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In this supplemental document, we present additional information and re-
sults supporting the findings made in the main manuscript. We first formally
define the attack methods used for validation in our main manuscript, see Sec-
tion 1. In Section 2, additional details on the S and F operators are provided.
Next, in Section 3, we provide additional qualitative comparisons of the pro-
posed defense method compared to state-of-the-art approaches. In Section 4, we
investigate the proposed defense method in the presence of a super-white box
attack. Section 5 discusses how to modify the proposed method to be robust
to the BPDA attack. Finally, in Section 6, we provide additional details on the
baseline defense methods used in our experiments.

1 Attack Algorithms

In this section, we provide formal definitions for the attack algorithms used to
validate the proposed defense method.

1. FSGM: The FSGM [3] is an attack method that, for each pixel, determines
in which direction the pixel intensity should be moved according to the
gradient of the loss function. Mathematically, the adversarial perturbation
δ is defined by FGSM as

δ = ϵ · sign(∇xL(x, y)),

where ϵ is the maximum perturbation allowed for an attack, which is com-
monly sufficiently small for undetectable; x and y are a benign image and
the corresponding ground truth label, respectively.

2. BIM: The BIM [8] attack is an enhanced version of FGSM. Instead of taking
one single step of size ϵ, it iteratively searches for an optimal perturbation
with multiple smaller steps α. Then, the obtained perturbation is clipped by
the predefined ϵ. Formally, BIM is defined as

xi = clipϵ,x(xi−1 + α · sign(∇xL(x, y))),
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where x0 = x. The number of iteration used is a hyperparameter, and more
iterations typically lead to a stronger attack.

3. PGD: Similar to the BIM attack, the PGD [11] attack interatively optimizes
the adversarial examples generated. With the initial x0 = x, the method
iteratively find xi by

xi = Πx+S(x
i−1 + α · sign(∇xL(fθ(x

i−1), y))), (1)

where Πx+S denotes projecting perturbations into the set S. We refer the
reader to [11] for additional details. The scalar α is the step size used in each
iteration, and ϵ denotes the maximum perturbation allowed.

4. DeepFool: Similar to BIM and PGD, the DeepFool [13] attack generates
adversarial perturbations iteratively, intending to obtain the perturbations
with minimal distortion. Specifically, it finds the closest decision boundary by
multiple linearizations of the classifier and then generates the perturbations
based on the decision boundary.

5. C&W: The C&W [1] attack is an optimization-based attack method, which
generates the adversarial perturbations by solving the following problem

min ||δ||p + c · f(x+ δ)

s.t. x+ δ ∈ [0, 1]n, (2)

where f is a objective function that is designed to mislead the example x
to be misclassified; || · ||p denotes lp norm; and c is a constant, estimated by
binary search.

6. NewtonFool: NewtonFool [6] attack is essentially a variant of the Deep-
Fool attack. In contrast to DeepFool generating perturbations based on lin-
earization approximation, the NewtonFool is based on nonlinear constraints,
allowing for a significantly faster generation of adversarial patterns. Hence,
with the same time budget, more iterations can be performed, resulting in
stronger attacks.

7. DAG: The DAG [18] attack is designed to attack semantic segmentation
and object detection models. Essentially, it is similar to optimization-based
classification attacks, generating adversarial perturbation by solving the fol-
lowing problem

∀n, argmax
c

{fc(X+ r, tn)} ≠ ln, (3)

whereX is an image which containsN recognition targets T = {t1, t2, . . . , tN};
L = {l1, l2, . . . , ln} is the ground-truth class labels of T , i.e., ln is the ground-
truth label of tn; f(X, tn) ∈ RC denote the classification score vector on the
n-th recognition target; r denotes an adversarial perturbation to be esti-
mated.
The form of T is defined based on a specific task. For the image classification
task, T only contains one element, i.e., the entire image. T becomes all pixels
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for semantic segmentation tasks, while it becomes all proposals for object
detection tasks.

Intuitively, the goal of the Eq. 3 is to make the predictions of all targets
incorrect by estimating an adversarial perturbation r. In doing so, adversarial
labels L′ = {l′1, l′2, . . . , l′n} ∀i, li ̸= l′i are required, which are generated by
randomly sampling from other incorrect classes. Under this setting, the loss
function covering all targets can be written as

L(X, T ,L,L′) =
N∑

n=1

[
fln(X, tn)− fl′n(X, tn)

]
. (4)

Minimizing L can be achieved by making every target an incorrect prediction,
i.e., suppressing the confidence of the original correct class fln(X+ r, tn),
while increasing the confidence of the desired (adversarial) incorrect class
fl′n(X+ r, tn)).

2 Additional Details on S and F Operator

The S operator offers the functionality of a conventional (hardware) ISP pipeline
using a sequence of cascaded sub-modules. In particular, the proposed S opera-
tor consists of the following components: Bayer Demosaicking, color balancing,
white balancing, contrast enhancement, Gamma adjustment, and colorspace con-
version sub-modules. We provide the implementation details of each sub-module
below:

1. Bayer Demosaicking: As discussed in the main manuscript, a color filter
array (CFA) sits on a matrix of small potential wells. When light passes
through the CFA layer, a mosaic pattern of the three stimulus RGB colors is
generated, called RAW image. A Bayer pattern mosaic is the most commonly
used one, alternating R-G-G-B 2×2 superpixels. To reconstruct trichromatic
intensity values from a RAW image, a demosaicking algorithm is required.
In our implementation, we use the DDFaPD demosaicking algorithm [12]
offered by the Python colour-demosaicing library.

2. Color Balance The purpose of color balancing is to recover the color
characteristics of the original scene. We achieve the color balancing by using
the SimpleColorBalance [10] algorithm offered by the OpenCV library.

3. White Balance We further adjust the color temperatures of RGB images
with a white balance method to make the color look more natural. We use a
white balancing method provided by the OpenCV library, mainly based on
the White Patch algorithm and Gray World algorithm [16].

4. Contrast Enhancement Contrast plays a critical role in separating the
dark and bright areas of an image. An improvement in the contrast increases
this separation, making objects more distinguishable. In our pipeline, the
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Contrast Limited Adaptive Histogram Equalization(CLAHE) algorithm [15]
is leveraged for contrast enhancement.

5. Gamma Adjustment: In this step, we use a non-linear Gamma correc-
tion function to adjust the image luminance (i.e., brightness level). In our
pipeline, we use the default gamma correction algorithm [5] offered by the
OpenCV library.

6. Colorspace Conversion: Pixel values are converted to a specific colorspace,
e.g., sRGB, before compression storage or further processing, e.g., JPEG.

The F operator is an encoder-decoder network to map an RGB image to its
corresponding intermediate RAW measurements. The details of the network ar-
chitecture are shown in Table 1

Table 1: Architecture description of the F Operator.

Layer Type In-Channel Out-Channel Kernel

1st Conv+Relu 3 32 3×3

2nd Conv+Relu 32 64 3×3

3rd Conv+Relu 64 128 3×3

4th UpConv+Relu 128 64 3×3

5th UpConv+Relu 64 32 3×3

6th UpConv+Sigmoid 32 1 3×3

3 Additional Qualitative Results

This section provides additional qualitative comparisons between the proposed
methods and state-of-the-art defense baselines. For input-transformation-based
adversarial defense methods, a balance between transformation fidelity and ad-
versarial pattern removal is essential. A higher transformation fidelity indicates
more details of the original image are kept, including adversarial patterns. In
contrast, aggressive pattern removal could result in a severe loss of detail. Our
method achieves this balance by a weighted sum between the G and S operator.
The S operator is designed for faithfully reconstructing high-frequency details,
while the G operator is trained to mitigate adversarial patterns. As shown in Fig-
ure 1, our approach offers better transformation fidelity than Comdefend, TVM,
Pixel Deflection, and Resizing & Padding methods. Even though the JPEG-
Defense method keeps more high-frequency details than the ones offered by our
approach, it suffers from removing adversarial patterns, resulting in the worst
performance among all compared methods.

4 Super-white Box Attack

We conduct a super-white attack experiment to provide insights into the benefits
of the proposed non-differentiable S operator. A white-box setting means the at-
tack methods have full access to a target model, including network architecture,



Defending Against Adversarial Attacks with Camera Image Pipelines 5

Clean Image Adversarial Image Perturbation JPEG-Defense [2] TVM [4] Resizing & Padding [17] Pixel-Deflection [14] ComDefend [7] Operator G Operator S Proposed Method

Fig. 1: Qualitative comparison of the proposed method along with both G and S
operators against state-of-the-art defense methods on the ImageNet dataset, see text.
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Super-FSGM Super-PGD Super-BIM Super-DeepFool Super-C&W Super-NewtonFool
2/255 ↑ 4/255 ↑ 2/255 ↑ 4/255 ↑ 2/255 ↑ 4/255 ↑ L∞ ↑ L2 ↑ L∞ ↑ L2 ↑ L∞ ↑

ComDefend [7] 7.43 5.12 1.33 0.80 1.54 0.82 1.83 1.70 2.47 1.02 0.45
Proposed method w/ G only 11.97 7.82 3.68 1.83 4.02 2.35 3.27 2.11 4.93 1.36 0.83
Proposed Method 62.88 55.25 65.05 63.97 64.49 60.56 68.62 59.93 68.74 65.13 38.41

Table 2: We evaluate the defense performance against a super-white attack set-
ting, where we assume the preprocessing model is exposed and the adversary can
calculate the gradient for the differentiable part of the preprocessing model to
construct stronger adversarial attacks. In such a setting, the differentiable pre-
processing module (i.e., ComDefend and G only) fail while our method does not
collapse, demonstrating the benefit of exploiting the conventional ISP operator
S in our method.

learned weights, and even training data, yet not to the preprocessing module used
to transform input. In contrast, preprocessing modules and target models are
exposed in the super-white box attack setting, allowing the adversary to calcu-
late the gradient for adversarial attacks. In Table 2, we demonstrate the defense
performances of three competing approaches on the ImageNet in Top-1 accuracy
under the super-white box attack setting. We see that the defense methods with
differentiable preprocessing modules (i.e., ComDefend and the proposed method
with G only) cannot function effectively under the super-white box attack set-
ting. The attack only impacts the proposed method marginally, validating the
benefit of the non-differentiable S operator.

5 Defense against BPDA Attack

In this section, we discuss the modifications of the proposed method to de-
fend against BPDA attacks. For a non-differentiable target model, BPDA and
derivative attacks build a differentiable proxy to mimic its functions. Then, the
gradients of the created proxy are leveraged to attack the non-differentiable
target model, i.e.obfuscated gradients. As such, the adversary cannot build an
adequate proxy. In order to tackle such an attack, we modify our transformation
algorithm from a determined algorithm to a randomized algorithm.

The modifications are listed in Algorithm 2; see original Algorithm 1. Specifi-
cally, at the inference time, instead of transforming the input image and directly
feeding it to the downstream model, we apply our method N times sequentially,
where the output of each transformation is the input for the next one. We add
small random noise perturbations to the RGB and Raw images during each
transformation. Here, two randomization effects are introduced: the number of
times applying the transformation, N , is also random. The introduced random-
ization makes it hard to build an accurate proxy for providing effective gradients.
Note that the new algorithm only requires modification at the inference stage,
whereas the training stage remains the same; hence there is no need to retrain
the model.
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Algorithm 1 Original Inference Algorithm

Require: Input Image I, Operator S, F,G,
Hyper-parameter ω

1: Raw ← F (I)
2: I ← ω ∗G(Raw) + (1− ω) ∗ S(Raw)

Algorithm 2 Modified Inference Algorithm

Require: Input Image I, Operator S, F,G,
Hyper-parameter ω

1: N ← random(0, 20)
2: i← 0
3: while i ̸= N do
4: nI ← Gaussian(µ = 0, σ = 0.05)
5: nRaw ← Gaussian(µ = 0, σ = 0.05)
6: Raw ← F (I + nI)
7: Raw ← Raw + nRaw

8: I ← ω ∗G(Raw) + (1− ω) ∗ S(Raw)
9: i← i + 1
10: end while

The defense performance against BPDA is reported in Table 3. Specifically,
the proposed modification improves the defending accuracy from 14.28 to 38.85.
Also, compared to the baseline input transformation methods, the proposed
method is the only method that shows robustness to the BPDA attack. The
effectiveness of the modification for all other attacks is shown in Table 4, and
we observe that the defense performances under other attacks decrease slightly
after applying the modification. In other words, the modification significantly
increases the robustness of the proposed method under the BPDA attack, at the
cost of slightly decreasing the defense performance under other attacks. Note
that the relative ranking of the proposed defense method versus baseline defense
methods remains the same, with the proposed defense method outperforming
baselines with a large margin before and after the modification.

Defense Method JPEG-Defense TVM Randomized Resizing & Padding Pixel-Deflection
0.08 6.39 2.66 1.87

ComDefend HGD Proposed Method (Unmodified) Proposed Method (modified)
0.03 0.03 14.28 38.85

Table 3: Quantitative comparison with baseline input-transformation defense methods
under BPDA attack: The proposed modification improves the defending accuracy from 14.28 to
38.85, and the resulting method significantly outperforms the baselines.

6 Baseline Defense Methods

In this section, we provide additional details on the baseline adversarial defense
methods used in our experiment. These baselines methods are state-of-the-art
input-transformation defense methods with released code.

1. JPEG-Defense [2]: The JPEG-Defense method is a defense method based
on input transformation. The intuition behind the method is that the com-
pression process may remove high-frequency adversarial perturbations. A
hyper-parameter of this method is the compression ratio, which affects the
adversarial defense accuracy. A high compression ratio results in high im-
age quality and less removal of adversarial perturbations. In our experiment,



8 Yuxuan Zhang, Bo Dong, Felix Heide
FSGM PGD BIM DeepFool C&W NewtonFool BPDA

2/255 ↑ 4/255 ↑ 2/255 ↑ 4/255 ↑ 2/255 ↑ 4/255 ↑ L∞ ↑ L2 ↑ L∞ ↑ L2 ↑ L∞ ↑ L∞ ↑
ResNet-101

JPEG-Defense [2] 33.14 20.71 45.19 21.74 36.78 8.5 53.16 45.69 59.06 52.01 24.65 0.08
TVM [4] 43.75 40.02 45.46 44.35 44.86 41.93 47.69 39.89 45.51 40.44 22.6 6.39
Randomized Resizing & Padding [17] 45.21 34.97 45.38 27.75 40.04 18.04 73.06 62.47 66.53 59.87 27.93 2.66
HGD [9] 54.75 43.85 55.26 50.05 56.74 48.61 64.34 58.13 59.98 52.88 27.70 0.03
Pixel-Deflection [14] 54.56 35.14 60.68 34.86 58.71 41.91 75.97 64.13 66.29 60.91 28.81 1.87
ComDefend [7] 48.21 36.51 53.28 48.38 51.39 42.01 63.68 55.62 58.53 50.38 26.46 0.03
Proposed Method w/o modification 66.02 58.85 68.34 66.17 66.91 63.01 72.04 63.52 71.40 67.33 40.96 14.28
Proposed Method w/ modification 61.87 54.42 63.79 59.03 61.29 57.35 68.80 56.42 68.13 61.65 35.88 38.85

InceptionV3

JPEG-Defense [2] 31.97 20.25 43.34 21.15 34.68 8.55 51.20 43.49 55.00 50.39 24.06 0.12
TVM [4] 42.47 37.23 42.75 41.61 42.80 39.71 45.21 37.39 43.27 37.51 23.05 4.58
Randomized Resizing & Padding [17] 41.86 34.49 43.41 25.60 39.42 16.62 70.24 58.65 63.24 55.62 27.55 2.09
HGD [9] 52.83 40.99 50.35 47.62 56.02 47.78 60.33 56.61 59.55 52.0 26.84 0.03
Pixel-Deflection [14] 51.42 34.27 56.13 32.49 56.18 39.13 71.16 61.58 61.94 57.58 28.01 1.56
ComDefend [7] 47.00 35.34 49.99 46.15 48.74 39.58 60.01 52.47 55.85 47.70 25.44 0.03
Proposed Method w/o modification 63.03 56.34 65.69 63.03 64.77 59.49 69.25 60.04 66.97 64.69 38.01 12.11
Proposed Method w/ modification 59.89 53.02 61.15 59.44 58.07 57.92 66.48 55.84 61.25 60.30 35.63 36.43

Table 4: Quantitative Comparisons for the proposed method w/ and w/o modification
for BPDA. The modification significantly increase the robustness of the proposed method under
BPDA attack, at the cost of slightly decreasing the defense performance under other attacks. The
relative ranking of the proposed defense method versus baseline defense methods remains the same,
with the proposed defense method outperforming baselines with a large margin both before and after
modification.

we set the compression ratio to 75%, which is consistent with the setting
proposed in [2].

2. ComDefend [7]: Similar to JPEG-Defense, ComDefend also aims to re-
move unnecessary details of the input image through compression. But un-
like JPEG compression, ComDefend learns an auto-encoder to compress and
reconstruct the image. Specifically, an encoder maps the input image to a
compressed latent space, which is then fed into the decoder for reconstruc-
tion.

3. TVM [4]: The method works by randomly selecting a small set of pixels and
reconstructing the most total-variation regularized image that is consistent
with the selected pixels. A hyperparameter of this method is the number of
pixels to be selected. Selecting a large portion of pixels keeps more image
details but also keeps more adversarial perturbations. In our experiment, we
tune the hyperparameter to achieve the best performance.

4. Randomized Resizing & Padding [17]: The method aims to mitigate
the effect of adversarial perturbations through randomization. Given an in-
put image, two randomization operations are performed. In particular, the
method first randomly resizes the input image. Then, it randomly pads the
input images with zeros.

5. Pixel-Deflection [14]: The method works by forcing the image to match
natural image statistics. In doing so, the algorithm locally corrupts the image
by redistributing pixel values by pixel deflection. Then, a subsequent wavelet-
based denoising operation softens this corruption.
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