % better than the next best existing gated method. In
the future, we hope that the proposed method may allow us
to solve novel 3D vision tasks that today’s LiDAR systems
cannot solve due to their angular resolution, such as detect-
ing unseen small objects as lost debris at long distances and
high-quality road edge and lane detection.
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