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Fig. 1. We propose a computational monocular camera that optically cloaks unwanted obstructions, such as raindrops or dirt stains on lens cover glass, or a
fence near the camera. Instead of inpainting the obstructed information post-capture, we learn a custom diffractive optical element that, when placed in front
of the camera lens, acts as a depth-dependent scatterer. The learned optical element sits on the aperture plane of an existing camera setup, and produces
a point spread function with large spatial support for close objects, scattering light away from what would otherwise be a focal spot. All while preserving
spatial resolution at long distances without increasing the camera footprint. In conjunction with the optical element, we jointly optimize a feature-based deep
learning reconstruction network to recover the unobstructed image.

Unwanted camera obstruction can severely degrade captured images, includ-

ing both scene occluders near the camera and partial occlusions of the camera

cover glass. Such occlusions can cause catastrophic failures for various scene

understanding tasks such as semantic segmentation, object detection, and

depth estimation. Existing camera arrays capture multiple redundant views

of a scene to see around thin occlusions. Such multi-camera systems effec-

tively form a large synthetic aperture, which can suppress nearby occluders

with a large defocus blur, but significantly increase the overall form factor

of the imaging setup. In this work, we propose a monocular single-shot imag-

ing approach that optically cloaks obstructions by emulating a large array.

Instead of relying on different camera views, we learn a diffractive optical

element (DOE) that performs depth-dependent optical encoding, scattering

nearby occlusions while allowing paraxial wavefronts to be focused. We

computationally reconstruct unobstructed images from these superposed

measurements with a neural network that is trained jointly with the optical
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layer of the proposed imaging system. We assess the proposed method in

simulation and with an experimental prototype, validating that the proposed

computational camera is capable of recovering occluded scene information

in the presence of severe camera obstruction.
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1 INTRODUCTION
Cameras can often be subjected to non-ideal environmental condi-

tions, resulting in obstructions that are detrimental to photography

and computer vision tasks. For example, in the case of automotive

vehicles and robotics, dirt from road debris, insects, raindrops or

even spray from close-by vehicles can accumulate on the windshield

or camera cover glass. Beyond reducing photographic quality for

human viewers, this can result in catastrophic failure of downstream

scene understanding tasks [Gaylard et al. 2017; Hnewa and Radha

2020]. Active cleaning approaches [Ficosa 2017; Monrad 2017; Or-

laco 2013; S3 2016] which use nozzles, wipers, or spinning cover

glasses to remove obstructions are often inadequate, especially in
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the case of strong obstructions (e.g., insects stuck to the windshield)

or when obstructions are part of the scene itself (e.g., a wiper).

Existing approaches to this challenge rely on increasing the aper-

ture of the imaging system. This enables the imaging system to

see through unwanted obstructions by capturing a larger portion

of the incident light field that is unobstructed. The obstructions

can be either explicitly detected and suppressed for a downstream

task [Uricar et al. 2021], or a light field can be reconstructed from

all available viewing angles, making it possible to recover an unob-

structed refocused image [Wilburn et al. 2005]. Using a camera with

a very large physical aperture is limited to specific domains, such

as telescopic imaging and self-driving cars, where sensor stacks

can span the entire roof [Caesar et al. 2020; Waymo 2019]. In its

extreme form, this is known as a synthetic aperture array [Vaish

et al. 2006; Wilburn et al. 2005]. While camera arrays are effective

at handling partial occlusions, they come at the cost of a large form

factor, prohibiting applications that rely on a single camera.

Restricting camera systems to smaller form factors, researchers

have investigated machine learning for obstruction removal using

captures from single-camera hand-held devices, robotics, or auto-

motive imaging systems. This often requires multiple spatially or

temporally varying captures [Li et al. 2021; Liu et al. 2020; Xue

et al. 2015], mandating static scenes. Also, such approaches often

fail on test inputs deviating from the training input distributions.

Single-image inpainting approaches that aim to recover the latent

obstructed image regions [Farid et al. 2016; Gupta et al. 2021; Qian

et al. 2018; Yang et al. 2021; Yu et al. 2019] do not constitute a valid

alternative, as they often produce fictitious hallucinations for large

occluded regions.

In this work, we introduce a monocular single-shot obstruction-

free imaging method using a single camera combined with a diffrac-

tive optical element (DOE) and a computational reconstruction

process. Instead of capturing diverse view angles in an array con-

figuration, we introduce a diffractive optical element acting as a

depth-dependent diffuser to increase the angle of the incident light

cone per-pixel. Conventional refractive lens stacks restrict this light

cone by their smooth surface profile. Instead, we design a DOE that

produces strong depth-dependent aberrations, allowing us to gen-

erate PSFs that can optically disambiguate foreground obstruction

from background scenes. Specifically, we introduce a differentiable

occlusion-aware forward model and learn an optical assembly such

that paraxial wavefronts from the background scenes can arrive

at the imaging sensor, whereas the light from foreground obstruc-

tions is diffused. The proposed method does not increase the form

factor, and the single-shot capability allows dynamic scene applica-

tions. We recover unoccluded images with a reconstruction network

learned in an end-to-end fashion. Our physics-aware reconstruction

network utilizes the PSFs of the DOE to better generalize to unseen

test cases. We assess the proposed approach both in simulation and

with an experimental prototype, validating that our method can see

through obstructions and recover background content where all
compared methods cannot.

Specifically, we make the following contributions:

• We introduce a monocular single-shot imaging method that

recovers an unobstructed scene with a learned DOE, enabling

imaging through occlusions without the need for inpainting.

• We learn the proposed DOE using end-to-end optimization,

relying on a differentiable depth- and obstruction-aware im-

age formation model and a physics-based reconstruction net-

work.

• We validate the proposed method in simulation and with an

experimental prototype, confirming that the method is capa-

ble of recovering image details lost when using conventional

methods.

Optimized lens designs, network checkpoints, fabrication details,

and all code needed to reproduce the results presented in the manu-

script are available under https://light.princeton.edu/seeing-throu

gh-obstructions.

Limitations. We design the proposed DOE assuming narrow band

RGB input illumination. Although finer wavelength sampling may

further improve the generalization capability to in-the-wild scenes,

the computational efficiency and memory requirements of multi-

spectral DOE training would exceed the resources available to us.

Simulated multispectral datasets and training infrastructure with

an order of magnitude larger memory may lift this limitation in the

future. Existing inference hardware allows us to achieve real-time

performance and low latencies, albeit requiring high-power GPUs

for high sensor resolutions. These are impractical for low-power

consumer applications. In the future, efficient implementation of

the proposed reconstruction method on FPGAs or custom ASICs

may allow for fast inference on edge devices.

2 RELATED WORK
Obstruction-free Light-field Imaging. Light field camera arrays

have been investigated to a great extent by researchers and prac-

tioners [Isaksen et al. 2000; Pei et al. 2013; Vaish et al. 2005, 2006,

2004; Wang et al. 2020; Wilburn et al. 2005; Xiao et al. 2017; Yang

et al. 2014]. With synthetic aperture refocusing [Isaksen et al. 2000;

Vaish et al. 2005], it is possible to see through foreground obstruc-

tions and reconstruct occluded background objects. The light field

sub-aperture images facilitate reliable obstruction segmentation and

background estimation, using techniques such as entropy cost [Vaish

et al. 2006, 2004], stereo matching [Pei et al. 2013], handcrafted fea-

ture extraction [Xiao et al. 2017; Yang et al. 2014], or deep neural

networks [Wang et al. 2020]. While light field refocusing can effec-

tively suppress obstructions, it requires a large form factor, which

limits its applicability.

Multi-frame Obstruction Removal. Using small devices such as

smart-phone cameras and single-camera automotive imaging sys-

tems, multiple spatial or temporal varying captures are typically

needed to robustly identify obstructions and reconstruct background.

Existing depth-based approaches identify foreground obstructions

by estimating scene depth using multi-view stereo [Liu et al. 2020;

Xue et al. 2015] and depth from focus [Yamashita et al. 2010]. These

methods separate foreground obstructions from the background

scene based on parallax, and the latent background can be recov-

ered since pixels occluded in one viewpoint are likely to be visible
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in other viewpoints. Yamashita et al. [2010] perform fence detection

using three multi-focus images. While avoiding multiple cameras,

such approaches still require multiple captures, which prohibits the

use in highly dynamic environments. Handcrafted features [You

et al. 2013] as well as convolutional neural networks [Jonna et al.

2015, 2016] have been proposed to detect common obstructions such

as raindrops and fences from the video data. Li et al. [2021] addition-

ally utilize a recurrent structure to better leverage temporal cues.

While video-based obstruction removal fundamentally requires at

least a handful of captures to recover a single frame, the proposed

method is a single-shot approach that relies on a custom optical

stack.

Image Inpainting of Obstructions. With only one capture, single

image inpainting methods fill the occluded area to restore a visu-

ally pleasing image by relying on nearby visible image content,

and global image priors. Assuming an obstruction mask is given,

this problem becomes a generic image inpainting problem. Yan et

al. [2018] propose a copy-and-paste approach to fill in the gaps using

similar patterns from the same image or from a large image database.

The quality of such conventional image inpainting methods heavily

depends on the handcrafted distance metrics for the search algo-

rithm, which often fails to generalize to out-of-distribution test cases.

To perform automatic obstruction detection, earlier methods assume

regular or near-regular obstructions [Farid et al. 2016; Liu et al. 2008].

More recently, deep learning methods have been proposed for more

robust detection [Gupta et al. 2021; Hao et al. 2019; Qian et al. 2018].

Such methods usually focus on a particular type of obstruction to

achieve robust obstruction detection, and struggle with complex

scene structure. All single image inpainting approaches, including

state-of-the-art generic inpainting methods [Suvorov et al. 2021],

are inherently ill-posed due to the lack of information from the

occluded background. As a result, they often produce unrealistic

hallucinations, especially in the presence of a domain gap or large

occlusions.

Optical Cloaking Devices. A large body of work has investigated

optical devices that aim to optically cloak portions of a scene. Cloak-

ing devices typically rely on optical assemblies in the scene that

redirect light around the region one aims to “hide” from an observer

at a specific viewing position [Howell et al. 2014]. While perfect

optical cloaking in broad-band from all viewing positions and with

all polarization states is an open problem, existing methods [Cai

et al. 2007; Chen et al. 2013, 2011; Ergin et al. 2010; Jiang et al. 2020]

have demonstrated cloaking at diverse wavelengths, hiding objects

under a surface [Ergin et al. 2010], cloaking large objects [Chen et al.

2011], cloaking in incoherent natural light [Chen et al. 2013] and

3D cloaking for all polarization and azimuthal angles of incident

waves [Jiang et al. 2020]. Departing from existing works on opti-

cal cloaking, which only hide objects within the cloaking device,

we propose to learn an optical element as part of the camera lens,

which hides objects in front of the camera, in conjunction with a

computational reconstruction method.

Differentiable Optics Design. Conventional imaging systems are

typically designed in a sequential approach, where lens and sensors

are hand-engineered based on specific metrics, such as PSF spot

size or dynamic range, independent of the downstream camera task.

Departing from this conventional design approach, a large body of

work in computational imaging has explored jointly optimizing the

optics and reconstruction algorithms, with successful applications

in color image restoration [Chakrabarti 2016; Peng et al. 2019],

microscopy [Horstmeyer et al. 2017; Kellman et al. 2019; Nehme

et al. 2020; Shechtman et al. 2016], monocular depth imaging [Chang

and Wetzstein 2019; Haim et al. 2018; He et al. 2018; Wu et al. 2019],

super-resolution and extended depth of field [Sitzmann et al. 2018;

Sun et al. 2021], time-of-flight imaging [Chugunov et al. 2021; Marco

et al. 2017; Su et al. 2018], high-dynamic range imaging [Metzler

et al. 2019; Sun et al. 2020], active-stereo imaging [Baek and Heide

2021], hyperspectral imaging [Baek et al. 2021], and other computer

vision tasks [Tseng et al. 2021b].

We propose an end-to-end optimization method for imaging

through nearby occluders. Drawing inspiration from depth-encoding

PSF designs in microscopy [Gustavsson et al. 2018; Pavani and Pies-

tun 2008], we optimize a strongly depth-dependent diffractive optic

element that, instead of preserving 3D information, destroys in-

formation by behaving as a scattering layer at selected distances

where occluders may be present. The ample design space of DOEs

allows for rich optical encodings but has the unintended conse-

quence of being challenging to optimize for spatially large DOEs, as

quadratic phase profile simulation imposes additional requirements

on sampling rate [Cottrell et al. 1990]. To handle the resulting com-

putational load and lift the sampling rate constraints, we rely on

an effective far-field approximation to estimate the joint effect of

the quadratic phase profile of a refractive lens and the near-field

Fresnel propagation. This allows us to design large DOE patterns

with depth-dependent PSFs together with a PSF-aware feature-based

deconvolution method.

3 LEARNING TO SEE THROUGH OBSTRUCTIONS
To learn a computational camera that is capable of seeing through

nearby obstructions, we propose a differentiable obstruction-aware

image formation model, which is illustrated in Fig. 2. This image

formation model comprises a DOE suitable for seeing through ob-

struction, followed by a computational reconstruction procedure

in the form of a PSF-aware deep neural network. We describe both

components in the following sections.

3.1 Obstruction-aware Camera Image Formation
We model the obstructions and the latent target scene as located in

two depth layers, with the target scene at optical infinity (i.e., ≥ 5m)

and the obstruction lying on a plane situated closer to the aperture,

i.e. with distance smaller than optical infinity. With obstructions

and target scene in foreground and background, respectively, sim-

ulating the image formation requires computing depth-dependent

light transport. To this end, we rely on a depth-dependent PSF

model and an occlusion-aware image convolution method for real-

istic observations in the presence of occlusions. We next describe

the depth-dependent PSF design of the proposed system and the

resulting image formation model.

Depth-dependent PSF. The proposed optical system consists of a

DOE and a refractive lens, followed by an intensity sensor. The point
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Fig. 2. Learning Obstruction-aware Diffractive Optical Elements. We learn a DOE placed in front of a camera lens jointly with an optics-aware
reconstruction network to see through thin occluders close to the camera. To this end, we introduce a differentiable obstruction-aware image formation
model that simulates the sensor capture of the proposed optical system. The proposed camera (top left) modulates the latent scene at a long distance and the
obstruction close to the observer, e.g., dirt on the wind shield, with the depth-dependent point-spread function of the proposed optical system. The resulting
sensor capture (top right) is fed into a feature deconvolution network (bottom) along with the depth-dependent point spread function (center). The entire
computational imaging system, including optical and compute layers, is jointly learned (bottom left), resulting in a DOE that learns to scatter light for close
objects, with a ring-shaped PSF, while preserving angular resolution for objects at optical infinity.

spread function (PSF) of such an imaging system can be obtained

efficiently using wave optics with a set of approximations. Specifi-

cally, we consider the light wave emitted from a scene point (𝑥,𝑦, 𝑧)
located at depth 𝑧 with respect to the DOE plane. The propagating

light arrives at the DOE with a spherical phase profile

𝜙s =
2𝜋

𝜆

√︃
𝑥2 + 𝑦2 + 𝑧2, (1)

where 𝜆 is the wavelength. Our DOE then modulates the phase of

the incident light based on its height profile ℎ and the wavelength-

dependent refractive index 𝜇𝜆 of the DOE material as

𝜙DOE =
2𝜋 (𝜇𝜆 − 1)

𝜆
ℎ. (2)

Right after the DOE, the refractive lens provides focusing power

with a corresponding quadratic phase profile, which is of the form

𝜙
focus

=
−2𝜋
𝜆

(𝑥2 + 𝑦2)
2𝑓

, (3)

where 𝑓 is the focal length of the lens, which corresponds to the

distance from the lens to the sensor (i.e., the camera is focused at

infinity). Note that we assume here that there is no gap between

the DOE and the lens. In summary, the resulting light after being

modulated by the refractive lens has the accumulated phase

𝜙𝑙 = 𝜙𝑠 + 𝜙DOE + 𝜙
focus

. (4)

This light then propagates to the sensor, resulting in the PSF

𝑝 = |F −1{F {𝑢𝑙 } · H
}
|2, (5)

where 𝑢𝑙 is the complex-valued light wave before the propagation,

H = 𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
𝑒𝑖

𝑘
2𝜋

(𝑥2+𝑦2)
is the Fresnel propagation kernel, 𝑘 = 2𝜋

𝜆
is

the wave number and F and F −1
denote the Fourier transform and

its inverse, respectively.

However, the simulation of the quadratic phase profile of the

refractive lens, as well as the following Fourier-propagation kernel,

require sampling the light field at a minimum resolution prescribed

by Nyquist limit [Cottrell et al. 1990; Moreno et al. 2020]. Specifically,

for an 𝑁 × 𝑁 light field,

𝐹𝑁 =
𝑁𝛿2

𝜆
≤ 𝑓 (6)

is required to avoid aliasing, where 𝐹𝑁 is the Nyquist limit focal

length, 𝑁 is the dimension in pixels and 𝛿 is the wavefront sampling

resolution. For instance, assuming a wavelength of 500 nm and an

8mm focal length camera, simulating a 4 mm lens requires sampling

at 𝛿 ≤ 1 𝜇m (with corresponding 𝑁 ≥ 4000), suggesting that learn-

ing a full 2D phase profile jointly with a reconstruction network is

computationally restrictive as it would require over 50 GB of GPU

memory.

To lift this sampling constraint, we simulate the refractive lens

and Fourier propagation jointly using a Fraunhofer far field approxi-

mation, since with a spherical light source the quadratic phase term

in the Fresnel propagation is canceled out by the quadratic phase

profile of the refractive lens. We implement this propagation by

computing the Fourier transform of the complex-valued light wave
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𝑢 ′
𝑙
of phase 𝜙 ′

𝑙
= 𝜙𝑠 + 𝜙DOE. This results in an estimated PSF 𝑝 ′

without having to sample the wave in the near field, that is

𝑝 ′ = |F (𝑢 ′
𝑙
) |2, (7)

where𝑢 ′
𝑙
is the complex-valued light wave after passing through the

DOE and before being modulated by the refractive lens. Note that

the corresponding wave sampling resolution required for accurately

representing 𝑝 ′ becomes

𝛿 ′ =
𝜆𝑓

𝛿𝑁
, (8)

where 𝑓 is the focal length (propagation distance), 𝛿 is the incoming

wavefront sampling resolution, and 𝑁 is the corresponding wave-

front dimension [Goodman 2005]. As a result, a scale factor
𝑁
𝜆𝑓

appears, providing us with the sensor PSF

𝑝 = resize(𝑝 ′, 𝑁
𝜆𝑓

), (9)

where resize(·) is a nearest neighbor resizing operator.

Lens Obstructions. We formulate the image formation in the pres-

ence of obstructionwith an alpha composition to combine an obstruction-

free image 𝐼
far

with an obstruction image 𝐼
obs

, while taking into

account their corresponding depth PSFs, 𝑝
far

and 𝑝
obs

, respectively.

𝐼𝑠 = 𝛼 ⊙ (𝑝
obs

∗ 𝐼
obs

) + (1 − 𝛼) ⊙ (𝑝
far

∗ 𝐼
far
) , (10)

We use alpha-mask 𝛼 = 𝑝
obs

∗𝑀 to handle the invalid regions in

𝐼
obs

(where the obstruction does not exist), with𝑀 being a binary

mask corresponding to the obstruction. ∗ and ⊙ denote convolution

and element-wise product, respectively. To accurately model the

sensor measurement, we adopt the noise model from [Tseng et al.

2021b] in this work.

3.2 Depth-dependent Obstruction Simulation
We simulated three types of obstruction corresponding to different

imaging scenarios, see Fig. 3: (i) thin fence-like occluders, which are

common in point-and-shoot photographs, (ii) dirt obstructions, and

(iii) raindrops on a windshield or a lens cover, which are common

in robotics and automotive imaging scenarios.

Depth-dependent Obstruction Simulation. To realistically simulate

obstructions at different depths, we rescale the obstruction such

that

𝑠𝑝 =
𝑠𝑚 𝑓

𝑧
obs

Δ𝑝
, (11)

where 𝑠𝑝 is the size of simulated obstructions in pixels, and the

other parameters are given in meters: 𝑠𝑚 is the physical width of

the obstruction (e.g, the fence wire diameter), 𝑓 is the focal distance,

𝑧
obs

is the depth of the obstruction with respect to the sensor and

Δ𝑝 is the pixel pitch size. We describe each obstruction type in the

following.
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Fig. 3. Obstruction Model. We model three types of obstructions that are
common for robotic imaging and photography. Specifically, we simulate
dirt and mud from road debris on the coverglass (left column); raindrops on
a windshield as seen by a front-facing camera (center column), common in
both self-driving vehicles and driver-assistance systems; and thin meshed
fence occluders for point-and-shoot photography (right column). Real ex-
ample captures (top row) validate that the proposed obstruction models
(bottom row) reflect realistic scenarios, see text for more details.

Thin Fence Occluders. We model thin fence occluders (see Fig. 3,

right) using the fence dataset from [Du et al. 2018], containing 545

fence training images. As this dataset contains a variety of different

fence types captured in the wild, we use the fence masks in the

dataset to extract and scale all fence types to a normalized occluder

width in screen space. Assuming a typical fence wire diameter of

4 mm, we simulate fence occlusion at randomly sampled depth

in [40cm, 80cm]. We augment the fence patterns with random ro-

tations in [0◦, 90◦], random horizontal flips and random contrast

adjustments and color jitter.

Raindrops. We simulate raindrops of diverse sizes (see Fig. 3, cen-

ter) with shapes varying from a disk to an oval, to simulate the

effect of wind pressure applied to the drop, which would otherwise

be perfectly circular [Iseringhausen et al. 2017]. To this end, we

combine a randomly generated oval with a half of a disk. Assuming

forward-moving vehicles, we set the orientation of the oval drop to

align with the airflow direction. Due to the shape of the raindrops

and their placement on a diagonally oriented windshield, they act

as fish-eye lenses, where light-rays transported through them are

tilted upwards. This means that the image reflected from a rain-

drop corresponds to a larger and higher region in the background

scene [You et al. 2013]. The resulting image is then blurred by the

PSF corresponding to the raindrop’s depth, which is randomly sam-

pled between [5cm, 12cm] to account for different spacing to the

windshield. The blurred image is then blended with the background

using the generated oval-shaped drop mask, following Eq. (10). We

randomly sample drop position and number of drops during train-

ing.

Dirt Obstructions. We consider dirt and soil that is deposited on

the lens cover glass or camera enclosure glass (see Fig. 3, left). Soil

and road debris on the camera can be sprayed by preceding vehicles

ACM Trans. Graph., Vol. 41, No. 4, Article 37. Publication date: July 2022.
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on wet roads, or by exposure to the elements during off-road driving.

Real-world examples are available in the Woodscape surround view

dataset [2019]. Unfortunately, the soil annotations in the dataset are

manually labeled polygons, that are not per-pixel accurate, contain-

ing background mixed into the soil. As such, we chose to simulate

realistic soil obstruction on the camera cover glass by simulating

Perlin Noise [Perlin 1985], which is then low-pass filtered with a

Gaussian blur and thresholded with a random threshold to retrieve

diverse connected soil-like patterns.We simulate additive color jitter,

soil intensity augmentation and per-sample random soil patterns

for a distance sampled randomly in [5cm, 12cm].

3.3 End-to-End Obstruction Free Imaging
Once we have captured measurements in hand, we recover the latent

background using a learned reconstruction network that is trained

jointly with the optical stack. We describe this network and the

end-to-end training procedure in the following.

Optics-aware Reconstruction Network. We devise a reconstruc-

tion network that performs model-based deconvolution, along with

feature-based dehazing: our model-based deconvolution method

takes the PSFs (either simulated or calibrated post-fabrication ) of

the proposed optics system as input to ensure generalization, while

suppressing unwanted residual aberrations from nearby occlusions

(that manifest as “haze”).

Specifically, the proposed network takes in the sensor capture,

as well as the PSF measurements corresponding to the designed

optics system at optical infinity and in the near distance, where

the occluder is expected to appear. By using these PSFs to perform

deconvolution of the captured image, the network gains access to

information about the captured scene of interest, as well as valuable

information concerning the occluder itself, which can be exploited

to further refine the image. To incorporate the PSFs into our model,

we rely on differentiable inverse filtering blocks inspired by [Tseng

et al. 2021a].

The proposed architecture is illustrated in Fig. 2 and comprises

of two sequential components: a reconstruction block which per-

forms multi-scale feature extraction, feature propagation through

PSF-aware inverse filters and feature decoding; and a refinement

block which further refines the reconstruction output of the first

stage. The residual-learning block follows a U-Net architecture de-

sign with four downsampling stages. At each downsampling stage,

features extracted by block 𝑓fe are filtered using the inverse of the

far PSF in 𝑓z→w. In other words, 𝑓z→w deconvolves these features

(i.e., it propagates features Z to their deconvolved spatial positions

W). Both the extracted and deconvolved features are fed into the

upsampling and decoding stage 𝑓de, that combines the propagated

features into the resulting image output of the first stage. The first

stage becomes

O = 𝑓de
↑

Decoder

(
Inverse Filter

↓
𝑓z→w ( 𝑓fe

↑
Feature Extraction

(
Concat.

↓
𝐶 ( I, 𝑓z→w ( I, 𝑝near ) ) ) , 𝑝

far
) ) , (12)

where I is the sensor measurement and O is the output of the first

stage. In addition, we concatenate the inverse-filtered output of

𝑓z→w (I, 𝑝near) as a separate channel with the concatenation opera-

tor 𝐶 . While deconvolving with the near PSF may appear uninfor-

mative to a human observer, partly deconvolved obstructions help

the network identify and remove the obstruction residual. Although

not limited to a specific inverse filter block, we use a differentiable

implementation of the Wiener filter for 𝑓z→w. Unlike traditional

deconvolution approaches, our network benefits from the robust-

ness of feature learning, and therefore does not require a pixel-level

accurate PSF, which is typically unavailable in practice. The second

stage provides further refinement to the output of the first stage.

This module is entirely learned and consists of 3 residual blocks.

We provide not only the output of the first stage to the refinement

module but also the original sensor capture, to allow it to further

improve the reconstruction quality. Please refer to the Supplemental

Document for network architecture details.

End-to-End Loss. We train our framework by minimizing the loss

function

L = Lℓ1 + Lperc + L
obs

, (13)

where Lℓ1 is a per-pixel ℓ1 loss between 𝐼recon and 𝐼
far
, and Lperc is

an LPIPS based perceptual loss. Term L
obs

= 𝑀 ⊙ |𝐼recon − 𝐼
far

| is
an obstruction-focus loss that encourages the reconstruction model

to pay extra attention to areas degraded by the obstructions, with

𝑀 being the binary mask corresponding to the obstruction and ⊙
is the Hadamard product. As illustrated in Fig. 2, the proposed loss

function is directly applied to the reconstructed network output, to

supervise both optics optimization and image reconstruction, in an

end-to-end fashion.

4 ANALYSIS
Before assessing the proposed method on experimental measure-

ments, we first analyze the method using simulations on synthetic

data and compare to existing baseline methods. To this end, we

consider the following two representative imaging tasks.

The first task involves a front-facing automotive imaging camera

mounted behind a windshield. We assume a typical automotive

sensor with a 1.85𝜇m pixel pitch, 4000 × 3000 sensor resolution and

an 8mm focal length.We assume the camera ismounted in a position

near the rear-view mirror, which places the windshield 5 to 10 cm

away from the lens. We simulate raindrops and dirt obstructions

as both can be commonly found on vehicle windshields. We use

captured scenes from the Cityscapes dataset [Cordts et al. 2016] as

the obstructed background at a distance of more than 5 m from the

camera.

We consider a point-and-shoot photography task as the second

representative imaging scenario. Specifically, we assume a DSLR

camera with large 4.3𝜇mpixel pitch at a resolution of 4000×4000 and
a 50 mm focal length. We simulate fence-like thin obstructions at

depths between 0.4 to 0.8m, andwe again assume that the obstructed

scene objects are more than 5 m away from the camera. We use

the Places365-Standard dataset [Zhou et al. 2017] for representative

background scenes. This dataset contains 1.8 million training images

sampled from 365 scene types.
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Fig. 4. PSF and MTF Analysis. We report the near-scene and far-scene PSFs and MTFs corresponding to the proposed learned optical design, and to other
heuristic baseline optical designs that do not increase the aperture. Specifically, we compare the proposed approach (Proposed) against a random diffuser
DOE profile paired with a thin lens (Random), a learned Fresnel DOE profile paired with a thin lens (Fresnel) and a thin-lens-only design (Thin Lens). The
thin lens is a fixed 8 mm lens in all cases, and we assume a machine vision sensor with 1.85𝜇m pixel pitch. All baseline designs are heuristic choices, except
for the Fresnel design which we optimize in the same end-to-end approach as the proposed lens, but only learning a free focal length parameter. Sensor
simulations corresponding to each of the designs are shown on the right, with dirt obstruction 5 cm from the entrance pupil. The proposed learned optical
system suppresses the obstruction, while preserving high MTF for long distances.

4.1 Depth-dependent PSF Analysis
Next, we compare the proposed learned optical system to a con-

ventional camera lens (modeled as a thin lens without DOE) and a

Fresnel refocusing DOE learned alongside the thin lens. We addi-

tionally compare to a random diffuser placed in front of the thin lens,

using narrow-band RGB wavelengths (656nm, 589nm and 486nm) as

a proxy for broadband illumination. Fig. 4 reports the corresponding

simulated PSFs for the automotive imaging task.

The conventional camera lens is designed to focus at far distances,

whereas close objects are blurred with a blur kernel determined

by the aperture shape. As such, the corresponding sensor image

exhibits full occlusions of background content, even for nearby,

small occluders. Combining a conventional lens with a DOE allows

us to modulate the phase at micron-scale resolution, in contrast to

grinded optics that allows only smooth phase modulation. Taking

the DOE design to the extreme, one could implement a random

phase mask that acts as a diffuser in front of the refractive focusing

lens. In this scenario, however, the wavefronts would be scrambled

across the entire depth range, resulting in low MTF values for far

distances and an overall blurry sensor image, that does not preserve

the distant background scene. Optimizing a conventional Fresnel

lens design DOE in the proposed end-to-end optimization fashion

does not constitute a valid alternative. Specifically, learning a Fresnel

profile jointly with a fixed refractive lens instead results in a focus

change from 8mm (sensor distance) to 2mm, a compromise between

the refractive-only configuration and scrambling the wavefronts

across all depths. However, this design comes at the cost of severe

chromatic aberration in all depths, while still obtaining low MTF

values at long distances.

In contrast to the optical systems discussed above, the proposed

design achieves high MTF values at long distances corresponding to

background scene depths, and disperses the radiance from nearby

objects over the entire sensor. Specifically, the PSF at optical infinity

resembles that of a conventional lens with a small focal spot, while

the PSF for nearby distances resembles a large ring, with a radius

prescribed by themaximum diffraction angle supported by the phase

plate.

The proposed lens configuration effectively suppresses foreground

objects by distributing their energy over the entire sensor as a low-

frequency signal, while preserving the background image as an

additive component in the lens design.

Note that this PSF is obtained using our end-to-end learning ap-
proach without using any design heuristics. To further validate our

end-to-end optimization approach, we hand-crafted a loss on the

PSF such that the far PSF approaches a dirac delta and the near-

scene PSF spreads light evenly across the sensor plane, followed

by separate optimization for the reconstruction network given the

fixed DOE. As we show quantitatively in Tab. 2, hand-crafting an in-

termediate loss directly on PSFs results in sub-par performance, see

Supplemental Document for details. This demonstrates the benefits

of our end-to-end approach.

4.2 Reconstruction Network Ablation Study
We validate our network architecture choices with an ablation study.

As we show in Fig. 5 and quantitatively report in Tab. 1, when

removing the inverse filtering block which incorporates the PSFs

into our model, the proposed model becomes an image-to-image

encoder-decoder mapping network. Similar to vanilla image-to-

image mapping architectures (e.g. the popular UNet [Ronneberger

et al. 2015]), aberrations resulting from the foreground obstructions
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Table 1. Quantitative Reconstruction Network Analysis. We evalu-
ate different reconstruction network architectures in simulation, including
removing components from the proposed network (rows 2-5), existing image-
to-image networks (rows 6-7), and conventional deconvolution methods
(rows 8-10).

SSIM PSNR, LPIPS

Proposed 0.93 (0.94) 23.09 (23.96) 0.97 (0.94)
Proposed w/o inverse filter 0.92 (0.94) 22.92 (23.73) 0.96 (0.93)

Proposed w/o residual block 0.91 (0.93) 21.95 (22.55) 0.96 (0.93)

Proposed w/o feature extraction 0.90 (0.92) 20.78 (21.02) 0.94 (0.89)

Sequential optimization 0.92 (0.93) 21.68 (22.07) 0.90 (0.80)

DeblurGAN-V2 [Kupyn et al. 2019] 0.84 (0.85) 20.14 (19.21) 0.93 (0.85)

UNet [Ronneberger et al. 2015] 0.91 (0.92) 22.19 (22.49) 0.95 (0.90)

Richardson-Lucy Deconvolution (far kernel) 0.89 (0.91) 20.48 (20.78) 0.93 (0.84)

Wiener Deconvolution (far kernel) 0.91 (0.92) 20.77 (20.95) 0.94 (0.87)

Wiener Deconvolution (close kernel) 0.16 (0.15) 13.00 (12.70) 0.61 (0.24)

Sensor Capture 0.79 (0.81) 17.45 (17.87) 0.92 (0.85)

make it difficult for the network to recover the true color of the

background, resulting in “hazy” outputs.

Nonetheless, this ablated design performs better than a standard

UNet, emphasizing the important role of other architecture choices

in our network, such as the use of the refinement block, which

allows the reconstruction block to focus on removing the occluder

residuals. The results in Fig. 5 and Tab. 1 also suggest that remov-

ing the feature extraction block hinders our network’s ability to

mitigate color abberation and dark region artifacts, similar to the

performance obtained by applying Wiener filtering or Richardson-

Lucy deconvolution. Finally, we also compare to the DeblurGAN-v2

method [Kupyn et al. 2019], aimed at the closely related image

deblurring task, which produces inferior results.

4.3 Synthetic Assessment
Next, we compare the proposed method to existing single-image
obstruction removal methods, that are designed for conventional

monocular cameras. To this end, we consider three types of baseline

methods: (i) Generic single-image inpainting methods, which can

be applied post-capture to predict user-defined occluded areas, rep-

resented by the recently published texture-based CTSDG inpaiting

approach [2021] and the large-kernel inpainting method LaMa [Su-

vorov et al. 2021]. (ii) Methods for obstruction removal, specialized

to a particular type of obstruction, represented by DefenceNet [2019]

for visually removing fences, and AttentiveGAN [2018] for post-

capture raindrop artifacts removal. (iii) Optics-only methods al-

lowing no post-processing computations, which we implement by

learning a DOE and refractive lens pair, without using a reconstruc-

tion network.

Qualitative and quantitative comparisons are reported in Fig. 6

and Tab. 2, respectively, while additional comparisons are presented

in the Supplemental Document. For these comparisons, we simulate

conventional sensor capture assuming a perfect thin lens, following

the forward model from Sec. 3.2. We give the competing baseline

methods an advantage over ours, by providing all of them with the

ground-truth obstruction masks𝑀 from Eq. 10.

Our synthetic test set (withheld from training) contains 1500

pairs of obstruction and latent background pairs for each type of

obstruction. We fine-tune the pre-trained models provided by the

Conventional
Measurement

W/ DOE 
Measurement

Proposed w/o
Inverse Filter

Proposed w/o
Feature Extraction

UNet [2015] DeblurGAN-v2 [2019] Proposed Ground Truth

Conventional
Measurement

W/ DOE 
Measurement

Proposed w/o
Inverse Filter

Proposed w/o
Feature Extraction

UNet [2015] DeblurGAN-v2 [2019] Proposed Ground Truth

Fig. 5. Network Ablation Experiments. We report the effect of elimi-
nating core network elements from the proposed method, specifically, the
inverse-filtering and feature extraction blocks. Next we compare the pro-
posed approach to recent image deblurring (DeblurGAN-v2 [Kupyn et al.
2019]), conventional image-to-image mapping (UNet [Ronneberger et al.
2015]), and the corresponding ground truth obstruction-free images. Please
refer to the Supplemental Document for additional qualitative ablation
study results.

authors using our training set whenever the code provided by the

authors allows it. All baseline methods use the same model for both

dirt and raindrops removal, as is the case for our proposed method.

DefenceNet [2019] employs a two-phase reconstruction approach,

where fence regions are first detected by a UNet-based network (De-

tectNet), and then inpainted using a different ResNet-based network

(RemoveNet). While the use of conventional high-pass filters in the

fence detection is effective for all-in-focus images, a fence closer

than optical infinity will feature blurry edges for larger apertures

in our case. This makes it difficult for the edge-filter-based Detect-

Net to produce adequate mask outputs, and such errors are carried

over to the next inpainting stage. Moreover, even when provided

with ground truth masks, nearby fences induce large areas to be

inptained, in which case the Gaussian inpainting step fails to provide

a good starting point for the ResNet refinement process.

AttentiveGAN [Qian et al. 2018] uses an attentive generative net-

work for raindrop removal, where visual attention is used in both

generative and discriminative networks, such that the inpainting is
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Fig. 6. Analysis for Different Obstruction Types. We analyze the proposed method for different types of obstructions, including dirt (top two rows) and
raindrops (middle two rows) in a driving scenario, and fence obstructions, which are often encountered in point-and-shoot photography (bottom two rows).
Our DOE (optimized to operate with or without a subsequent neural network) allows us to see through occlusions. Feeding the captured image into our neural
network results in an almost obstruction-free image. Existing inpainting methods instead hallucinate the occluded background regions.
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Table 2. Quantitative Reconstruction Quality. We evaluate reconstruction quality using SSIM, PSNR and 1- LPIPS (higher is better) for dirt, raindrops and
fence obstructions. We compare our method against conventional inpainting methods (CTSDG [Guo et al. 2021], LaMa [Suvorov et al. 2021]), a method
tailored to raindrop degradation (AttentiveGAN [Qian et al. 2018]) and a method specialized to fence inpainting (DefenceNet [Matsui and Ikehara 2020]). We
further compare to optics-only DOE designs and using the proposed DOE while ablating the neural network.

Reconstruction Performance of the Occluded Region (and Full Image)

Fence - DSLR Raindrop - Windshield Dirt - Windshield

SSIM PSNR 1-LPIPS SSIM PSNR 1-LPIPS SSIM PSNR 1-LPIPS

Proposed 0.88 (0.93) 23.22 (28.14) 0.97 (0.91) 0.97 (0.98) 29.17 (29.89) 0.98 (0.96) 0.93 (0.94) 23.09 (23.96) 0.97 (0.93)
LaMa[2021]

∗∗
0.73 (0.93) 22.31 (28.60) 0.95 (0.94) 0.83 (0.92) 24.25 (27.65) 0.92 (0.90) 0.78 (0.87) 21.68 (24.39) 0.88 (0.86)

CTSDG [2021]
∗∗

0.68 (0.92) 21.08 (27.37) 0.93 (0.91) 0.81 (0.91) 23.88 (27.28) 0.89 (0.86) 0.74 (0.85) 21.27 (23.98) 0.83 (0.80)

DefenceNet [2020]
∗∗

0.55 (0.77) 17.86 (22.78) 0.89 (0.71) - - - - - -

AttentiveGAN [2018] - - - 0.82 (0.88) 21.56 (23.00) 0.89 (0.75) - - -

Optics-only DOE Capture 0.72 (0.84) 19.33 (23.54) 0.94 (0.82) 0.92 (0.94) 24.82 (26.36) 0.96 (0.91) 0.84 (0.88) 17.81 (18.40) 0.91 (0.86)

Conventional Camera Capture 0.55 (0.77) 15.76 (20.90) 0.90 (0.71) 0.82 (0.89) 22.81 (25.59) 0.89 (0.80) 0.64 (0.73) 14.22 (14.66) 0.81 (0.70)

Proposed DOE Capture 0.84 (0.89) 22.01 (25.71) 0.97 (0.89) 0.91 (0.93) 23.83 (24.38) 0.95 (0.87) 0.79 (0.81) 17.45 (17.87) 0.92 (0.85)

focused on the raindrop regions and the nearby surrounding struc-

tures
∗
. While the combination of the attention map and adversarial

training generally yields high-quality outputs, it also biases the

method to prefer raindrops of similar size and shape, resulting in

failures when raindrop size varies, e.g., due to different raindrop

depths.

CTSDG [2021] is a generic two-stream inpainting method, jointly

optimizing texture synthesis and texture-guided structure recon-

struction. LaMa [Suvorov et al. 2021] is a recent inpainting method

using fast Fourier convolutions, which facilitates a large network

receptive field, performing well even for large occluded regions.

As generic image inpainting methods, they are both able to handle

diverse obstruction types. We provide the ground truth mask to

these methods, giving it some advantage over our proposed method.

We further make it easier for these inpainting methods by apply-

ing them on the ground truth images rather than on the simulated

refractive lens captures. Nonetheless, the missing occluded back-

ground information makes the task ill-posed, such that single-image

inpainting approaches can only attempt to hallucinated the missing

image content.

The optics-only baseline learns to scatter away some of the near

scene (obstruction) while preserving information from the back-

ground scene. However, without a reconstruction network present,

this optical setup minimizes chromatic aberration at the cost of

occlusions. Hence, much of the background remains occluded, and

the overall image quality is drastically reduced.

The proposed approach achieves a 1 to 5 dB PSNR margin over

existing approaches when reconstructing the occluded regions, by

optically cloaking the obstruction while relying on complementary

computational reconstruction to remove image aberrations, thus

effectively allowing the occluded background to be “seen” by the

recovery module.

Qualitative comparisons in Fig. 6 validate that the method is able

to remove diverse obstructions, and recover “hidden” details, which

can merely be hallucinated by existing methods.

∗
Replacing the estimated raindrop masks with ground truth ones yielded similar

quality outputs.

∗∗
Methods have access to ground truth obstruction masks. Note that in a practical

application, this mask would have to be accurately estimated for the respective baseline

approach to perform comparably.

5 EXPERIMENTAL ASSESSMENT
In this section, we evaluate the proposed method with experimental

captures. To this end, we fabricate the learned diffractive optical

element for the automotive machine vision scenario described in

Sec 4. We first describe the experimental setup and validate that

the measured PSFs feature a depth-dependent ring structure, before

presenting experimental reconstructions using a prototype camera

system.

5.1 Experimental Prototype
We implement the proposed method experimentally with the pro-

totype system shown in Fig 7. To this end, we fabricate the DOE

designed for the front-facing automotive imaging task in a 16-level

photolithography process on a fused silica wafer. The diameter of

the fabricated DOE is 4.4 mm, and we use a chrome layer as an

optical baffle. We use a FLIR Blackfly S USB3 camera with an 8mm

lens (Edmund Optics 33-307). While this compound lens ensures low

distortion imaging with high MTF across all fields, this comes at the

cost of a complex optical assembly with half a dozen elements. To

place the DOE on the aperture plane, instead of cutting an existing

lens barrel, we employ a 4F relay system, as shown and illustrated

in Fig 7. This allows us to swap different DOEs (or remove them) in

a reproducible fashion, without changing the target objective or the

camera alignment. We use two large-aperture lenses (Pentax SMC

FA 75mm f/2.8) for our 4F-configuration with the aperture plane and

DOE plane placed at 75 mm distance from both lenses. Note that, al-

though the physical size of the proposed prototype system is larger

than the objective lens, the DOE plane is relayed to the aperture

plane, so that the proposed aperture-plane DOE does not effectively
increase the size of the camera objective. To reproduce obstruction

positions, we place the representative foreground obstructions on

an AR-coated glass holder (Edmund Optics 𝜆/4 N-BK7 75 mm ×
75 mm Window) in front of the optical system.

5.2 DOE Fabrication and PSF Analysis
The prototype DOEs are fabricated by a combination of photolithog-

raphy and reactive-ion etching techniques. Since it is challenging to

fabricate continuous height profiles, we first quantize the optimized

DOEs into 2
4 = 16 levels (75 nm per level), which allows us to

ACM Trans. Graph., Vol. 41, No. 4, Article 37. Publication date: July 2022.



Seeing Through Obstructions with Diffractive Cloaking • 37:11

Setup Photo 

SensorLensLensLensDOE

Relayed DOE

4F Relay System

DOE

Obstructions

Prototype Setup

Aperture-Plane Phase Modulation

4F System Target 
Lens System

Sensor

Fig. 7. Experimental Prototype System. We evaluate the proposed
method experimentally with the prototype system shown on top. We fabri-
cate a phase-only DOE on a fused silica wafer using a 16-level photolithog-
raphy process. This phase plate is designed to be in the aperture plane of
the target camera configuration. Rather than cutting open an off-the-shelf
compound lens or building our own compound lens, we relay the phase
DOE to the aperture plane using a 4F system (bottom). This facilitates exper-
imentation and allow us to acquire images with or without a DOE, without
replacing the objective lens. To make obstructions reproducible, we place
them on an AR-coated glass holder at different depths.

faithfully approximate the continuous phase function. Though the

theoretical diffraction efficiency with 16 levels can reach above 95%,

we observe that manufacturing deviations result in a significant

0
th
-order component, which we discuss below. We repeat 4 itera-

tions of the basic photolithography with different masks, and then

etch the same substrate with doubled etching time sequentially. Fi-

nally, a Chromium aperture is deposited to block the light outside of

the clear aperture. See the Supplementary document for additional

details on the fabrication procedure.

To validate the fabrication, we measure the depth-dependent

PSFs using the prototype system from above with and without the

proposed DOE being present in the optical path. To acquire and

compare the optical aberrations in a reproducible fashion, we use

the fiber tip coupled with a 520 nm laser diode as source, see Fig. 8.

This source is a spherical emitter at close distances, allowing us to

capture the near PSF. To acquire the PSF at optical infinity, we add

a collimation lens (planoconvex 100 mm lens), resulting in a plane

wave illumination. The measured PSFs with and without the DOE

are shown in Fig. 8. We note that all PSFs are measured with optical

systems that have the same physical aperture size. The measure-

ments validate that the proposed phase plate matches the shape of

the simulated PSF, also shown in the figure for the corresponding
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Fig. 8. PSFMeasurements. After fabricating the proposed diffractive phase
plate correspond to the machine vision design, see Sec. 4, we measure the
PSF of the entire optical system from Fig. 7 with (center row) and without
(bottom row) the DOE. We measure the PSF at different depths using a
fiber optic source (top left). The fiber tip makes for a spherical source,
accurately representing close objects. To measure the PSF at optical infinity,
we collimate the source with an additional collimation lens, resulting in
a plane wave illumination. The measurements validate that the designed
phase plate produces a ring-shaped PSF for close occluders, while resulting
in a small spot size for far scene content. Manufacturing inaccuracies result
in a 0

th-order component (center left) at close distances, for which we
compensate by providing the measured PSF to the reconstruction network.
We measure the light throughput of the DOE as 86%, and the relative
intensity between the ring and the disk in the 1st order to be 1:1, compared
to 3:1 in simulation.

distance. The measured PSF exhibits the desired ring shape at close

(obstruction) distance, while contracting to a small spot at long

distances, even slightly outperforming the conventional system, as

reported also in Fig. 4. However, the measurement also reveals that

the PSF has a substantially stronger 0
th
-order component resulting

from manufacturing deviations. The fabrication process available
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Fig. 9. Experimental Assessment.We experimentally validate the proposed method for three different occluder types (alternating rows), after fabricating
the learned DOE and fine-tuning the complementary reconstruction network. Our method (left column) is able to restore image regions that would otherwise
be occluded by the obstruction, see the conventional camera column. Merely using the DOE without subsequent processing (second column) already provides
more visual information compared to using a conventional camera. With help of the reconstruction network, the proposed computational camera significantly
outperforms the recent image inpainting method LaMa [Suvorov et al. 2021]. Post-capture inpainting fails to recover scene details (e.g., text) and sometimes
entire regions due to lack of information.

to us (described in the Supplementary Document) involves manual

operations, and therefore deviations from industry standard pro-

cesses are not uncommon. As a result, the fabricated DOE features a

central component that is significantly stronger than in simulation.

The proposed method accounts for such deviations by feeding the

fabricated PSF (measured for RGB illumination) into the proposed

reconstruction network.
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5.3 Assessment
To compensate for fabrication inaccuracies of the optimized DOE,

we finetune our reconstruction network using a real-world dataset

captured by our prototype, as we explain in the Supplemental Doc-

ument. We mimic three types of occluders in a way that allows

reproducing results. We use black mascara for dirt, black tape for

thin occluders and clear nail-polish to mimic raindrops. Each scene

is first captured without the occluder, to serve as reference for quali-

tative evaluation. We then insert the occluder and capture the scene

with our fabricated DOE, and again using a conventional camera,

to be used as a baseline. We then feed the DOE-captured image into

our reconstruction network, to obtain the reconstructed background

scene. Results of the three different occluder types are presented in

Fig. 1 and Fig. 9. For each scene, we show the reconstruction by our

method, as well as the raw DOE sensor capture, the image captured

using a conventional camera, the occluder, and the reference im-

age captured without the occluder. We additionally compare to the

SOTA LaMa image inpainting method [Suvorov et al. 2021], which

is applied on the conventional camera capture. For LaMa, which

additionally requires a mask indicating the missing regions (like

any inpainting method), we manually mark the occluded regions.

This involves the subtle task of determining the optimal inpainting

mask for each image; an overly conservative mask might result in

the output being too similar to the occluded input, while an aggres-

sive mask might discard potentially useful information, yielding a

visually smoother output. We therefore repeat the marking process

several times for each scene, and present the best result. Please

refer to the Supplemental Document to view LaMa outputs corre-

sponding to different-sized masks. While our method is capable of

reconstructing fine details in occluded regions (e.g., text), results

by LaMa often fail and hallucinate the wrong content, and in some

cases even produce results visually worse than the corresponding

conventional camera capture input. This is to be expected, since

as an inpainting method LaMa does not exploit partially occluded

regions, which are discarded by the (binary) input mask. The pro-

posed method reveals hidden details that are lost in all competing

approaches, further validating the designed DOE and reconstruction

network experimentally.

6 CONCLUSION
We propose a method for monocular single-shot imaging in the

presence of image obstructions. To see through near obstructions,

we encode the incoming wavefront from the scene with a learned

diffractive optical element, which together with a physics-aware

reconstruction method allows us to suppress light scattered from

close obstructing objects, and recover the portion of the wavefront

that stems from the latent scene. Placed in the aperture of the cam-

era, this learned phase plate does not increase the footprint of the

optical system. The learned optics act as a depth-dependent diffuser,

such that paraxial wavefronts from the background scenes arrive

unperturbed, whereas the off-axis light from foreground obstruc-

tions is diffused over the entire sensor. We validate the proposed

design through extensive simulations, and using experimental pro-

totype captures. While the experiments validate the approach and

the fabricated devices in a lab setting, the synthetic experiments

confirm that the designed optics and reconstruction network are

effective in diverse application scenarios. In the future, learning

diffractive modulation layers in a fabrication-in-the-loop approach

may allow for prototyping domain-specific optical systems like ours,

with higher accuracy than existing low volume experimental fab

processes, potentially reducing the barrier to high-quality fabrica-

tion methods. Learning hybrid camera systems that exploit array

optics and diffractive encodingmaymakemore complex vision tasks

beyond obstruction removal possible – a stepping stone towards

practical optical compute layers for imaging and vision.
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