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Abstract

Probabilistic diffusion models have achieved state-of-
the-art results for image synthesis, inpainting, and text-to-
image tasks. However, they are still in the early stages of
generating complex 3D shapes. This work proposes Diffu-
sionSDF, a generative model for shape completion, single-
view reconstruction, and reconstruction of real-scanned
point clouds. We use neural signed distance functions
(SDFs) as our 3D representation to parameterize the ge-
ometry of various signals (e.g., point clouds, 2D images)
through neural networks. Neural SDFs are implicit func-
tions and diffusing them amounts to learning the reversal of
their neural network weights, which we solve using a cus-
tom modulation module. Extensive experiments show that
our method is capable of both realistic unconditional gen-
eration and conditional generation from partial inputs. This
work expands the domain of diffusion models from learning
2D, explicit representations, to 3D, implicit representations.

1. Introduction
Diffusion probabilistic models [18, 51] have become a

popular choice for generative tasks and can produce im-
pressive results, such as the images generated by DALLE-
2 [44] and Stable Diffusion [46] from text input. Diffusion
models are a type of likelihood-based models whose train-
ing objective can be expressed as a variational lower bound
[18, 53]. On a high level, they learn to gradually remove
noise from a signal and repeat this process to generate sam-
ples from Gaussian noise. Recent advances [10, 38, 44, 46]
show that diffusion models produce images with quality
on par with state-of-the-art generative adversarial networks
(GANs) [15] without the common drawbacks of mode col-
lapse [37, 38] and unstable training [2, 36]. Diffusion has
also been applied to 3D tasks although these works are still
in the early stages of producing complex shapes. In this
work, we investigate the generation of 3D shapes of neural
signed distance functions via diffusion.

3D modeling and generation are essential to vision and

graphics tasks. 3D generation of high-quality assets and
large volumes of realistic data is often essential where train-
ing data is expensive to collect [3, 24, 27, 34, 47, 48]. Addi-
tionally, generation can be applied to 3D reconstruction of
imperfect visual observations as there exists a one-to-many
mapping that requires a probabilistic approach to solve.
This has applications in self-driving [39,54,67] and robotics
grasping [4, 22, 65] where occlusion and camera measure-
ment errors are common.

We propose DiffusionSDF, a generative model for shape
completion, single-view reconstruction, and reconstruction
of real-scanned point clouds. We choose neural signed dis-
tance functions (SDFs) [40] as the 3D representation to pa-
rameterize the surfaces described by various input signals
such as point clouds and 2D images. They implicitly en-
code an object surface by the signed distances between 3D
coordinate queries to their closest surface point through a
coordinate-based MLP [8, 40]. Compared to discrete 3D
representations [13, 16, 25, 30, 43], SDFs have proven to
be a versatile representation that supports arbitrary resolu-
tion during test-time [55], small memory footprints [9], and
strong generalization [8].

We make the following two key insights. First, im-
plicit functions can directly be used as data and diffusing
them amounts to learning the reversal of the neural network
weights. Furthermore, we introduce geometrical constraints
to produce complex shapes and outputs consistent with the
geometry of conditioned inputs. Very recently, Dupont et
al. [11] similarly diffuse implicit functions but do not ad-
dress SDFs nor geometric constraints. Second, by using
SDFs as a unified 3D representation, we condition training
to learn a mapping between various input types and their
possible reconstructions. Then, we leverage a probabilis-
tic diffusion model to generate diverse completions. Thus,
our work can be applied to shape synthesis and multi-modal
shape completion.

The proposed method consists of two steps, shown in
Fig. 2. First, we create a compressed representation of
SDFs using modulation [5, 11, 31]. We find that diffusing
SDFs is impractical due to the large number of parameters
and the lack of a smoothed data distribution. Our modu-
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Figure 1. Our method generates clean meshes with diverse geometries. (Top) Unconditional generations from training on multiple classes.
(Bottom) Conditional generation given various visual inputs, such as partial point clouds (same point cloud overlaid on sample), real-
scanned point clouds, and 2D images. Our method captures details of conditioned geometry, such as the handle of the pitcher.

lation module consists of learning a generalizable encoder
and a regularized latent space to create latent vectors that
map to individual SDFs when combined with an SDF base
network. Second, we train a diffusion model with the pre-
viously created latent vectors as data points. We follow the
conventional approach of learning the reverse diffusion pro-
cess [18,44], but we combine it with our modulation scheme
to introduce geometric information. We show that this ge-
ometric constraint is essential for the method to complete
shapes consistent with guided inputs. Furthermore, we ex-
periment with various input types for guiding generation.
Shown in Fig. 1, we validate the method by shape gen-
eration and completion with conditioning of partial point
clouds from Acronym [12], real-scanned point clouds from
YCB [4], and 2D images from ShapeNet [6]. Our method
generates diverse and realistic shapes for multiple tasks.
Code and pre-trained models will be released.

We make the following contributions:

• We propose a probabilistic generative model that cre-
ates clean and diverse 3D meshes.

• We solve a learning problem of diffusing the weights
of implicit neural functions while providing geometric
guidance through our modulation module.

• Our method reconstructs plausible outputs from vari-
ous imperfect observations such as sparse, partial point
clouds, single images, and real-scanned point clouds.

• Extensive experiments show that our method achieves
favorable performance in shape generation and com-
pletion compared to existing methods.

2. Related Work
Diffusion Probabilistic Models Diffusion probabilistic
models [18, 51] generate samples from a distribution by

learning to gradually remove noise from a datapoint. Re-
cent advances [10, 38, 44, 46] show diffusion models pro-
duce high quality images without the drawbacks of mode
collapse [37,38] and unstable training [2,36]. Diffusion has
also been applied to 3D tasks although these works are still
in the early stages of producing complex shapes.

One line of work [28, 68, 69] trained diffusion models
to generate point clouds. Very recently, Dupont et al. [11]
trained diffusion models on implicit neural representations
but not SDFs. These existing methods perform uncondi-
tional generation and some only produce simple geome-
tries. Our modulation scheme and conditioning mecha-
nisms fix both of these issues. We also acknowledge con-
current works that combine diffusion and implicit functions;
[42,61] generate novel views from text and images with and
without intermediate radiance fields, respectively.

Generative Modeling of 3D Shapes Many existing
works [7, 45, 60, 66] that reconstruct partial scans and
meshes are deterministic, but the relation between partial
and completed shapes is a one-to-many mapping. To ad-
dress this, [35,62,63,69] proposed probabilistic models for
generating multi-modal reconstructions that are consistent
with partial inputs. Mittal et al. [35] train an autoregressive
prior, Wu et al. [62] train a conditional GAN, Yan et al. [63]
train a vector quantized deep implicit function (VQDIF),
and Zhou et al. [69] train a diffusion model. We compare
our method to these baselines.

More recently, some works [14,20] have combined SDFs
and generative modeling. Gao et al. [14] train on 2D im-
age collections and combine differentiable rendering and
2D GANs. Hui et al. [20] is concurrent work that learns dif-
fusion models. They convert SDFs into wavelet representa-
tions, then use them as input to diffusion models. Different
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from the proposed approach, this method cannot perform
conditional generation and learns to reverse wavelets as a
surrogate to implicit functions.

Learning Implicit Signed Distance Functions A rapidly
growing body of work relies on implicit neural networks as
an expressive scene representation that facilitates learning
for 3D reconstruction and view synthesis tasks [32, 33, 40].
They use neural networks to map spatial coordinates to
scene attributes, which offers a fully-differentiable and ver-
satile way to represent 3D geometry. Park et al. [40]
first proposed to map coordinates to signed distance values
and reconstructed surfaces by interpolating grid points with
signed distance values of zero.

Follow-up works [8,29,41] use point clouds as additional
conditions to achieve greater detail, generalization, and un-
supervised training. However, they condition their input on
full-view point clouds with low levels of noise. Thus, they
fail on real-world applications where one can only obtain
partial and noisy point clouds. In this work, we close this
gap and introduce a generative model that reconstructs plau-
sible outputs for partial and noisy point clouds.

3. Diffusion Models and Neural SDFs
Background on Diffusion Probabilistic Models While
different variations of diffusion models exist, we describe
a canonical one [18, 51]. From a data distribution q(x),
we denote a sampled datapoint as x0, and iteratively add
small Gaussian noise to obtain x1, x2...xT , until xT ap-
proximates an isotropic Gaussian. This forward step is
a Markovian fixed process [18, 53] and can be defined
as q(x1:T |x0) =

∏T
t=1 q(xt|xt−1) and q(xt|xt−1) =

N (xt;
√
1− βtxt−1, βtI) where βt is a variance schedule.

In practice, we sample xt using a closed form parameteriza-
tion

√
ᾱtx0+

√
1− ᾱtϵ where αt = 1−βt, ᾱt =

∏t
i=1 αi,

and ϵ ∼ N (0, I).
The goal of each training iteration is to train a model pθ,

often represented by a neural network, that inverts the for-
ward diffusion (i.e., learns the reverse diffusion process):
pθ(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1|xt) and pθ(xt−1|xt) =

N (xt−1;µθ(xt, t),Σθ(xt, t)). The reverse process is also
Markovian and we fix the variances Σθ. The reverse
conditional probability is tractable when conditioned on
x0: q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI). We ap-
ply Bayes’ rule to rearrange the terms and represent
µ̃(xt, x0) =

√
αt(1−ᾱt−1)

1−ᾱt
xt+

√
ᾱt−1βt

1−ᾱt
x0. The closed form

parameterization of xt yields µ̃t =
1√
αt
(xt − 1−αt√

1−ᾱt
ϵt).

Thus, we can train our model to predict µ̃t, or alterna-
tively, ϵt by rearranging the terms. This work predicts µ̃t

for generating SDF samples.
For generation, we start with xT ∼ N (0, I) and iter-

atively denoise xT with ancestral sampling [18]: xt−1 =

µθ(xt, t) + σtϵ where σt is the fixed standard deviation at
timestep t and ϵ ∼ N (0, I) is injected until the last step.

Background on Neural SDFs While many works over-
fit SDFs to a single object [9, 50, 55], some have been able
to learn SDFs conditioned on point cloud inputs that gener-
ate shapes from different categories. A successful approach
is jointly training a PointNet encoder [43] and an SDF de-
coder [8,40,41], where shape features from the encoder are
concatenated with 3D query points x ∈ R3 as input to the
decoder. We denote the funcion x, P 7→ Φ(x, P ) = s,
where P = {pi ∈ R3}Ni=1 is a raw point cloud with N
points, Φ : R3 × R3×N → R is the SDF that predicts the
signed distance value for a 3D coordinate, conditioned on
a point cloud, and s denotes the predicted signed distance
value between x and the shape described by P . The surface
boundary of the shape is its zero-level set S0(Φ(P )), which
can be formulated as S0(Φ(P )) = {z ∈ R3 |Φ(z, P ) = 0}.

4. Diffusing Neural Signed Distance Functions
Illustrated in Fig. 2, the proposed method is composed

of three major components: a modulation scheme to rep-
resent SDFs as individual latent vectors, a diffusion model
that takes the latent vectors as distribution samples for train-
ing, and a custom encoder and attention mechanism for con-
ditional generation. In the following, we describe the com-
ponents of our method in detail.

4.1. Modulating SDFs

We use modulation [5, 11, 31] to create an alternate rep-
resentation of SDFs. Directly diffusing thousands of SDFs,
where one SDF represents one object, is difficult because
one must first train all SDFs separately (which would take
thousands of GPU hours) and the distribution of thousands
of SDFs is challenging to learn. We show in our supplemen-
tal material that existing diffusion models cannot directly
learn from SDFs as training data. Thus, we map SDFs, rep-
resented by MLPs, to 1D latent vectors with two objectives:
the diffusion model needs to learn and sample from the dis-
tribution of latent vectors effectively, and generated outputs
of the diffusion model are mapped back into an SDF. This
amounts to designing a latent space that needs to be con-
tinuous (interpolation between latent vectors corresponds to
interpolation of geometry), complete (all points in the latent
space are meaningful), and sufficiently diverse for holding
information of hundreds of categories.

To this end, we jointly train a conditional SDF repre-
sentation and a VAE [21]. We opt for the architecture of
GenSDF [8], which is capable of learning hundreds of di-
verse categories using a unified model, so we train one
model instead of thousands of SDFs. Specifically, our mod-
ulation module (see Fig. 2), consisting of a PointNet en-
coder Ψ and a VAE Θ, takes in a raw point cloud P =
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Figure 2. Our two-stage training pipeline. The first (top) trains SDFs jointly with a VAE [21] to produce latent vectors z each representing
an SDF embedding. The second stage (bottom) uses the latent vectors as input to our diffusion model and can be guided by various inputs.
We connect the two models (gray arrow) for end-to-end training. During test time, the diffusion model takes input z sampled from a
Gaussian distribution and we combine its output with the SDF network to form a complete SDF representation.

{pi ∈ R3}Ni=1 with N points, and outputs plane features π
and π′ and a latent vector z as follows

π = Ψ(P ), z = Θenc(π), π′ = Θdec(z), (1)

where Θenc,Θdec are the encoder and decoder of the VAE,
respectively. Equivalently, π′ = (Θ ◦ Ψ)(P ). Other than
compression, the VAE regularizes the latent space. Next,
we pass the concatenation of query points x ∈ R3 and π′

into the SDF network Φ. We denote the predicted signed
distance value as s = Φ(x|z). This formulation allows us
to swap out different latent vectors z for producing different
shape representations, including generated latents from the
diffusion model which we show later.

The training objective of this latent parameterization is
to learn accurate predictions of signed distance values and
regularize the latent space of the VAE as

Lmod = ∥Φ(x|z)− SDF(x)∥1 + β(DKL(qϕ(z|π)||p(z))).
(2)

The first term of the RHS of Eq. (2) is an L1 loss between
the predicted and ground truth signed distance values of our
query points x. Here, SDF(·) denotes the ground-truth SDF
operator that is defined for all x ∈ R3. The second term
is our KL-divergence loss [21] that regularizes the gener-
ated latent space to approach a target distribution. For given
point cloud features π, we describe the inferred posterior
of the latent vectors z by a probability distribution qϕ(z|π).
We regularize the posterior to match a prior p(z), which we
set to be a Gaussian with zero-mean and standard deviation
0.25. Diffusion processes converge toward Gaussian dis-
tributions so modeling data to approximate this distribution
results in faster and more stable training. We also add a con-

stant β to control the strength of regularization, which we
set to 1e-5. We do not use a VAE reconstruction loss.

We find in our ablation experiments that our modula-
tion method for implicit functions is capable of representing
substantially more complex and diverse geometries com-
pared to existing methods [11].

4.2. Diffusing Modulation Vectors

Next, we use our sampled latent vectors z from the pre-
vious step as sample space for the proposed diffusion prob-
abilistic model Ω, illustrated in Fig. 2. In every itera-
tion, Gaussian noise is added to the latent vectors at ran-
dom timesteps, and the model learns to denoise the vectors.
Instead of predicting the added noise ϵ as in the original
DDPM [18], we follow Aditya et al. [44] and predict z0, the
original, denoised vector. In other words, after we sample a
timestep t and noise ϵ to obtain zt from input latent vector
z0, the model learns to reconstruct z0. The loss function is

Ldiff = ∥Ω(zt, γ(t))− z0∥2, (3)

where γ(·) is a positional embedding and ∥·∥2 is MSE loss.
We concatenate zt and γ(t) as input into the model,

which has layers each consisting of attention [58], a fully
connected layer, and normalization. We use the architec-
ture of DALLE-2 [44] because they use 1D vectors as input,
similar to our case. In contrast, the standard DDPM [18] ar-
chitecture is a UNet designed for images. During test time,
our diffusion model performs generation iteratively as

z′ = (f ◦...◦f)(zT , T ), f(xt, t) = Ω(xt, γ(t))+σtϵ, (4)

where zT ∼ N (0, I), σt is the fixed standard deviation at
the given timestep, and ϵ ∼ N (0, I). We iteratively de-
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noise zT until we obtain the final output z′. Then, we pass
the generated latent vectors z′ back into the joint SDF-VAE
model for marching cubes reconstruction.

4.3. Conditioning Mechanisms

One advantage of SDFs is their ability to represent 3D
geometries from different modalities, such as point clouds
and images [8, 57]. Given some input y, we can train a cus-
tom encoder Υ to extract shape features π = Υ(y) to guide
training of the diffusion model. We primarily experiment
with partial point clouds, but in Sec. 5.3, we show condi-
tioning on real-scanned point clouds and 2D images.

We use the same architecture for our diffusion model
described in the previous subsection, but add Υ and an
additional cross-attention layer to each block. Our cross-
attention layer is the same as that used in [46] and is defined
as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (5)

where Q = W
(i)
Q · Ωi(zt, γ(t)),K = W

(i)
K · π, V =

W
(i)
V ·π. Ωi(·) is the output of an intermediate layer of Ω and

WQ,WK ,WV are learnable matrices. The cross-attention
mechanism learns the mapping between the conditioned in-
put and the geometry implicitly represented by the latent
code. Eq. (3) is now conditioned on π and we have

Lc-diff = ∥Ω(zt, γ(t)|π)− z0∥2. (6)

Generation steps are the same as in Eq. (4) but in each
step π is given as a condition

z′ = (g◦...◦g)(zT , T, π), g(xt, t, π) = Ω(xt, γ(t)|π)+σtϵ
(7)

By conditioning our diffusion model during training, we can
guide reconstructions during test time. Furthermore, we can
generate multi-modal reconstructions due to the generative
nature of diffusion models. Finally, to increase diversity and
prevent overfitting, we follow [19]; every training iteration,
with a certain probability we use a zero-mask instead of the
shape feature as condition. In practice, we use the zero-
mask with probability 80%.

4.4. End-to-End Training for Geometry Constraints

Our model consists of the creation of latent vectors
through jointly training a conditional SDF and a VAE, and
training the diffusion model using the latent vectors as in-
put. These two modules can be trained end-to-end. As
shown by the gray arrow in Fig. 2, the output of the VAE
can directly be used as input to the diffusion model, whose
output can then be fed into the VAE decoder for calculat-
ing its SDF loss. In practice, we found that training end-
to-end from scratch took longer than training the modules
separately since there are many building blocks. After the

two modules complete training, however, we fine-tune them
end-to-end. During training of the diffusion model individ-
ually, it can overfit to the input latent vectors since they are
saved and fixed. When training end-to-end, the inputs are
from the output of (Θenc ◦ Ψ)(P ) instead, which slightly
vary each iteration, increasing generalization capabilities.
Furthermore, the loss is originally based solely on the diffu-
sion loss of the latent vectors, which does not have explicit
geometrical constraints. By connecting the two modules,
we introduce another SDF loss for the denoised latent vec-
tor, which guides SDF information to the diffusion model.
This allows the model to generate more complex geome-
tries. During this final stage of fine-tuning, we continue to
use all the loss functions used in the separate modules, and
add this additional constraint for end-to-end optimization

Ltotal = Lmod + Lc-diff + ∥Φ(x|z′)− SDF(x)∥1, (8)

where z′ = Ω(zt, γ(t)|π). We did not find it necessary to
add weighing constants to the loss terms.

5. Experiments
Next, we validate the proposed method for generating

shapes. In Sec. 5.1, we report results of unconditional gen-
eration initialized from Gaussian noise. In Sec. 5.2 we per-
form shape completion of sparse, partial point clouds, and,
in this context, we compare and analyze existing related
methods. In Sec. 5.3, we demonstrate different applications
of our method by generating samples from real scanned,
noisy point clouds, and 2D images. We end with an abla-
tion study validating the design choices in Sec. 5.4.

Implementation We train our method as follows. First,
we train our joint SDF-VAE model on full point clouds and
corresponding query points and ground truth signed dis-
tance values. We combine the architecture of GenSDF [8]
with a VAE [21] consisting of a 5-layer encoder and 5-layer
decoder. The PointNet in GenSDF outputs three 2D plane
features from the point cloud, which we concatenate and
pass as input to the VAE. The bottleneck of the VAE (z in
Fig. 2) is a 1D latent embedding of an SDF, and we save
them after training is complete. Next, we use the latent
vectors as training data for the diffusion model. We fol-
low the architecture of DALLE-2 [44, 59]. There are six
blocks each consisting of a self-attention layer and a fully-
connected layer. For conditional training, we introduce cus-
tom encoders for different inputs. We use a PointNet [43]
for point clouds and ResNet 18 [17] for 2D images. We also
add another cross-attention layer to each block of the diffu-
sion model that learns key and value pairs from extracted
shape features. Finally, we fine-tune both modules end-to-
end by connecting them as illustrated in Fig. 2. We provide
a full architecture description and training details in the sup-
plemental material.
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Figure 3. Samples from unconditional generation. Our method produces clean meshes with thin structures and diverse geometries. We
also calculate their average distance to each object in the training set to confirm that our model is capable of producing unique shapes.

Table 1. Metrics for unconditional shape generation. ↑ means
higher is better and ↓ means lower is better. MMD is scaled up by
102. COV and 1-NNA are measured in percentages (%).

Shape Model MMD (↓) COV (↑) 1-NNA (↓)

Chair

ShapeGAN [23] 7.738 8.661 99.80
PVD [69] 0.342 39.43 86.56
DPM3D [28] 0.130 56.69 53.54
Ours 0.129 65.35 51.18

Couch

ShapeGAN [23] 6.527 1.923 99.84
PVD [69] 0.145 49.45 56.83
DPM3D [28] 0.108 48.72 62.82
Ours 0.106 61.22 54.97

Multi-
Class

ShapeGAN [23] 4.659 5.280 99.99
PVD [69] 0.350 12.36 93.33
DPM3D [28] 0.150 45.40 68.36
Ours 0.131 57.06 67.38

Table 2. Metrics for multi-modal shape completion of sparse, par-
tial point clouds (128 points, 50% cropped). ↑ means higher is
better and ↓ means lower is better. All values are scaled up 102.

Shape Model MMD (↓) TMD (↑) UHD (↓)

Chair

cGAN [62] 0.193 2.663 7.804
PVD [69] 0.504 9.163 3.917
SFormer [63] 0.278 4.820 17.76
Ours 0.036 14.22 12.56

Couch

cGAN [62] 0.145 2.231 7.251
PVD [69] 0.350 7.920 6.134
SFormer [63] 0.103 1.567 7.270
Ours 0.041 13.53 10.37

Multi-
Class

cGAN [62] 0.225 1.994 7.162
PVD [69] 0.412 10.16 8.368
SFormer [63] 0.208 9.523 14.98
Ours 0.035 20.11 14.86

Datasets For unconditional generation and partial
point cloud completion, we train and evaluate using
Acronym [12]. Acronym is a processed subset of the
popular ShapeNet [6] dataset and contains watertight,
synthetic 3D meshes across 262 shape categories. We use
three training splits. The first two are single categories:
Chair and Couch. The third split uses all classes that
have at least 20 objects, providing us with 106 classes in
total. From each of them, we take at most 50 objects to
prevent the model from overfitting to larger categories. For
single-view reconstruction, we use the Airplane and Couch
categories from ShapeNet [6] and their rendered 2D images
as conditioning input. For real-scanned point clouds, we
use YCB [4], a collection of point clouds acquired from
multi-view RGBD captures.

Evaluation For unconditional generation, we follow
Yang et al. [64] and use minimum matching distance

(MMD), coverage (COV), and 1-nearest neighbor accuracy
(1-NNA). MMD measures quality, COV measures diversity,
and 1-NNA uses a classifier to measure the similarity of the
reference and generated distributions, where 50% accuracy
means the generated set is indistinguishable from the ref-
erence set. We generate the same number of samples as
the reference set. For conditional generation (shape com-
pletion), we follow Wu et al. [62] and evaluate MMD, to-
tal mutual difference (TMD), and unidirectional Hausdorff
distance (UHD). TMD measures diversity and UHD mea-
sures fidelity to the input partial point cloud. We generate
10 samples for every input partial point cloud in the refer-
ence set. For all metrics except UHD, we use Chamfer Dis-
tance (CD) [43] as the distance measure. We extract 2,048
points from each sample to calculate these metrics. Addi-
tionally, since generated results are random, we run evalua-
tion 5 times and report the best set of metrics. We provide
detailed formulations of all metrics in the supplemental ma-
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Figure 4. Shape completion results from sparse, partial point
clouds. Reconstructions from the proposed method faithfully rep-
resent details such as the legs of the chair, whether they are sepa-
rated (top), branched out (middle), or connected (bottom).

terial. For visualization, we run Marching Cubes [26] and
render the resulting meshes.

5.1. Unconditional Generation

We train unconditional models on the three data splits
mentioned above: Chair, Couch, and Multi-class. We
compare to ShapeGAN [23], which generates SDFs, and
Point-Voxel Diffusion (PVD) [69] and Diffusion Probabilis-
tic Models for 3D Point Cloud Generation (DPM3D) [28],
which both diffuse point clouds. Our method outperforms
baselines in all metrics as reported in Tab. 1. Further-
more, our method has substantially higher diversity mea-
sured by coverage (COV), surpassing the second-best result
by roughly 10% in all experiments. This is due to our reg-
ularized latent space, which allows the model to learn and
interpolate from a continuous distribution. Our visualiza-
tions (Fig. 1 and Fig. 3) validate that our model generates
clean 3D surfaces. We also calculate the average distance
between the generations and each object in the reference set
to confirm that our model is capable of producing diverse
and unique shapes.

5.2. Conditional Generation for Shape Completion

Next, we assess the proposed method for shape comple-
tions of sparse, partial point clouds. During both training
and testing, we randomly sample 128 points from a full
point cloud, then crop 50% of points. We randomly se-
lect a viewpoint and remove the 64 furthest points from the
viewpoint to obtain a partial point cloud, following Yu et
al. [66]. We perform this cropping during training online
in each iteration. We report quantitative results in Tab. 2
and show visualizations in Fig. 4. Previous works perform
well on dense partial point clouds and we show results in
our supplemental material. However, completing a sparse
and partial point cloud is challenging. Methods such as

condition conditionreconstruction reconstruction

Figure 5. Reconstructing scanned point clouds (top left) and single
images. The image for extracting the scanned point cloud is shown
here for reference, but was not used for training. Our method cap-
tures details of conditioned geometry, such as the curves of the
drill, engines of the plane, and pillows on the couch.

ShapeFormer (SFormer) [63] and AutoSDF [35] fail un-
der this setting because they quantize shapes into patches.
Sparse point clouds mean there are very few patches to ex-
tract information from. PVD [69] produces noisy samples
because they operate on discrete points and cannot interpo-
late smoothly from a learned prior distribution. cGAN [62]
learns a regularized latent space so its generations are rel-
atively clean and complete but are less diverse because its
priors are less expressive due to the “prior hole problem” of
VAEs, which diffusion models solve [1, 49, 56, 68].

Our method outperforms all baselines in MMD (quality)
and TMD (diversity) but not UHD. The UHD metric mea-
sures fidelity by finding the largest distance between any
partial input point and its nearest neighbor to the completed
shape, so outliers determine the UHD value. We note that
PVD [69] performs well under the UHD metric but genera-
tions are noisy and less realistic. Our visualizations in Fig. 4
show that our completions match the input well. Given in-
dication of the style of the legs of a chair, our method pro-
duces plausible shapes accordingly.

5.3. Other Modalities for Conditioning

In our method, we formulate shape completion, single-
view reconstruction, and reconstruction of real-scanned
point clouds as a unified task. Essentially, we are learning
a distribution over plausible 3D shapes that we can sample
from, given a conditioned input. The difference between
these tasks then is extracting shape features from the inputs
such that we can sample their corresponding 3D shape from
the distribution. Here, we show two additional modalities
we can reconstruct: real scanned, noisy point clouds and
2D images. For the former, we use the YCB [4] dataset, a
collection of point clouds acquired from multi-view RGBD
captures. The fused multi-view point clouds resemble col-
lection of in-the-wild data for tasks such as robotic grasp-
ing. Additionally, the point clouds contain noise and are
not complete (e.g., the bottom of each object is on a sur-
face and is not captured). We use the same architecture as
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Table 3. Ablation Study. Left is conditional generation on the Couch split with MMD, TMD, and CONS (see Sec. 5.2 for definition).
Right measures the average Chamfer Distance (CD) between modulation representations of SDFs and ground truth. ↑ means higher is
better and ↓ means lower is better. All values are scaled up by 102 and validate the design choices of the proposed method.

MMD (↓) TMD (↑) CONS (↓)
No end-to-end 0.096 8.292 5.346

ω = 4 0.044 7.251 0.822
ω = 1 0.049 11.46 1.594

Concatenation 0.049 12.22 2.068

Ours 0.041 13.53 1.967

Couch Multi-class

SIREN + meta-learning [11] 0.763 5.666
Auto-decoder [40] 0.557 17.83

Ours (σ = 1.0) 0.828 0.942
Ours (σ = 0.5) 0.108 0.621

Ours (σ = 0.25) 0.104 0.607

in the previous subsection but train from scratch using YCB
data. For conditioning on 2D images, we use a pretrained
ResNet 18 [17] as our encoder Υ. Our model remains capa-
ble of reconstructing plausible outputs for both tasks, shown
in Fig. 5. We provide training details in our supplemental
material.

5.4. Ablation Experiments

Next, we analyze design choices that affect conditional
generation and modulation representations. In Tab. 3 (left),
we report shape completion metrics for the Couch training
split. We also define a consistency (CONS) metric for mea-
suring fidelity as we explain in Sec. 5.2 that UHD may not
correlate closely to visual results. For CONS, we evaluate
all points in the input partial point cloud using the generated
SDF and take the average of the predicted signed distance
values. If the points are to be present on the reconstructed
surface, then by definition, the values of each point are close
to 0. This metric also allows us to filter generations be-
fore running marching cubes, which reduces inference time
while maintaining high-quality samples.

No end-to-end refers to skipping the fine-tuning stage ex-
plained in Sec. 4.4. Generations are clean and realistic but
lack diversity and complexity. This confirms our end-to-end
training scheme improves generalization and introduces ge-
ometrical constraints. Next, ω refers to the ratio of guid-
ance strength during generation: the final output is a linear
combination of two generations with and without guidance:
(ω + 1)zc − (ω)zu, where zc is guided and zu is uncondi-
tional [19]. In our experiments, we guide generations every
iteration (i.e., ω = 0) but depending on the use case, one
can adjust this hyperparameter to determine the tradeoff be-
tween diversity and fidelity. See supplemental material for
details. Finally, we experiment with Concatenation for con-
ditioning, following [44]. Instead of using cross-attention,
we diffuse the concatenation of the conditioned feature and
noisy vector and rely on self-attention to learn conditioned
geometry. We find that both conditioning mechanisms lead
to similar outputs, although concatenation increases input
dimensions and memory consumption significantly.

On the right side of Tab. 3, we validate our modulation

module, which is the cornerstone of our SDF representa-
tion. As mentioned in Sec. 2, Dupont et al. [11] use SIREN
and meta-learning. On single categories, this method per-
forms adequately, but completely fails to represent detailed
shapes when we increase the number of categories. We also
experiment with auto-decoders and arrive at a similar re-
sult. These two methods rely on linear mappings between
discrete latent codes and a base SDF network, and the dis-
tribution of shapes they can represent is limited. We show
visualizations in the supplemental material. The proposed
method learns a regularized latent space and a shape prior,
which represents over 100 categories with fine details. In
Sec. 4, we mention that we use a KL-loss to enforce the tar-
get latent distribution to be a zero-mean Gaussian with stan-
dard deviation 0.25. In Ours (σ = 1.0) and Ours (σ = 0.5)
we experiment with standard deviations 1.0 and 0.5, respec-
tively. Increasing σ can lead to an overly spread-out distri-
bution that cannot encode shapes well, although we spec-
ulate that on datasets substantially larger than the ones we
use, σ could be increased. Apart from representation, our
current choice of 0.25 allows the diffusion model to learn
from a more compact distribution, which improved conver-
gence speeds and training stability.

6. Conclusion

We devise a probabilistic diffusion model that generates
diverse shapes from a distribution of learned SDFs. We val-
idate the proposed method for shape generation and com-
pletion of various input modalities. Given the method’s po-
tential downstream applications and generation quality, we
hope this work brings us closer to democratizing creation
of 3D assets through AI. To further improve the method,
we could speed up inference time of the diffusion model
with techniques such as DDIM sampling [52], and we could
enforce the relationship between the latent distributions of
partial shapes and those of complete shapes to improve in-
terpretability and fidelity. There are also many avenues for
exciting future work. Besides exploring other conditioning
approaches, e.g., text-to-shape, we could learn appearance
for generating realistic assets. We would also be interested
in expanding DiffusionSDF to full scene synthesis.

8



References
[1] Jyoti Aneja, Alex Schwing, Jan Kautz, and Arash Vahdat.

A contrastive learning approach for training variational au-
toencoder priors. Advances in neural information processing
systems, 34:480–493, 2021. 7

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 1, 2

[3] M Lo Brutto and Paola Meli. Computer vision tools for 3d
modelling in archaeology. International Journal of Heritage
in the Digital Era, 1(1 suppl):1–6, 2012. 1

[4] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srini-
vasa, Pieter Abbeel, and Aaron M Dollar. The ycb object
and model set: Towards common benchmarks for manipula-
tion research. In 2015 international conference on advanced
robotics (ICAR), pages 510–517. IEEE, 2015. 1, 2, 6, 7

[5] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit generative
adversarial networks for 3d-aware image synthesis. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5799–5809, 2021. 1, 3

[6] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 2, 6

[7] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.
Implicit functions in feature space for 3d shape reconstruc-
tion and completion. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6970–6981, 2020. 2

[8] Gene Chou, Ilya Chugunov, and Felix Heide. Gensdf: Two-
stage learning of generalizable signed distance functions. In
Proc. of Neural Information Processing Systems (NeurIPS),
2022. 1, 3, 5

[9] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson.
On the effectiveness of weight-encoded neural implicit 3d
shapes. arXiv preprint arXiv:2009.09808, 2020. 1, 3

[10] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 1, 2

[11] Emilien Dupont, Hyunjik Kim, SM Ali Eslami,
Danilo Jimenez Rezende, and Dan Rosenbaum. From
data to functa: Your data point is a function and you can
treat it like one. In International Conference on Machine
Learning, pages 5694–5725. PMLR, 2022. 1, 2, 3, 4, 8

[12] Clemens Eppner, Arsalan Mousavian, and Dieter Fox.
ACRONYM: A large-scale grasp dataset based on simula-
tion. In 2021 IEEE Int. Conf. on Robotics and Automation,
ICRA, 2020. 2, 6

[13] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point
set generation network for 3d object reconstruction from a
single image. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2463–2471, 2017. 1

[14] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja

Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. In Advances In Neural
Information Processing Systems, 2022. 2

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 1

[16] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan
Russell, and Mathieu Aubry. AtlasNet: A Papier-Mâché Ap-
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