
Diffusion-SDF
Supplementary Material

Gene Chou
Princeton University
gchou@princeton.edu

Yuval Bahat
Princeton University
yb6751@princeton.edu

Felix Heide
Princeton University
fheide@princeton.edu

In this supplementary document, we present additional information and experiments in support of the main manuscript.
We provide training and architecture details, formulations of evaluation metrics, and further analyses and visualizations.

Contents

1. Model and Training Details 1
1.1. Model Architecture . 1
1.2. Data Processing . 2
1.3. Implementation . 3

2. Metrics 3

3. Additional Analysis 4
3.1. Completion of Dense, Partial Point Clouds . 4
3.2. Modulation Comparisons . 4
3.3. Conditional Dropout . 5
3.4. Filtering using the CONS Metric . 6
3.5. Discussion on Scalability . 7

4. Limitations 8

5. Additional Unconditional Generations 8

6. Additional Conditional Generations 9

1. Model and Training Details
In this section, we provide details for reproducibility, including model architecture, data processing, and implementation.

We will also release code to facilitate experiments.

1.1. Model Architecture
As described in the main document, we use the SDF architecture from Chou et al. [5], a vanilla VAE [13] architecture,

and the diffusion model from Aditya et al. [19, 23] with slight modifications to fit our data dimensions. We provide a full
description below. We encourage readers to reference Fig. 2 in our main paper.

Joint SDF-VAE Model A raw input point cloud is passed through a PointNet encoder [18, 17] that consists of 5
ResNet [9] blocks, a fully-connected layer, and a UNet [20] with 4 2D convolutional layers, 3 2D transposed convolu-
tion layers, and a final convolution layer. The ResNet blocks have input and output dimensions of 128. The intermediate

1

fully-connected layer has output dimensions of 256. Between this fully-connected layer and the UNet, we project the point
features to 3 2D planes to learn detailed spatial features. The UNet has hidden dimensions of [32, 64, 128, 256, 128, 64, 32]
and the final convolution layer has output dimensions of 256. This encoder takes in a point cloud with dimensions (N, 3),
and outputs 3 plane features each with dimensions (256, 64, 64). We concatenate the plane features to obtain one feature
with dimensions (768, 64, 64). This becomes our input to the VAE⇥, which outputs a 1D latent embedding with dimensions
(768, 1). Our VAE has a 5-layer encoder and a 5-layer decoder. Each layer in the encoder has a 2D convolution layer with
hidden dimensions 768, with kernel size 3, stride 2, padding 1, batch normalization [11], and ReLU activation. Each layer
in the decoder has a transpose convolution layer with the same dimensions. Next, we project query points onto 2D planes,
and perform interpolation to extract point features from the reconstructed plane features. We sum the point features from
all 3 planes, and the point features have dimensions (N,D) where we set D = 256 and N = 16, 000. The features are
concatenated with the 3D coordinates (result has dimension (N,D + 3)) and fed into the SDF decoder �. The SDF decoder
is a 9-layer MLP each with hidden dimensions 512 and a skip connection in the 4th layer. We use the ReLU activation after
each layer except the last, and do not use any normalization layers.

Diffusion Model Our diffusion model has 6 layers, each with attention, fully-connected blocks, and layer normalization [1].
Each fully-connected block has hidden dimensions of 768 and we use dropout of 0.3. For self-attention, we use 768 for the
dimension for the network that learns the key-value pairs. For cross-attention, we use 128, as we set the output dimension of
our custom encoder⌥ to 128. We also employ a sinusoidal positional embedding followed by a 2-layer MLP for the timestep
t. The input vector is concatenated with the embedded timestep before being passed into the diffusion model.

Custom Encoder for Conditioning For our custom encoder for extracting shape features for conditioning our diffusion
model, we use the same PointNet in GenSDF [5, 17] for point clouds, and a pretrained ResNet 18 [9] for images. Our ResNet
18 and its pretrained weights are directly loaded from the PyTorch [16] torchvision models library.

For conditioning on point clouds, we pass all points through our encoder ⌥ and obtain point features without performing
pooling or interpolations. We set the output dimensions to 128. For conditioning on images, we add a final fully connected
layer with output dimensions 256 to the ResNet.

1.2. Data Processing
Preprocessing We recenter and normalize all objects in the Acronym [8] dataset using the normalized object coordinate
system (NOCS) [22]. We center each object within a 3D cube uniformly scale each object such that the diagonal of its tight
bounding box has a length of 1. We set our cube to have coordinates ranging from (�1,�1,�1) to (1, 1, 1).

To obtain query and signed distance value pairs for training, we follow Chou et al. [5] for preprocessing. From each mesh
we sample 235,000 points on the surface. These points form a point cloud P = {pi 2 R3}235000i=1 that describe the surface and
have signed distances of 0. Then, for each point pi, we sample two Gaussian distributions with mean 0 and standard deviation
0.005 and 0.0005, respectively. We add these distributions to pi to obtain two query points per surface point. In addition
to these points near the surface, we store all points from a 3D grid ranging from (�1,�1,�1) to (1, 1, 1) with resolution
(128, 128, 128). With the mesh available, we can calculate ground truth signed distance values for supervised training and we
store all points and corresponding signed distances. During one training step of one mesh, we randomly sample 1,024 surface
points for generating shape features, and sample 16,000 query points for learned signed distance values. Of the 16,000 points,
we use 30% uniformly sampled from the grid and the rest from the near surface points.

Partial Point Clouds To obtain partial point clouds, we follow Yu et al. [26] to randomly select a viewpoint and remove
the n furthest points from the viewpoint to obtain a partial point cloud. In our experiments, we sample 128 points from a full
point cloud, then remove 50% of the furthest points. During training, we perform this cropping online in each iteration and
once per point cloud during testing.

YCB Point Clouds Unlike meshes, YCB [3] point clouds do not have a defined surface boundary and we cannot calculate
ground truth signed distance values. We follow [14] and use points on the point cloud as proxies for approximating the
surface boundary. For each input point cloud, we randomly sample 30,000 points and obtain P = {pi 2 R3}30000i=1 . Then
for each point pi, we sample 20 Gaussian distributions each with mean 0 and standard deviation �, where � is the distance
between pi and its 50-th nearest neighbor. We add each distribution to pi to obtain 20 query points near the surface. Next, to
ensure the model does not overfit to generated queries that only take up a small spatial proportion of the cube, we uniformly

2

sample additional points within the cube with each dimension ranging from -1 to 1. The ratio of query points near the surface
and uniformly from the grid is 3:1. We then store the nearest neighbor p to each query point x by finding the shortest distance
between x and p 2 P . During training, we sample 5,000 points from the point cloud and 5,000 query points each iteration.
During testing, we sample 5,000 points from the point cloud for generation.

2D ShapeNet Images We use the 2D images rendered by Choy et al. [6] performed on ShapeNet [4] and pair them with
our preprocessed Acronym [8] data. Acronym is a subset of ShapeNet so most meshes are paired with the renders under
the same filename, and we omit the meshes that do not have corresponding renders. There are 23 renders per mesh, and we
randomly pick one during each training iteration.

1.3. Implementation
We use PyTorch [16] and train all models with the ADAM [12] optimizer. For our joint SDF-VAE model, we set constant

learning rates to 1⇥ 10�4. For our diffusion model and custom encoder, we set constant learning rates to 1⇥ 10�5. During
end-to-end training, we use the same learning rates and fine-tune all modules (i.e., we do not freeze any parameters). We use
a NVIDIA A100 GPU with 40GB of GPU memory for all experiments. On single categories (chair and couch), training the
joint SDF-VAE model takes 3 days and training the diffusion model takes 6 hours for unconditional generation and 1 day for
conditional generation. We train the two modules end-to-end for 1-2 more days. On our multi-category dataset (106 classes),
we train for twice as long.

2. Metrics
For unconditional generation, we follow Yang et al. [25] and use minimum matching distance (MMD), coverage (COV),

and 1-nearest neighbor accuracy (1-NNA). Let Sg be the set of generated meshes and Sr the set of reference meshes. For
evaluation, we calculate the distance between point clouds, so from each mesh we sample 2,048 points on its surface. We
generate the same number of samples as the reference set, i.e., |Sg| = |Sr|. For conditional generation (shape completion),
we follow Wu et al. [24] and evaluate MMD, total mutual difference (TMD), and unidirectional Hausdorff distance (UHD).
From each reference point cloud Pi 2 Sr, we obtain a partial point cloud pi ⇢ Pi. From pi, we generate k = 10 samples,
and denote �ij the j-th sampled SDF. Then, we obtain a mesh cij from �ij by running marching cubes. Thus, Sg =

{
P|Sr|

i=1

Pk
j=1 cij} and |Sg| = k|Sr|. For all metrics except UHD, we use Chamfer Distance (CD) [18] as the distance

measure.

Minimum Matching Distance (MMD) For each point cloud in Sr, we compute its distance to its nearest neighbor in |Sg|.
MMD measures quality with a score that is low when the generated set consists of point clouds close to those in the reference
set.

MMD(Sg, Sr) =
1

|Sr|
X

Y 2Sr

min
c2Sg

CD(c, Y),

where CD is the Chamfer Distance.

Coverage (COV) For each point cloud in |Sr|, we find its nearest neighbor in |Sg|. COV measures the fraction of point
clouds in |Sr| that are mapped to a unique nearest neighbor in |Sg|. In other words, if there is mode collapse, then the
reference point clouds will map to a small set of nearest neighbors, leading to a low COV score.

COV (Sg, Sr) =
|{argminY 2Sr CD(c, Y) | c 2 Sg}|

|Sr|
.

1-Nearest Neighbor Accuracy (1-NNA) 1-NNA measures the similarity between two shape distributions rather than
marginal point distributions. Intuitively, a 1-NN classifier classifies each sample as coming from |Sr| or |Sg|, and if the
generated and reference sets are indistinguishable, the classifier accuracy should be close to 50%. Let S�c = Sr [Sg � {c}
and Nc the nearest neighbor of c in S�c.

1-NNA (Sg, Sr) =

P
c2Sg

I [Nc 2 Sg] +
P

Y 2Sr
I [NY 2 Sr]

|Sg|+ |Sr|
,

where I is the indicator function.

3

Total Mutual Difference (TMD) TMD is defined as the average of all pairwise distances between all generated samples
given a conditional input, that is

TMD(Sg) =
1

|Sg|

|Sg|X

i=1

0

@
kX

j=1

1

k � 1

X

1lk,l 6=j

CD(cij , cil)

1

A .

Unidirectional Hausdorff distance (UHD) UHD is the average unidirectional Hausdorff distance from the conditioned
input shape to each of the generated shapes, that is

UHD(Sg, Sr) =
1

|Sg|

|Sg|X

i=1

0

@1

k

kX

j=1

HL (pi, cij)

1

A ,

where HL is the unidirectional Hausdorff distance.

Consistency (CONS) We evaluate all points in the input partial point cloud using the generated SDF and take the average
of the predicted signed distance values. If the points are present on the reconstructed surface, then by definition, the values
of each point are close to 0. This metric can only be used for SDFs so we use it for our ablation study and for filtering
generations before marching cubes.

CONS =
1

|Sg|

|Sg|X

i=1

0

@1

k

kX

j=1

||�ij(pi)||1

1

A ,

where �ij is the j-th generated SDF guided by partial point cloud pi, and || · ||1 denotes the L1 loss between the predicted
signed distance values of points in pi and 0.

3. Additional Analysis
3.1. Completion of Dense, Partial Point Clouds

In our main document we primarily experiment with sparse, partial point clouds. We follow [26] for creating partial point
clouds: fix a viewpoint, and remove the n furthest points. In our case, we take a full point cloud with 128 points and crop
50% of the points. Here, we train and test with dense, partial point clouds on the Couch data split. Specifically, we take a full
point cloud with 2048 points and crop 50%. We show qualitative visualizations in Fig. 1 and quantitative results in Tab. 1.
Under this setting, our method remains capable of generating realistic, multi-modal outputs. Unsurprisingly, as measured by
our metrics, diversity decreases and fidelity increases.

Figure 1. Generations guided by dense, partial point clouds (1024 points, 50% cropped). We render the point cloud from a viewing angle
that is indicative of its overall shape but note that most points on the back of the point cloud are missing, see text for details on the cropping
approach. Our method is capable of completing realistic, multi-modal outputs.

3.2. Modulation Comparisons
Our modulation module is the cornerstone of our SDF representation. The modulated latent vectors are used as training

data for the diffusion model, so they are the bottleneck of the quality of generated meshes. Here, we show quantitative results
and visualizations of different modulations.

4

Table 1. Quantitative results of conditional generations from sparse and dense partial point clouds, trained on the Couch split. We use 64
points for the former and 1024 points for the latter. Guiding with dense partial point clouds leads to lower diversity and higher diversity.
Values are scaled up by 102.

Condition TMD (") CONS (#)
Sparse (64 pts) 13.53 1.967
Dense (1024 pts) 10.42 1.259

Table 2. Average Chamfer Distance (CD) between modulation representations of SDFs and ground truth. " means higher is better and #
means lower is better. All values are scaled up by 102.

Couch Multi-class

SIREN + meta-learning [7] 0.763 5.666
Auto-decoder [15] 0.557 17.83

Ours (� = 1.0) 0.828 0.942
Ours (� = 0.5) 0.108 0.621

Ours (� = 0.25) 0.104 0.607

Dupont et al. [7] use SIREN and meta-learning to learn a linear mapping between latent vectors and a base network.
Specifically, they implement SIREN [21] as their base network, and compute a second-order gradient to initialize a latent
vector in 3 steps [2]. On single categories, this method performs adequately, but completely fails to represent detailed shapes
when we increase the number of categories. We also experiment with auto-decoders [15]. At the start of training, we initialize
a latent vector for each training data point. The latent vectors are linearly mapped to a base SDF network, represented by
a standard MLP with ReLU activations, and the model updates the latent vectors accordingly. These two methods rely on
linear mappings between discrete latent vectors and a base SDF network, and the distribution of shapes they can represent is
limited. It is also difficult to regularize discrete latent vectors. In contrast, our method learns a regularized latent space and
a shape prior and it is capable of representing over 100 categories with fine details. The experiments in Tab. 2 and Fig. 2
validate this.

In Sec. 4 of our main paper, we mention that we use a KL-loss to enforce the target latent distribution to be a zero-
mean Gaussian with standard deviation 0.25. In Ours (� = 1.0) and Ours (� = 0.5) of Tab. 2, we experiment with standard
deviations 1.0 and 0.5, respectively. Increasing � can lead to an overly spread-out distribution that cannot encode shapes well,
although we speculate that on datasets substantially larger than the ones we use, � could be increased. But for our dataset,
even when using 7148 meshes as explained in Sec. 5.4 of the main paper, � = 0.25 was optimal. Apart from representation,
our current choice of 0.25 allows the diffusion model to learn from a more compact distribution, which improved convergence
speeds and training stability.

Additionally, in Fig. 3, we further validate the need for a modulation representation. We train a diffusion model to overfit

a single SDF represented by an 8-layer MLP, without any modulations or compression. The goal is to confirm whether the
diffusion model can learn using SDFs as data. Since we are overfitting on one object, the goal of the diffusion model is to
reconstruct the object rather than generate new samples. However, directly training on SDFs is difficult because small noise
in the SDF network can lead to drastically different outputs after running marching cubes. We show outputs of the same
model trained twice. Training losses are equally low but the implicitly represented geometry varies because the diffusion
model learns to reverse the weights of the neural SDF, which do not carry explicit geometric information. Furthermore, the
diffusion model does not converge when trained on more than one SDF because it cannot find a distribution that models the
individual SDFs.

3.3. Conditional Dropout
To increase diversity and prevent overfitting, we follow Ho et al. [10]; every training iteration, with a certain probability

we use a zero-mask instead of the shape feature as condition. In practice, we use the zero-mask with probability 80%. During
sampling, Ho et al. [10] use the following linear combination of conditional and unconditional estimates:

✏̃✓ (z�, c) = (1 + w)✏✓ (z�, c)� w✏✓ (z�)

where ✏✓ is the diffusion model, c is the condition, and z is the noisy data. Ho et al. find that increasing !, the ratio of
guidance strength, leads to higher fidelity but lower diversity, as measured by Inception Score and FID, respectively, of

5

M
ul

ti-
cl

as
s

C
ou

ch

Ground TruthOursAuto-decoderSIREN + meta-learning

Figure 2. SDF reconstructions of different modulation methods. The first two rows are trained on the Couch data split. SIREN+meta-
learning and auto-decoder methods perform well although the latter loses details such as the pillows. The bottom two rows are trained on
the multi-class split and the same two couches are reconstructed (the couches are also in the multi-class split). Only our method is capable
of reconstructing with detail due to our regularized latent space and generalizable shape prior.

Ground Truth First iteration Second iteration

Figure 3. A naive approach to training diffusion models on SDFs is to directly learn to reverse the weights of SDFs without modulations
or compression. Here, a diffusion model is trained to overfit on a single SDF represented by an 8-layer MLP. Directly training on SDFs is
difficult because small noise in the SDF network can lead to drastically different outputs after running marching cubes. We show outputs
of the same model trained twice. Training losses are equally low but the implicitly represented geometry varies drastically. This motivates
the creation of a modulation representation.

generated 2D images in their case [10]. In our ablation study (Sec. 5.4 in main paper), we also showed results of tuning !
and arrived at similar results; increasing ! led to lower CONS (higher fidelity) but lower TMD (lower diversity). Depending
on the use case, one can adjust this hyperparameter to determine the tradeoff between diversity and fidelity without any
retraining or fine-tuning.

3.4. Filtering using the CONS Metric
In Tab. 3 we report the quantitative values after training on the Multi-Class and Couch datasets with and without filtering.

To filter, we sample the maximum number of meshes that can fit into one sampling batch, 30 in our case, and keep 10 meshes
with the highest consistencies (i.e., smallest average signed distance values). Specifically, we evaluate all points in the input
partial point cloud using the generated SDF and take the average of the predicted signed distance values. If the points are to
be present on the reconstructed surface, then by definition, the values of each point are close to 0.

We do not use the CONS filter during training, only for conditional generations. We note that our model prioritizes
generation quality and diversity, at the cost of fidelity. Our CONS filter provides a straightforward way to filter inconsistent
generations using the definition of SDFs without incurring additional sampling time and does not inflate the MMD (quality)
and TMD (diversity) metrics.

6

Table 3. Metrics for generating shapes after training on the Multi-Class and Couch datasets, with and without filtering. " means higher is
better and # means lower is better. All values are scaled up by 102.

Category MMD (#) TMD (") UHD (#)
Multi-class 0.035 35.28 24.20
Multi-class (no filt) 0.035 20.11 14.86

Couch 0.041 13.53 1.967
Couch (no filt) 0.041 17.06 3.545

Table 4. Average CD of reconstructing training data. One is trained on only the Couch dataset (366 meshes) and one is trained on all
categories (7148 meshes). The model architecture, number of parameters, and training method are exactly the same. # means lower is
better. All values are scaled up by 103.

Training Data # meshes CD of couches (#) CD of all meshes (#)
Couch 366 1.04 -
All classes 7148 0.87 0.92

Figure 4. From left to right: reconstructions of training only on the Couch dataset, training on all 7148 meshes, ground truth. We run
marching cubes the mesh the reconstructed SDFs at the same resolution (1283). Generally both models reconstruct detail but for challeng-
ing cases the model trained on more data performs better.

3.5. Discussion on Scalability
We investigate whether our VAE poses a bottleneck to learning large datasets. The single-category experiments (Chair,

Couch) are performed on 558 and 366 meshes, respectively. Our multi-class split contains 4230 meshes. As such, without
adjusting the architecture or number of parameters, our method scales without degradation in quality or creating artifacts.
To further validate scalability, we experiment with 90% of the entire Acronym dataset, 7148 meshes in total. We show a
quantitative comparison of the Chamfer Distance (CD) of reconstructions between training on the Couch category and the
large dataset in Tab. 4. For the latter, the CD of reconstructing couches is lower than training on the single Couch category.
Furthermore, the CD of reconstructing all categories remains low. This validates that our approach scales gracefully, learns
better when we introduce more training data, and generalizes to out-of-distribution shapes as many categories have very few
data (just 1-10 meshes) compared to the larger classes (300-500 meshes).

Here in Fig. 4, we show that for challenging cases (such as high frequency and thin structures) where training only on the
Couch dataset fails, the scaled model is capable of reconstructing detail. Our method also generalizes to out-of-distribution
categories. In Fig. 5, we show shapes from a few categories that have fewer than 10 objects. We also show failure cases
in the bottom row, mostly as a result of thin structures. However, we did not observe any pattern that led to the successful
or unsuccessful reconstruction of thin structures. For instance, in Fig. 5, both cages (top and bottom row) have similar
geometries, but reconstruction quality differs significantly. We leave this to future work.

Although we did not encounter issues with scalability in our experiments, we would be interested in expanding our 1D
bottleneck to 2D in future work. This would preserve the spatial information of the feature planes, and could potentially
require fewer parameters or fit to even larger datasets.

7

Figure 5. (Top) Reconstructions of out-of-distribution categories after training on all 7148 meshes. Each category has fewer than 10
meshes. From left to right: Backpack, Bird, Cage, Cow. The model captures detailed geometries. (Bottom) Failure cases mostly as a result
of thin structures. From left to right: Fan, Bag, Cage, Glasses.

interpolation

x1 x20.7 x1 + 0.3 x2 0.3 x1 + 0.7 x2

Figure 6. Failure cases of interpolation. (Top) We do not account for semantically meaningless geometries (e.g., interpolating between a
car and a bottle). (Bottom) The two samples are far apart in the latent space and interpolations contain artifacts.

4. Limitations
The main limitation of our work is the lack of constraints on the specific shapes the method generates. As shown in Fig. 8

and Fig. 9, conditional generations may not be fully consistent with the condition. Our current solution is to utilize a CONS
filter but to solve this issue, we could map the latents of partial shapes to those of their complete shapes during training to
enforce consistency.

Additionally, the latent space is not heavily regularized so interpolations between latents may not be semantically mean-
ingful. We show examples in Fig. 6. In the top row, the interpolation between a car and a bottle results in a semantically
meaningless shape. This could be solved by introducing semantic information such as through text. In the bottom row, the
two samples are far apart in the latent space, leading to artifacts in interpolations. This is somewhat expected because during
training, our model samples from a region in the latent space and does not account for interpolating between two latents far
from each other. In future work, we could set a perception loss for such an application.

5. Additional Unconditional Generations
We present additional visualizations for unconditional generation in Fig. 7. These results further validate that the proposed

method is capable of producing clean meshes with thin structures and diverse geometries.

8

C
ou
ch

C
ha
ir

M
ul
ti-
cl
as
s

Figure 7. Additional samples from unconditional generation using the proposed method. Our method produces clean meshes with thin
structures and diverse geometries.

6. Additional Conditional Generations
We show additional generations guided by sparse, partial point clouds in Fig. 8 and Fig. 9. We also show here show how

filtered-generated SDFs can guide the output of the method at test time. When we filter based on a strict threshold (i.e., low
CONS value), we obtain more deterministic but consistent outputs. As we increase the threshold (i.e., higher CONS value),
we obtain diverse outputs that match the overall shape of the input point cloud. In the first column of our generated outputs
(Fig. 8 and Fig. 9), nearly all points of the input are located on the mesh surface, while we obtain less precise but plausible
outputs in the following columns. The threshold for filtering allows users to generate samples based with different properties
at test time.

9

Condition Highly consistent Less consistent
M

ul
ti-

cl
as

s
C

ha
ir

Figure 8. Generations guided by sparse, partial point clouds. Varying a threshold for filtering using our CONS metric, we can adjust the
behavior of the method. A stricter threshold produces more consistent but deterministic outputs, while a looser threshold produces more
diverse but less faithful outputs. For each row, we overlay the same point cloud onto all meshes although we render them at different
viewing angles to show diversity of outputs.

10

C
ou

ch
Condition Highly consistent Less consistent

Figure 9. Additional generations guided by sparse, partial point clouds. Varying a threshold for filtering using our CONS metric, we
can adjust the behavior of the method. A stricter threshold produces more consistent but deterministic outputs, while a looser threshold
produces more diverse but less faithful outputs. For each row, we overlay the same point cloud onto all meshes although we render them at
different viewing angles to show diversity of outputs.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016. 2
[2] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain generalization using meta-regularization.

In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 31. Curran Associates, Inc., 2018. 5
[3] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar. The ycb object and model

set: Towards common benchmarks for manipulation research. In 2015 international conference on advanced robotics (ICAR), pages
510–517. IEEE, 2015. 2

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva,
Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015. 3

[5] Gene Chou, Ilya Chugunov, and Felix Heide. Gensdf: Two-stage learning of generalizable signed distance functions. In Proc. of

Neural Information Processing Systems (NeurIPS), 2022. 1, 2
[6] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A unified approach for single and

multi-view 3d object reconstruction. In Proceedings of the European Conference on Computer Vision (ECCV), 2016. 3
[7] Emilien Dupont, Hyunjik Kim, SM Ali Eslami, Danilo Jimenez Rezende, and Dan Rosenbaum. From data to functa: Your data point

is a function and you can treat it like one. In International Conference on Machine Learning, pages 5694–5725. PMLR, 2022. 5
[8] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. ACRONYM: A large-scale grasp dataset based on simulation. In 2021 IEEE

Int. Conf. on Robotics and Automation, ICRA, 2020. 2, 3
[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 770–778, 2016. 1, 2

11

[10] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022. 5, 6
[11] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In

International conference on machine learning, pages 448–456. PMLR, 2015. 2
[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference on Learning Repre-

sentations, 2015. 3
[13] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference on Learning Representa-

tions, 2014. 1
[14] Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker. Neural-pull: Learning signed distance function from point clouds

by learning to pull space onto surface. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference

on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 7246–7257. PMLR, 18–24 Jul 2021. 2
[15] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf: Learning continuous signed

distance functions for shape representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 165–174, 2019. 5
[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural

Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. 2, 3
[17] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolutional occupancy networks. In

European Conference on Computer Vision, pages 523–540. Springer, 2020. 1, 2
[18] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmen-

tation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652–660, 2017. 1, 3
[19] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with

clip latents. arXiv preprint arXiv:2204.06125, 2022. 1
[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham, 2015. Springer International
Publishing. 1

[21] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural representations with
periodic activation functions. Advances in Neural Information Processing Systems, 33:7462–7473, 2020. 5

[22] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J Guibas. Normalized object coordinate space
for category-level 6d object pose and size estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2642–2651, 2019. 2
[23] Phil Wang. Dalle2-pytorch, 2022. 1
[24] Rundi Wu, Xuelin Chen, Yixin Zhuang, and Baoquan Chen. Multimodal shape completion via conditional generative adversarial

networks. In European Conference on Computer Vision, pages 281–296. Springer, 2020. 3
[25] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan. Pointflow: 3d point cloud generation

with continuous normalizing flows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4541–
4550, 2019. 3

[26] Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu, and Jie Zhou. Pointr: Diverse point cloud completion with geometry-
aware transformers. In ICCV, 2021. 2, 4

12

	. Model and Training Details
	. Model Architecture
	. Data Processing
	. Implementation

	. Metrics
	. Additional Analysis
	. Completion of Dense, Partial Point Clouds
	. Modulation Comparisons
	. Conditional Dropout
	. Filtering using the CONS Metric
	. Discussion on Scalability

	. Limitations
	. Additional Unconditional Generations
	. Additional Conditional Generations

