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Fig. 1. We propose an all-optical neural time-of-flight (ToF) imaging system with centimeter-wave intensity-modulated illumination. To this end, we repurpose
electro-optical modulators used in optical communication to compute GHz frequency ToF correlation signals in free space, avoiding photo-conversion and
fiber coupling. The proposed system provides correlation measurements at 7.15GHz and 14.32GHz modulation frequencies (second to left and center), which
results in dozens of phase wraps over meter-scale scenes that cannot be estimated accurately by existing phase unwrapping methods. To this end, we propose
a segmentation-inspired neural phase unwrapping network that recovers accurate scene depth (right) from the correlation measurements and scene amplitude
(second to right). See scene photograph (inset second to right) as reference. We demonstrate a robust method for all-optical GHz-frequency correlation ToF
depth imaging of macroscopic scenes.

Depth sensors have emerged as a cornerstone sensor modality with diverse
applications in personal hand-held devices, robotics, scientific imaging, au-
tonomous vehicles, and more. In particular, correlation Time-of-Flight (ToF)
sensors have found widespread adoption for meter-scale indoor applications
such as object tracking and pose estimation. While they offer high depth
resolution at competitive costs, the precision of these indirect ToF sensors is
fundamentally limited by their modulation contrast, which is in turn limited
by the effects of photo-conversion noise. In contrast, optical interferometric
methods can leverage short illumination modulation wavelengths to achieve
depth precision three orders of magnitude greater than ToF, but typically
find their range restricted to the sub-centimeter.

In this work, we merge concepts from both correlation ToF design and
interferometric imaging; a step towards bridging the gap between thesemeth-
ods. We propose a computational ToF imaging method which optically com-
putes the GHz ToF correlation signal in free space before photo-conversion.
To acquire a depth map, we scan a scene point-wise and computationally
unwrap the collected correlation measurements. Specifically, we repurpose
electro-optical modulators used in optical communication for ToF imaging
with centimeter-wave signals, and achieve all-optical correlation at 7.15
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and 14.32 GHz modulation frequencies. While GHz modulation frequencies
increase depth precision, these high modulation rates also pose a techni-
cal challenge. They result in dozens of wraps per meter which cannot be
estimated robustly by existing phase unwrapping methods. We tackle this
problem with a proposed segmentation-inspired phase unwrapping network,
which exploits the correlation of adjacent GHz phase measurements to clas-
sify regions into their respective wrap counts. We validate this method in
simulation and experimentally, and demonstrate precise depth sensing using
centimeter wave modulation that is robust to surface texture and ambient
light. Compared to existing analog demodulation methods, the proposed
system outperforms all of them across all tested scenarios.
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1 INTRODUCTION
From interactive gaming to precision industrial manufacturing,
depth sensors have enabled advances in a broad set of consumer and
research applications. Their ability to recover 3D data at scale [Chang
et al. 2015; Dai et al. 2017; Silberman et al. 2012] and produce high-
fidelity scene reconstructions [Izadi et al. 2011; Tulsiani et al. 2018]
drives developments in 3D scene understanding [Dai et al. 2018;
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Hickson et al. 2014; Song et al. 2015], which in turn influence the
fields of augmented reality, virtual reality, robotic scanning, au-
tonomous vehicle guidance, and path planning for delivery drones.
Some of the most successful depth acquisition approaches for

wide operating ranges are based on active time-of-flight sensing,
as they offer high depth precision at a small sensor-illumination
baseline [Hansard et al. 2012]. Passive approaches, that infer dis-
tance from parallax [Mahjourian et al. 2018; Subbarao and Surya
1994] or visual cues in monocular images [Bhat et al. 2021; Saxena
et al. 2005], do not offer the same range and depth precision as they
struggle with textureless regions and complex geometries [Lazaros
et al. 2008; Smolyanskiy et al. 2018]. Active sensing approaches
tackle this challenge by projecting light into the scene and recon-
structing depth from the returned signal. Structured light methods
such as active stereo systems use spatially patterned light to aid
stereo matching [Ahuja and Abbott 1993; Baek and Heide 2021].
While being robust to textureless scenes, their accuracy is limited by
illumination pattern density and sensor baseline, resulting in a large
form factor. ToF depth sensing approaches avoid these limitations
by estimating depth from the travel time of photons leaving from
and returning to the device, allowing for co-axial sensor setups with
virtually no illumination-camera baseline.

Direct ToF systems, such as light detection and ranging (LiDAR)
sensors [Schwarz 2010], directly measure the round-trip time of
emitted light pulses to estimate point depths, and can theoretically
provide accuracy over a long range. However, this direct acquisi-
tion approach demands fast pulsed lasers, accurate synchronization,
narrow-band filters, and picosecond-resolution time-tagged detec-
tors such as single-photon avalanche diodes (SPADs) [Aull et al.
2002; Bronzi et al. 2015; Niclass et al. 2005; Rochas et al. 2003].
Though affordable SPADs have recently entered the market, these
have only 20cm depth resolution [Callenberg et al. 2021], more than
50× lower than their costly picosecond-resolution counterparts.

Amplitude-modulated continuous-wave (AMCW) ToF methods –
which we hereon refer to as correlation ToF methods – [Gupta et al.
2015; Lange and Seitz 2001; Shrestha et al. 2016; Su et al. 2018] flood
a scene with periodic amplitude-modulated light and indirectly infer
depth from the phase shift of returned light. In contrast to direct
ToF sensing approaches, this modulation and correlation does not
require ultra-short pulse generation and time-tagging, this lowers
sensor and laser complexity requirements. Correlation ToF sen-
sors that demodulate the amplitude-modulated flash-illumination
on-sensor have been widely adopted, for example, the Microsoft
Kinect One camera. These sensors implement multiple charge buck-
ets per pixel and shift a photo-electron to an individual bucket by
applying an electrical potential between the individual quantum
wells [Lange and Seitz 2001]. Though amplitude modulation allows
for depth precision comparable to picosecond-pulsed direct ToF at
meter-scale distances, while remaining low-cost thanks to scalable
CMOS technology, it is also this sensing mode that fundamentally
limits the sensor. Specifically, modulation after photo-electric con-
version limits the maximum achievable modulation frequency to a
few hundred MHz in practice, restricted by the photon absorption
depth in silicon [Lange and Seitz 2001]. This has limited the depth
precision of existing correlation ToF sensors to the sub-centimeter

regime. Fiber-coupled modulation approaches from optical com-
munication which bypass this limit suffer from low modulation
contrast due to coupling loss [Bandyopadhyay et al. 2020; Kadambi
and Raskar 2017; Marchetti et al. 2017; Rogers et al. 2021].

In this work, we co-opt free-space electro-opticmodulators (EOMs)
from optical communication and combine them with a phase un-
wrapping neural network to build a GHz correlation ToF system.
EOM-based ranging systems are known to offer fast intensity mod-
ulation and can be integrated with conventional intensity sensors
and a continuous-wave laser, bypassing the more complex hard-
ware requirements of time-tagged ToF devices [Froome and Bradsell
1961]. Inspired by existing EOM-based ranging methods, we devise a
two-pass EOM-based GHz ToF sensing system that achieves a 7 GHz
modulation frequency with > 50% contrast. Our system inherits the
benefits of EOM-based systems – large-area freespace modulation,
single-digit driving voltage – using conventional intensity sensors
and continuous-wave lasers.

Although a higher modulation frequency can increase phase con-
trast and allow for more precise depth measurement, it also greatly
complicates the task of phase unwrapping, a major obstacle in ap-
plying EOMs to depth sensing. At 7 GHz, even a 2 cm depth change
results in a phase wrap, in contrast to 3 m of unambiguous depth
for a 100 MHz ToF camera. In addition to a few dozens of wraps,
imaging noise and the small modulation bandwidth of EOMs – only
a few MHz – imposes a further challenge for conventional look-up
table approaches. We tackle this challenge with a segmentation-
inspired neural phase unwrapping network, where the problem is
decomposed into ordinal classification, mapping regions of mea-
sured data to their wrap count. Trained in an end-to-end fashion on
simulated ToF data and fine-tuned on a small set of experimental
measurements, the proposed network exploits the correlation of
adjacent measurements to robustly unwrap them.
We validate the proposed ToF system in simulation and experi-

mentally, and demonstrate robust depth imaging for macroscopic
diffuse scenes with freespace centimeter-wave modulation at mW
laser powers, corresponding to < 100 femtosecond temporal resolu-
tion. Jointly with the learned unwrapping, the all-optical modulation
without coupling losses allows for robustness to low-reflectance tex-
ture regions and highly specular objects with low diffuse reflectance
components. We assess the neural phase unwrapping network ex-
tensively on real and simulated data, and validate that it outperforms
existing conventional and learned unwrapping approaches across
all tested scenarios. We further validate precision and compare ex-
tensively against post-photoconversion modulation, which fails in
low flux scenarios, and interferometric approaches, that are lim-
ited to small ranges. As our free-space modulation is all-optical, we
demonstrate that it can be readily combined with interferometric
modulation, allowing us to narrow the gap between interferometry
and correlation ToF imaging, with the future potential for photon-
efficient imaging of macro-scale ultrafast phenomena.

Specifically, we make the following contributions in this work:

• We introduce computational ToF imaging with fully optical
free-space correlation and an EOM-based two-pass intensity
modulation that allows for ≥ 10 GHz frequencies.
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• To tackle phase-unwrapping at centimeter wavelengths, we
introduce a segmentation-based phase unwrapping network
that poses phase recovery as a classification problem.

• We validate the proposed method experimentally with a
prototype, achieving robust depth imaging with freespace
centimeter-wave modulation for macroscopic scenes.

To ensure reproducibility, we will share the schematics, code, and
optical design of the proposed method.

2 RELATED WORK
In this section, we seek to give the reader a broad overview of the
current state of depth imaging to better illustrate the gap our work
fills in the 3D vision ecosystem.

Depth Imaging. The wide family of modern depth imaging meth-
ods can be broadly categorized into passive and active systems.
Passive approaches, which leverage solely image cues such as par-
allax [Baek et al. 2016; Hirschmuller 2005; Meuleman et al. 2020]
or defocus [Subbarao and Surya 1994], can offer low-cost depth
estimation solutions using commodity camera hardware [Garg et al.
2019]. Their reliance on visual features, however, means they strug-
gle to achieve sub-cm accuracy in favorable conditions, and can fail
catastrophically for complex scene geometries and textureless re-
gions [Smolyanskiy et al. 2018]. Activemethods, which first project a
known signal into the scene before attempting to recover depth, can
reduce this reliance on visual features. For example, structured light
approaches, such as those used in the Kinect V1 and Intel D415 depth
cameras, improve local image contrast with active illumination pat-
terns [Ahuja and Abbott 1993; Baek and Heide 2021; Scharstein and
Szeliski 2003], at a detriment to form-factor and power consump-
tion. Even active stereo methods, however, still cannot disambiguate
mm-scale features, as they are smaller than the illumination feature
size itself and make finding accurate stereo correspondences infea-
sible. Time-of-flight (ToF) imaging is an active method that does
not rely on visual cues, and so avoids the pitfalls of stereo matching
completely. ToF cameras instead directly or indirectly measure the
travel time of light to infer distances [Hansard et al. 2012; Lange and
Seitz 2001], with modern continuous-wave correlation ToF systems
achieving sub-cm accuracy for megahertz-scale modulation frequen-
cies. Interferometry extends this principle to the terahertz range,
measuring the interference of electromagnetic waves to estimate
their travel time. These systems can achieve micron-scale accuracy
at the cost of mm-scale operating ranges [Hariharan 2003]. In this
work we seek to bridge the gap between commodity MHz-frequency
correlation ToF systems and THz frequency interferometry with a
GHz-frequency correlation ToF system for meter-scale imaging.

Pulsed ToF. Pulsed ToF systems, such as LiDAR, are direct ToF
acquisition methods which directly measure the travel time of pho-
ton packets to infer depth. They send discrete laser pulses into the
scene and detect their reflections with avalanche photodiodes [Cova
et al. 1996; Pandey et al. 2011] or single-photon detectors [Gupta
et al. 2019a,b; Heide et al. 2018; McCarthy et al. 2009]. These sensors
can extract depth from measured pulse returns without phase wrap
ambiguities. Their depth precision is limited by their temporal reso-
lution, however, and the complex detectors and narrow-band filters,

used to filter out ambient light, contend with high cost as a result
of fabrication complexity when compared to conventional intensity
sensors. Recently, low-cost pulsed sensors have appeared, however
at the cost of coarse 20 cm depth precision [Callenberg et al. 2021].
In this work, we revisit indirect ToF with amplitude modulation
paired with learned phase unwrapping as an approach to precise
depth imaging that does not mandate time-resolved sensors and
time-tagging electronics.

Correlation ToF. Amplitude-modulated continuous-wave ToF, which
we refer to as simply correlation ToF, floods the scene with peri-
odically modulated illumination and infers distance from phase
differences in the returned light [Hagebeuker and Marketing 2007;
Lange and Seitz 2001; Remondino and Stoppa 2013]. These systems,
such as cameras in the prolific Microsoft Kinect series [Tölgyessy
et al. 2021], can rely on affordable CMOS sensors and conventional
CW laser diodes to produce dense depth measurements. This flood
illumination can lead to multipath interference, though there exists
a large body of work to mitigate this [Achar et al. 2017; Bhandari
et al. 2014; Freedman et al. 2014; Fuchs 2010; Jiménez et al. 2014;
Kadambi et al. 2013; Kirmani et al. 2013; Naik et al. 2015]. Correla-
tion ToF measurements can also be used to resolve the travel-time
of light in flight [Heide et al. 2013; Kadambi et al. 2013]. These
time-resolved transient images have found a number of emerging
applications, such as non-line-of-sight imaging [Heide et al. 2014;
Kadambi et al. 2016], imaging through scattering media [Heide et al.
2014], and material classification [Su et al. 2016], which have also
been solved with pulsed ToF systems [Heide et al. 2019; O’Toole
et al. 2018] and interferometric methods [Gkioulekas et al. 2015]. All
these methods, however, are restricted to working with modulation
frequencies of only a few hundred MHz due to photon absorption
depth in silicon [Lange and Seitz 2001], which governs how these de-
vices perform photo-electric conversion. This limit places the depth
resolution of modern correlation ToF sensors at mm- to cm-scale
for operating ranges of up to several meters. Previous attempts at
pushing this modulation frequency to the GHz regime struggle with
low modulation contrast due to the energy loss from fiber coupling
within eye-safe laser power levels [Kadambi and Raskar 2017; Li et al.
2018]. Li et al. [2018] overcome some of these limitations but solely
rely on interferometric modulation, making the method susceptible
to speckle, vibration, laser frequency drift, and other common in-
terferometry errors. Notably, Bamji et al. [2018] achieve 200MHz
modulation frequency at high contrast, but are limited to single-
frequency modulation. Gupta et al. [2018] achieve 500MHz modula-
tion frequency with a fast photodiode and analog radio-frequency
(RF) modulation, but contend with low modulation contrast at the
GHz regime due to modulation after photo-conversion.

Interferometry and Frequency-Modulated Continuous-Wave ToF.
Optical interferometry leverage the interference of electromagnetic
waves to infer their path lengths, which is encoded in the measured
amplitude and/or phase patterns. A detailed review of interferom-
etry can be found in [Hariharan 2003]. Methods such as optical
coherence tomography (OCT) [Huang et al. 1991] have found pro-
lific use in biomedical applications [Fujimoto and Swanson 2016] for
their ability to resolve micron-scale features in optical scattering me-
dia. This, however, comes with the caveat of a mm-scale operating
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range as diffuse scattering leads to a sharp decline in SNR. In graph-
ics, OCT approaches have been successfully employed to achieve
micron-scale light transport decompositions [Gkioulekas et al. 2015]
and light transport probing [Kotwal et al. 2020]. Fourier-domain
OCT systems mitigate some of the sensitivity to vibration by using
a spectrometer and a broadband light source [Leitgeb et al. 2003].
While these methods provide high temporal resolution, they are
also limited to cm-scale scenes. Frequency-modulated continuous-
wave (FMCW) ToF systems employ an alternative interferometric
approach to measuring distance. These methods continuously apply
frequency modulation to their output illumination, which when
combined in a wave-guide with the delayed returned light from the
scene produces constructive and destructive interference patterns
from which travel-time (and thereby depth) can be inferred. Experi-
mental FMCW LiDAR setups can achieve millimeter precision for
scenes at decimeter range [Behroozpour et al. 2016], but require
complex tunable laser systems [Amann 1992; Gao and Hui 2012;
Sandborn et al. 2016]. We revisit continuous-wave intensity modu-
lation, which allows us to use conventional continuous-wave lasers
modulated and demodulated in free-space.

Phase Unwrapping. In correlation ToF systems, the analog correla-
tion signal can experience phase shifts of more than one wavelength.
To recover the true phase, and thereby accurately reconstruct depth,
phase unwrapping algorithms are required [An et al. 2016; Crabb
andManduchi 2015; Dorrington et al. 2011; Lawin et al. 2016]. Single
phase unwrapping approaches are only able to recover the relative
depth, and require a-priori assumptions to estimate scale [Bioucas-
Dias et al. 2008; Bioucas-Dias andValadao 2007; Crabb andManduchi
2015; Ghiglia and Pritt 1998]. Multi-frequency phase unwrapping
methods overcome this limitation by unwrapping high-frequency
phases with their lower-frequency counterpart. Wrap count is re-
covered by either weighing Euclidean division candidates [Bioucas-
Dias et al. 2009; Droeschel et al. 2010; Freedman et al. 2014; Kirmani
et al. 2013; Lawin et al. 2016], or using frequency-space lookup ta-
ble [Gupta et al. 2015]. All of these methods, while powerful for
MHz ToF imaging, fail in the presence of noise for the dozens of
wrap counts observed in the GHz correlation imaging. To tackle
this challenge, in this work we introduce a neural network capable
of unwrapping GHz frequency ToF correlation measurements.

Electro-optic Modulators. EOMs control the refractive index of a
crystal with an electric field to modulate the phase, frequency, ampli-
tude, and polarization of incident light [Yariv and Yeh 2007]. As such,
they have been employed in diverse applications, including fiber
communications [Phare et al. 2015], frequency modulation spec-
troscopy [Tai et al. 2016], laser mode locking [Hudson et al. 2005],
and optical interferometry [Minoni et al. 1991]. In particular, EOMs
have been used in LiDAR systems to change the optical-carrier
frequency for FMCW sensing [Behroozpour et al. 2017] or facili-
tate pulsed sensing [Chen et al. 2018]. Instead, we repurpose these
EOMs for continuous-wave correlation ToF imaging. We employ a
two-pass modulation scheme for our ranging system that, instead
of optical frequency, modulates intensity with high contrast. We
combine this acquisition scheme with a neural phase unwrapping
method to then unwrap the dozens of phase wraps we encounter in
the GHz regime.
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Fig. 2. Principle of correlation ToF. (a) Typical correlation ToF imagers emit
coded illumination into a scene with time-varying sinusoidal intensity mod-
ulation. The reflected light then encodes travel time via its phase shift.
(b) Homodyne detectors measure the correlation between the reflected
sinusoidal signal and a reference signal with the same frequency, which
produces a DC value as a function of the reference-signal phase and the
phase shift from the scene.

3 CORRELATION TOF IMAGING
In this section we review the principles of correlation ToF imaging;
for a detailed introduction, see [Lange 2000].

Image Formation. Correlation ToF cameras start by sending an
amplitude-modulated light into the scene

𝑝 (𝑡) = 𝛼 cos(𝜔𝑝𝑡) + 𝛽, (1)

where 𝜔𝑝 is modulation frequency, 𝛼 is amplitude, and 𝛽 is a DC
offset. After traveling through the scene and reflecting off a target,
the measured return signal

𝑝 (𝑡 − 𝜏) = 𝛼 cos(𝜔𝑝𝑡 − 𝜙) + 𝛽, 𝜙 = 2𝜋𝜔𝑝𝜏 (2)

is a time-delayed 𝑝 (𝑡) by time 𝜏 with an observed attenuation in
amplitude 𝛼 , a shift in bias 𝛽 , and a time-dependent phase shift 𝜙 .
This measured signal is then correlated with a reference

𝑟 (𝑡) = cos(𝜔𝑟 𝑡 +𝜓 ) + 1/2, (3)

where 𝜔𝑟 and 𝜓 are the demodulation frequency and phase, re-
spectively. In existing multi-bucket imagers, this correlation occurs
during exposure via photonic mixer device pixels [Foix et al. 2011;
Lange and Seitz 2001], which are modulated according to the refer-
ence function 𝑟 (𝑡). When we modulate and demodulate at the same
frequency, that is 𝜔𝑝 = 𝜔𝑟 = 𝜔 , this is called homodyne imaging.
Integrating this signal over exposure time 𝑇 , we get a correlation
measurement

𝐶𝜓 =

∫ 𝑇

0
𝑝 (𝑡 − 𝜏)𝑟 (𝑡) d𝑡 = 𝛼

2
cos(𝜓 − 𝜙) +𝑇𝐾, (4)

where 𝐾 is a general constant offset, meant to model a non-zero
modulation bias on the sensor. Given this measurement, we aim
to estimate the phase delay 𝜙 from which the scene depth can be
computed. As illustrated in Fig. 2 (b), the correlation measurement
𝐶𝜓 is a constant dependent on the demodulation phase offset 𝜓
(achieving its max at 𝜓 = 𝑛𝜙, 𝑛 ∈ N). In practice, this means we
never have to explicitly sample 𝑝 (𝑡 −𝜏), which would require expen-
sive ultrafast detectors and modulation electronics. Although the
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Fig. 3. Illustration of depth estimation error versus modulation frequency.
For each frequency we simulate 1000 samples with added Poisson-Gaussian
noise of constant magnitude for an indoor scenario. We quantize the sim-
ulated measurement to 14 bits (mimicking a 14-bit digital-to-analog con-
version), reconstruct the estimated depth, and plot the resultant mean
measurement and standard deviation envelope. We see that as we increase
modulation frequency from 100MHz to 10GHz, our expected precision simi-
larly increases 100×.

correlation measurement 𝐶𝜓 does not directly give us access to the
true phase 𝜙 , by sampling this function for multiple demodulation
phase offsets𝜓 we can make use of Fourier analysis to discern the
true phase 𝜙 . Existing correlation imagers typically acquire four
equally-spaced correlation measurements at𝜓 ∈ [0, 𝜋/2, 𝜋, 3𝜋/2].
Using these, we can estimate the phase offset 𝜙 wrapped to the
2𝜋 range as 𝜙 = arctan

(
𝐶𝜋 −𝐶𝜋/2
𝐶0−𝐶3𝜋/2

)
. Phase unwrapping amounts to

estimating the integer factor 𝑛 to recover the unwrapped phase
𝜙 = 𝜙 + 2𝜋𝑛. If successful, we can convert this phase estimate 𝜙 to
depth as 𝑧 = 𝜙𝑐/4𝜋𝜔𝑝 , where 𝑐 is the speed of light.

Modulation Frequency. As we noted earlier in Eq. (2), the round-
trip path of the amplitude-modulated illumination imparts on it a
𝜙 phase shift. Setting 𝑡 = 0, 𝛽 = 0 and 𝜔 = 100𝑀𝐻𝑧 (a common
modulation frequency in conventional ToF cameras) in Eq. (2), we
observe a 0.0009% signal difference for a 1mm change in depth 𝑧.
See Fig. 3. This means, with realistic imaging noise and quantization
in existing sensors, we would practically not be able to discern
millimeter scale features on object surfaces for a setup with this
modulation frequency. To achieve higher precision we go to higher
frequency, the same experiment repeated for 𝜔 = 8𝐺𝐻𝑧 leads to
a more detectable 5.6% difference in signal amplitude. In practice,
there are many factors that affect signal contrast, which we explore
in the remainder of this work.

4 OVERVIEW
Realizing correlation imaging at two orders of magnitude higher
frequencies than existing systems is prohibited by two technical
challenges: modulating at GHz rates, and unwrapping the measured
phase estimates, see Fig. 4. Stable GHz demodulation is challenging
as analog modulation after photo-conversion or with fiber-coupling
suffers from the high noise of ultra-fast photodiodes or large cou-
pling losses, respectively. Phase unwrapping becomes a challenge
as the increase in modulation frequency results in multiple dozens
of wraps instead of a handful of wraps. The proposed computational
imaging system tackles both limitations as follows.
First, we present a convolutional network for high-frequency

phase unwrapping, motivated by recent learning-based segmenta-
tion methods. Our approach represents wrap counts as class labels
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Fig. 4. Simulated measurements for a 100MHz ToF system, which exhibits
only a single phase wrap, and a 7.15GHz system which experiences 35.

and segments measurements into their corresponding wrap regions,
wherein we exploit the fact that proximal measurements that are
highly correlated are likely to also be similarly phase wrapped.
Second, we introduce a two-pass EOM-based system with fre-

quency doubling to tackle the problem of GHz frequency intensity
modulation. The proposed method performs correlation computa-
tion optically in free-space rather than in the conventional analog
domain. In this way, we avoid photo-conversion artifacts and energy
loss from fiber-coupling, enabling high modulation contrast ToF
imaging at 7.15GHz and 14.32GHz.

5 NEURAL PHASE UNWRAPPING
Phase unwrappingmethods estimate thewrap count𝑛 of thewrapped
phase 𝜙 to recover the unwrapped phase 𝜙 for depth estimation. Our
GHz ToF system presents twomain challenges for unwrapping. First,
the high modulation frequencies (7.15GHz and 14.32GHz) result in
dozens of wraps over meter-scale scenes, as opposed to one or two
for conventional MHz systems, see Fig. 4. Second, the modulation
bandwidth of our GHz correlation ToF system is limited to ±10MHz,
limiting the available sets of frequencies for multi-frequency ap-
proaches [Gutierrez-Barragan et al. 2019]. These challenges lead to
lackluster performance from prior phase-unwrapping approaches
including analytical solutions [Xia and Wang 2007], kernel meth-
ods [Lawin et al. 2016], and newer neural-network designs [Su et al.
2018; Zhang et al. 2019]. Here, we present a novel segmentation-
inspired neural network tailored for high-frequency phase unwrap-
ping. Rather than synthesizing the unwrapped phase directly, we
pose this as an ordinal classification problem of wrap counts. Our
network outputs 𝑁 class weights for each input pixel, each cor-
responding to a candidate wrap count. Here, 𝑁 is determined by
the minimum and maximum expected wrap counts for the lowest
modulation frequency, 7.15 GHz, to reduce class count.

5.1 Segmentation-based Fourier Phase Unwrapping
For our architecture, we modify the Fast SCNN [Poudel et al. 2019]
image segmentation network. First, to encourage the network to
learn local frequency unwrapping, rather than overfitting to global
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Fig. 5. We pose the phase unwrapping problem as an ordinal classification problem, and train a neural network to map phase and phase edge measurements
to wrap counts. We use Fourier feature encodings of the phase measurements to allow the network to perform a rudimentary frequency analysis of the
underlying ToF signal, and add realistic levels of Poisson-Gaussian noise to the simulated data to promote the learning of noise-robust unwrapping.

scene structure, we reduce its receptive field and add a full resolution
skip layer directly to the output. We refer to the Supplemental
Material for details on the network architecture. Second, as input to
our network, in addition to measured amplitude, we use a Fourier
feature encoding [Tancik et al. 2020] of wrapped phase 𝜙

𝛾 (𝜙) = [𝑐𝑜𝑠 (20𝜙), 𝑠𝑖𝑛(20𝜙), 𝑐𝑜𝑠 (21𝜙), ..., 𝑠𝑖𝑛(2𝐸𝐶𝜙)]⊺ . (5)

This was used to great success in [Mildenhall et al. 2020] as a posi-
tional encoding method, mapping x,y,z coordinates to a higher di-
mensional space and improved training for theirmultilayer-perceptron
representation. For our phase unwrapping network the purpose
is two-fold. This encoding increases the dimensionality of the in-
put multi-frequency measurements to facilitate learning of high-
frequency features, and effectively modulates the correlation values
with a new set of sinusoids, as seen in Fig. 5, which allows the net-
work to perform a rudimentary frequency analysis of the underlying
ToF signal.

5.2 Ordinal Classification Loss
We calculate our final estimate unwrapped phase 𝜙 ′ with

𝜙 ′ =
𝑁−1∑︁
𝑛=0

𝑛

(
𝛾𝑒𝜙𝑛∑𝑁−1

𝑚=0 𝑒
𝛾𝜙𝑚

)
, (6)

a differentiable argmax. Here 𝜙𝑛 is the predicted weight for phase
class 𝑛, corresponding to 𝑛 wraps, and 𝛾 adjusts the hardness of
the argmax function. Predicted depth is as before, 𝑧′ = 𝜙 ′𝑐/4𝜋𝜔 .
This differentiable argmax allows for back-propagation through
our phase-unwrapping network, meaning we are able to use both
entropy-based classification losses on the output class weights and
standard image losses on estimated phase or depth. Taking into
consideration the ordinal nature of wrap counts – that is, predicting
one wrap for a twice wrapped measurement is better than predicting
twenty – we opt for a mixed cross-entropy L𝐶𝐸 and ℓ1 loss L𝐿1

L = L𝐶𝐸 +𝑤𝐿1L𝐿1

L𝐿1 = |𝑧 − 𝑧′ |

L𝐶𝐸 = −
𝑁−1∑︁
𝑛=0

𝜙𝑛𝑙𝑜𝑔(𝜙 ′𝑛), (7)

where 𝑧 and 𝜙 are ground truth measurements. The cross-entropy
loss allows us to train the network as a classifier, while the smooth
ℓ1-term provides a distance metric for the classes, penalizing the
network for guessing wrap counts 𝑛′ far from the true 𝑛.

5.3 ToF Simulation from RGBD
Given that there do not exist GHz ToF datasets, especially not
ones with associated ground truth, we look to simulation to fill
our need for training data. We simulate our measurements from the
Hypersim RGB-D dataset [Roberts and Paczan 2020], containing
77,400 ground truth depth maps 𝑧 (in mm) and images 𝐼 from 461
computer-generated indoor scenes. We first calculate ground truth
phase as 𝜙 = (𝑧4𝜋𝜔)/𝑐 , where 𝜔 ∈ {7.15GHz, 14.32GHz}, and 𝑐
is the speed of light. We simulate ToF correlation images 𝐶𝜓 for
𝜓 ∈ {0, 𝜋/2, 3𝜋/2, 𝜋} as

𝐶𝜓 = 𝐺𝑇𝐼𝑔 (0.5 + 𝑐𝑜𝑠 (𝜙 +𝜓 )/𝜋) + 𝜂𝑃 + 𝜂𝐺 , (8)

where 𝐺 is sensor gain, 𝑇 is integration time, and 𝐼𝑔 is the green
channel of the image, meant to emulate the green laser in the exper-
imental prototype. To simulate measurement fluctuations, we add
Poisson noise 𝜂𝑃 and Gaussian noise 𝜂𝐺 with mean 𝜇 and standard
deviation 𝜎 . We note that a typical correlation ToF camera follows
a Skellam-Gaussian noise model [Hansard et al. 2012], however
our all-optical correlation ToF design has no photon bucketing and
subsequently encounters only Poisson-Gaussian noise.

5.4 Correlation Images to Wrapped Phase and Amplitude
From the correlation images 𝐶𝜓 obtained either from the training
dataset or our GHz ToF imaging system, we recover the wrapped
phase 𝜙 and amplitude 𝑎 using a per-pixel Fourier transform

𝜙 = angle(F2 (𝐶𝜓 )), 𝑎 = 2|F2 (𝐶𝜓 ) |, (9)

where angle(·) is the phase angle of a complex number and F𝑖 (·) is
the 𝑖-th complex value of the Fourier transformed signal (e.g.F0 is
the DC component). This process is repeated for the two modulation
frequencies, 7.15 GHz and 14.32GHz, and the arrays are stacked to
form the raw multi-frequency measurements. As a result of the
above Fourier recovery, 𝜙 ∈ [0, 2𝜋] is phase wrapped, and is passed
into our phase-unwrapping network.
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Fig. 6. We propose an all-optical free-space correlation ToF imaging system using polarizing optics and resonant EOMs. (a) The schematic diagram of our
imager as realized in (b) shows the light path from a laser source to a scene, and back to the photodiode. See text for details.

6 ALL-OPTICAL GHZ CORRELATION TOF IMAGING
GHz modulation frequencies for correlation ToF can allow for high-
precision depth imaging as illustrated in Fig. 3. However, practically
realizing this idea has been challenging due to the limited photon
absorption depth in silicon [Lange and Seitz 2001] and inefficacy
of fiber coupling [Kadambi and Raskar 2017]. In this work, we take
a different approach by co-opting free-space EOMs, mainly used
for optical communication, and introducing a two-pass intensity
modulation system with polarizing optics. Our method optically
performs correlation computation, and, as such, permits the use of
intensity sensors and continuous-wave lasers as compared to the
more complex hardware requirements of pulsed LiDAR.

6.1 Backgrounds on EOM and Jones Calculus
We briefly review EOM and Jones calculus before describing our
novel two-pass intensity modulation scheme. Modern EOMs mod-
ulate the phase, amplitude, and polarization of light by applying
an electric field to control the refractive indices of a bulk crystal,
perpendicular to the direction of light propagation, according to the
electro-optic Pockel’s effect [Yariv 1967]. To mathematically model
the effect of an EOM, we rely on a Jones vector and Jones matrix.
The Jones vector is a 2 × 1 vector that describes the amplitude and
phase of horizontal and vertical polarization components. As such,
the corresponding Jones matrix describes the change of the polar-
ization state of light with a 2 × 2 matrix that can be multiplied by a
Jones vector. We refer the reader to Collet [2005] for a review on
Jones calculus. The Jones matrix describes how an EOM shifts the
horizontal and vertical polarization waves of light by an amount
dependent on the applied voltage 𝑉 as

𝐵(𝑉 ) =
[
𝑒−𝑖𝑉 /2 0

0 𝑒𝑖𝑉 /2

]
, 𝑉 = 𝜂 cos(𝜔𝑡 − 𝜙), (10)

where 𝑉 is a time-varying voltage function, 𝜂 is the modulation
power, 𝜔 is the voltage modulation frequency, and 𝜙 is the mod-
ulation phase. Our custom-designed resonant EOM is capable of

generating phase differences in two orthogonally-polarized compo-
nents of light at a 7.15GHz frequency with 20MHz of bandwidth.
See Supplemental Material for additional information on our EOM.

6.2 Two-pass GHz Intensity Modulation
For GHz ToF imaging, we propose a two-pass GHz intensity mod-
ulation method which uses polarizing optics and custom phase-
modulating EOMs. This allows us to achieve a 7.15 GHz modulation
frequency at the EOM’s native resolution as well as a higher fre-
quency 14.32 GHz enabled by intensity modulation with a combina-
tion of two-pass phase modulation and polarization changes. The
two modulation frequencies provide high depth resolution, with
an effective wavelength of 2.1 cm for the 14.32GHz frequency, and
overcome the small native bandwidth of 20MHz of the EOMs, re-
sulting in a frequency difference of 7.17 GHz for phase unwrapping.
We note that our method enables high-frequency EOM-based in-
tensity modulation, an entirely different concept than conventional
optical-frequency doubling using EOMs. We describe the working
principle of our method below.

6.2.1 Intensity Modulation. Our custom resonant EOM delays the
phase of horizontal and vertical components of light at a frequency
𝜔 = 7.15𝐺𝐻𝑧. We exploit these polarization-dependent phase shifts
to perform intensity modulation of incident light. Specifically, we
use the following polarization optics: a polarizing beamsplitter (PBS),
a half-wave plate (HWP), a quarter-wave plate (QWP), and a mirror
as shown in Fig. 7. Incident light enters a PBS, turning light into
vertical linear polarization as

𝐸0 = 𝐴

[
0
1

]
, (11)

where𝐴 is the amplitude of the incident light. The polarization state
of the light is then modulated by a HWP and a QWP followed by a
EOM at a given voltage 𝑉 as

𝐸1 = 𝐵(𝑉 )𝑄 (𝜃𝑞)𝐻 (𝜃ℎ)𝐸0, (12)
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where 𝐻 (𝜃ℎ) and 𝑄 (𝜃𝑞) are the Jones matrices of the HWP and the
QWP oriented at angles 𝜃ℎ and 𝜃𝑞 . The light then propagates in
free-space for half a modulation wavelength 𝑐/𝜔 to where a mirror
is placed, resulting in the change of Jones vector as

𝐸2 = 𝑀𝐸1, (13)

where𝑀 is the Jones matrix of a mirror. Light travels again back to
the EOM, the QWP, and the HWP. The PBS picks up the vertical
linear polarization component of this light. Setting the HWP and
the QWP angles as 𝜃𝑞 = 11.25◦ 𝜃𝑞 = 45◦, we obtain the output light

𝐸3 = 𝐿ℎ𝐻 (−𝜃ℎ)𝑄 (−𝜃𝑞)𝐵(𝑉 )𝑀𝐵(𝑉 )𝑄 (𝜃𝑞)𝐻 (𝜃ℎ)𝐸0

= 𝐴

[
𝑖 (cos𝑉 −sin𝑉 )√

2
0

]
. (14)

We square themagnitude of 𝐸3, and observe amodulated intensity

𝐼 (𝑉 ) = |𝐸3 |2 =
𝐴2

2
(1 − sin 2𝑉 ) . (15)

Eq. (15) indicates that the output intensity of light is a function of
the voltage 𝑉 applied to the EOM. As we supply a time-varying
sinusoidal voltage to the EOM as in Eq. (10), we arrive at the time-
varying intensity-modulated light as

𝐼 (𝑡) = 𝐴2

2
(1 − sin(2𝜂 sin(𝜔𝑡 − 𝜙)))

≈ 𝐴2

2
(1 − 2𝜂 sin(𝜔𝑡 − 𝜙)) . (16)

The last approximation is based on the Taylor expansion given that
the modulation power 𝜂 of our EOM is small. The applied voltage
to the EOM has GHz modulation frequency 𝜔 = 7.15𝐺𝐻𝑧, enabling
effective all-optical GHz modulation of light intensity. We refer to
the Supplemental Material for detailed derivation.
Eq. (16) describes the high-frequency intensity modulation real-

ized by the proposed free-space two-pass phase modulation with
polarizing optics shown in Fig. 7. This optical configuration serves
as a building block for both illumination and detection modules in our
imaging system. In the illumination module, we input continuous
laser light into the EOM, resulting in sinusoidal intensity-modulated
light emitted into the scene. For the detection module, the returned
amplitude-modulated light from the scene is demodulated by an
additional intensity modulation with the reference signal 𝑟 , recall
Eq. (4), and we optically multiply 𝑟 and 𝑝 before integration on the
detector.

6.2.2 Doubled Intensity-Modulation Rate. Even though the voltage
modulation frequency 𝜔 is limited to a narrow modulation band
20MHz in our resonant EOM, we can modulate at the double fre-
quency of 2𝜔 by adjusting the angle of the HWP, 𝜃ℎ , in front of
the EOM, achieving 14.32 GHz modulation rate. While doubling the
frequency of the optical carrier is well known in optics, we note
that the proposed frequency doubling of the intensity modulation is
novel. In the original operating mode, we set the HWP angle 𝜃ℎ as
11.25◦ resulting in the intensitymodulation at the original frequency
𝜔 . For frequency doubling, we rotate the HWP to 𝜃ℎ = 22.5◦. To
derive the modulation behavior, we rely on the same Jones calculus
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Fig. 7. Two-pass GHz intensity modulation with polarizing optics and an
EOM. (a) We implement the GHz intensity modulation of incident light by
using polarizing optics and a EOM. Incident light becomes linearly polarized
after a PBS and further polarization modulated by a HWP and a QWP. An
EOM with a sinusoidal voltage applied shifts phases of the horizontal and
vertical polarization components. The light then is returned by a mirror
distanced at half the modulation wavelength, and returns back to the EOM,
the QWP, the HWP, and the PBS. The combination of forward and reverse
paths results in (b) the optical intensity modulation of incident light at GHz
frequency with unrolled polarization modulation, see the text for details.

from above. Specifically, changing the HWP angle 𝜃ℎ results in the
output light 𝐸3 as

𝐸3 = 𝐴

[
−𝑖 sin𝑉

0

]
. (17)

The intensity 𝐼 (𝑉 ) is the magnitude square of 𝐸3 as

𝐼 (𝑉 ) = |𝐸3 |2 =
𝐴2

2
(1 − cos(2𝑉 )) . (18)

Note that the difference between Eq. (18) and Eq. (15) is that we
have cos() instead of sin(). This single difference enables intensity
modulation at a doubled frequency. After applying the time-varying
voltage modulation of Eq. (10), the time-varying intensity of the
output light is

𝐼 (𝑡) = 𝐴2

2
(1 − cos(2𝜂 sin(𝜔𝑡 − 𝜙)))

≈ 𝐴2

2
𝜂2 sin2 (𝜔𝑡 − 𝜙)

=
𝐴2

4
𝜂2 (1 − cos(2𝜔𝑡 − 2𝜙)) . (19)

We use the same Taylor expansion. Eq. (19) shows that we can
obtain the doubled frequency 2𝜔 at 1/4th amplitude compared to
the single-frequency mode at 𝜔 – only by changing the polarization
optics instead of the electro-optical modulation itself.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2021.



Centimeter-Wave Free-Space Neural Time-of-Flight Imaging • 1:9

(a) Single-frequency modulation

Am
pl

itu
de

0

0.2

0.4

0.6

0.8

1.0

Time [ns]
0 0.2 0.4 0.6 0.8 1.0

(b) Double-frequency modulation

Am
pl

itu
de

0

0.2

0.4

0.6

0.8

1.0

Time [ns]
0 0.2 0.4 0.6 0.8 1.0

Fig. 8. We validate the GHz intensity modulation module by capturing the
signal reflected from a mirror at a fixed position. (b) When the HWP is
oriented at 11.25◦, we achieve the single intensity modulation frequency
of 𝜔 = 7.15GHz. (c) Changing the HWP angle to 22.5◦ at the EOM base
frequency 𝜔 = 7.16GHz enables frequency doubling: 2𝜔 = 14.32GHz.

6.2.3 Validation of GHz Intensity Modulation. We validate our GHz
intensity modulation module consisting of a PBS, a HWP, a QWP,
a EOM, and a mirror. We emit laser light to a mirror at a fixed
position and directly capture the intensity of the modulated light
steered onto a GHz photodetector, see Supplemental Material for the
measurement configuration. Fig. 8 demonstrates the effective GHz
intensity modulation with high modulation contrast at two different
HWP angles of 11.25◦ and 22.5◦, corresponding to the modulation
frequencies of 𝜔 = 7.15 GHz and 2𝜔 = 14.32 GHz.

6.3 Coaxial Spatial Intensity Imaging
Equipped with the intensity modulation block, we design a coaxial
imaging system with an illumination and a detection module, see
Fig. 6. For the illumination module, we opt for continuous-wave
laser illumination at 532 nm (for eye-safe lab operation of the proto-
type) followed by a GHz intensity modulation block. A second GHz
modulation block is used for the detection module, combined with
an avalanche photodiode (APD) for intensity sensing. We employ an
APD to allow for high gain at fast readout rates in low-flux scenar-
ios, which is especially important for scene surfaces low reflectance
and objects at long distances; see Supplemental Material. Using a
non-polarizing beamsplitter, we share the same path for the output
light to a scene and the detected light from a scene, improving the
signal-to-ratio of the system. For 2D spatial scanning, we use a 2-
axis galvonometer in front of the beamsplitter, shown in the bottom
of Fig. 6. Although the proposed free-space modulation method is
not limited to co-axial scanning, the beam-steered acquisition effec-
tively eliminates most multi-path interference, which we neglect in
the remainder of this work.

Analog Signal Integration. We use a conventional avalanche pho-
todiode with a gain 𝐺 to detect the correlation signals from the
detection module without any quantization involved. This gener-
ates analog photocurrent which is then low-pass filtered with an
electrical filter and a resistor-capacitor (RC) circuit that further inte-
grates the constant correlation input signal over an exposure time𝑇 .
We read out the analog signal with an ADC with 14bit quantization.
This results in the digital read of

𝐶𝜓 = 𝑄

(
𝐺

∫ 𝑇

0
𝑝 (𝑡 − 𝜏)𝑟 (𝑡) d𝑡

)
= 𝑄

(
𝛼

2
cos(𝜓 − 𝜙) +𝑇𝐾

)
, (20)

where 𝑄 is the 14bit ADC quantization, 𝜙 is the illumination phase,
and𝜓 is the phase of the reference 𝑟 shown in Eq. (4).

ToF Phase

(a) (b) (c)

Right Camera

ToF Camera

Left Camera

7.15GHz PhaseHardware Setup Stereo Wrap Map

Fig. 9. Active stereo setup to generate ground truth depth for fine-tuning.
(a) Stereo cameras mounted to the ToF system. (b) Sample 7.15GHz ToF
phase map. (c) Corresponding wrap map recovered from stereo depth.

6.4 Fine-tuning with Active Stereo Supervision
We fine-tune our phase-unwrapping network to allow for special-
ization to the specific noise characteristics of our experimental
system and minor deviations of the modulation functions from ideal
sinusoids. We acquire pseudo-ground-truth phase wrap maps by
augmenting our system with stereo cameras (other ground-truth
acquisition approaches are also possible, we chose stereo for ease
of implementation). We build the acquisition system by mounting
two CMOS cameras (FLIR Grasshopper3 GS3-U3-32S4C) to the ToF
rig, with 8mm lenses to match our system’s FOV as shown in Fig. 9.
This effectively creates an auxiliary active stereo system from which
to recover coarse scene depth without additional captures. After
geometric calibration, we triangulate the position of the ToF laser
spot in 3D space with the stereo cameras as we scan the scene. The
estimated depth for each laser spot allows us to generate a pseudo
ground truth wrap map.We perform fine-tuning on a diverse dataset
of captured stereo measurements, which are all withheld from the
experimental validation section. For details on the fine-tuning, we
refer to the Supplemental Document.

7 EXPERIMENTAL SETUP
For experimental validation, we implement the prototype system
shown in Fig. 2. While we assemble the experimental prototype on
an optical breadboard, we note that the EOMs and optics can be
integrated in a small form factor similar to LiDAR sensors.

7.1 Illumination Module
We use a single transverse mode continuous-wave laser at 532 nm
wavelength (Laser Quantum Gem 532). The laser beam is coupled
with a custom-design single mode high power optical fiber (OZ Op-
tics QPMJ-A3AHPCA3AHPC-488-3.5/125-3AS-1-1) which removes
the higher order modal light and produces a uniform Gaussian
beam at the output of the fiber, maintaining 20 − 30% laser out-
put power. The light then enters a 2.5× inverse beam expander
(Thorlabs LC1060-A and LA1608-A) that reduces the beam diameter
from 1.25mm to 0.5mm, matching the desired beam size for our
EOM. The reduced light becomes horizontally linearly polarized
by passing through a first PBS (Thorlabs PBS101). Then, a pair of
HWP (Thorlabs WPMH05M-532) and QWP (Thorlabs WPQ05M-
532) modulates the polarization state of the beam. The polarization-
modulated light passes through our custom GHz EOM that operates
at the modulation frequency 𝜔 . The light is reflected by a mirror
(Thorlabs PF10-03-P01), returning back to the EOM, the QWP, the
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HWP, and the PBS. This procedure results in the GHz-frequency
intensity modulation of light.
The light then passes through a mirror (Thorlabs PF10-03-P01)

and a NBS (Thorlabs CCM1-BS013) dividing the incident beam into
two beams of equal intensity. One beam is directed to an integrating
sphere (Thorlabs S140C) which measures the intensity of emitted
light for calibration purposes and the other beam passes through
another NBS (Thorlabs CCM1-BS013). The purpose of this module
is to calibrate intensity fluctuations from the laser by normalizing
the signal incident on the detection module. The optical intensity
modulation has higher frequency than the integration time of a
few milliseconds, which allows compensation after the modulation
without error. It splits the beam again into two paths with equal
intensity where one half of the beam is used as the reference beam
in interferometric measurement mode (used for precision compari-
son see Fig. 13) with a mirror; otherwise this beam is discarded in
intensity-measurement mode. The other half of the beam is sent to
a scene through a mirror (Thorlabs PF30-03-P01) and a 2-axis galvo
mirror system (Thorlabs GVS012) for spatial scanning. The emit-
ted CW laser power is 3mW. For photon efficiency estimates, see
Supplemental Document. To avoid speckle artifacts of the coherent
laser illumination, we slightly defocus the projected beam.

7.2 Detection Module
The intensity-modulated light returns from a scene and passes
through the galvo mirror system and the mirror followed by a NBS
which redirects the beam to the detection module. We use an 1.6×
inverse beam expander (Thorlabs LA1213-A and Thorlabs LC1060-
A) and a mirror (Thorlabs PF10-03-P01) resulting in a beam diameter
of 0.5mm and collimated beam accurately entering the detection
EOM. Symmetric to the emission module, we mount a PBS, a HWP,
a QWP, an EOM, and a mirror which in effect optically demodulate
returned light from the scene. The intensity demodulated light is
then captured by an avalanche photodiode (Thorlabs APD440A)
with a focusing lens (Thorlabs LA1951-A). We use a 10 kHz lowpass
filter (Thorlabs EF120) resistor capacitor (RC) low pass integrator
circuit with RC time constant 𝑡𝑅𝐶 = 100𝑚𝑠 to integrate the detected
photocurrent signal, then passed into an analog-digital-converter
(LabJack T7) to sample the signal at up to 24K samples per second.
We integrate over 20 samples for a single phase measurement and
sample 16 phases corresponding to 13ms integration time a single
galvo measurement point.

7.3 RF Driver
To operate the EOMs with a sinusoidal voltage input, we use two
custom RF drivers with a high-frequency DDS which are synchro-
nized to the external clock source of a function generator (Siglent
SDG2042X). Our DSS signal generators support sinusoidal modula-
tion only, leaving non-sinusoidal modulation as interesting future
work [Gupta et al. 2018]. The external clock enables accurate control
of the phase of the modulation signal 𝜙 . Our driver contains two
RF modulators to output an RF signal provided to the EOMs. The
RF driver performs frequency locking to significantly increase the
output power and reduce frequency drifting in the EOM. For further
details, refer to the Supplemental Document.

7.4 Comparison to Analog RF Demodulation
For comparison of the proposed system with demodulation of a
signal after photo-conversion, we add a highspeed GaAs 12GHz
photodetector (EOT GaAs PIN Detector ET-4000) connected to an
RF demodulation circuit. This measurement setup can be enabled
by flipping a flip-mirror in the optical path, redirecting the scene
illumination to the fast photodiode instead of the proposed detec-
tion module. This photodiode offered the highest photon-detection
efficiency and high-frequency response available to us. The captured
photocurrent from the detector is sent as input to an I/Q demod-
ulator consisting of analog microwave electronics as follows. The
photodector signal is first amplified and band-pass filtered. Then it
enters an RF mixer to be demodulated with the local oscillator (LO)
signal from the RF driver. This produces a signal with the difference
of the two frequencies and a signal with the sum of the two fre-
quencies. These signals are passed through a low pass filter which
removes the higher frequency signal. Then the remaining homo-
dyne DC signal, is output as two signals, an in-phase component 𝐼 ,
and a quadrature component 𝑄 shifted by 90 degrees. For a detailed
circuit design, see the Supplementary Document.

8 ASSESSMENT
In this section, we validate the proposed computational ToF method
in simulation and experimentally. Specifically, we first perform
quantitative evaluation of our neural unwrapping approach on a
synthetic dataset and compare with other baseline phase unwrap-
ping methods. We then experimentally validate the proposed system
quantitatively and qualitatively on unseen real-world measurements
captured by our experimental prototype.

8.1 Simulated Analysis
Ablation Study. We conduct an ablation study to validate our

choice of Fourier feature encoding and combined loss function. The
different ablation configurations and corresponding quantitative
results are shown in Tab. 1, and we refer to Supplemental Document
for qualitative results.We observe that Fourier encoding leads to a 10
percentage point boost in correct wrap predictions, supporting the
theory that the doubly modulated phases provide valuable features
during training, possibly in the form of a learned frequency analysis
of the underlying measurements. We concatenate phase edges to
the input in order to aid the network’s understanding of each wrap
region. For the loss functions, we find the model trained on cross-
entropy loss alone demonstrates competitive results, validating the
choice to represent phase unwrapping as a classification problem.
However, when we make use of the differentiable argmax function
to directly introduce ℓ1 loss on predicted depth, we see a reduction
in outliers and an overall smoother final prediction. This reinforces
the problem as ordinal classification, where the ordering of classes
— in this case wrap counts — is significant.

Comparison to Phase Unwrapping Methods. We validate our pro-
posed neural unwrapping approach on a synthetic test set and dis-
cuss the qualitative and quantitative results. As a baseline, we com-
pare our work against traditional unwrapping methods including
the approach used in phasor imaging [Gupta et al. 2015], the alge-
braic chinese-remainder theorem (CRT) solution [Pei et al. 1996;
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Fig. 10. Phase unwrapping results for comparison to existing conventional and learned methods and our proposed approach. Analytic solutions of CRT [Xia
and Wang 2007] and KDE [Zhang et al. 2019] suffer from rapid phase wraps and phase noise. The state-of-the-art neural network method partly overcomes
such problems at the cost of smoothed geometry and low-frequency depth artifacts. Our method outperforms the previous methods by recovering both
accurate scale and geometric details. Error map below results corresponds to a visual representation of the 𝛿 metric, see text, in Tab. 2 and 1.

Input Loss Performance (%)

𝜙 𝛾 (𝜙 ) |∇𝜙 | L𝐶𝐸 L𝐿1 ↑ 𝛿 < 1 ↑ 𝛿 < 2 ↑ 𝛿 < 3 ↓ 𝛿 ≥ 3

Proposed ✓ ✓ ✓ ✓ ✓ 51.6% 69.1% 77.0% 23.0%
L𝐶𝐸 Only ✓ ✓ ✓ ✓ - 49.1% 65.0% 73.3% 26.7%
F. Features ✓ ✓ - ✓ ✓ 40.2% 59.6% 68.8% 31.2%
Phase Only ✓ - - ✓ ✓ 30.3% 52.3% 65.7% 34.3%

Table 1. Ablation study configurations and corresponding quantitative re-
sults. Here the 𝛿 metric represents the percent of pixels whose prediction is
𝛿 wraps from ground truth wrap count. Up arrow denotes "higher is better",
down arrow means "lower is better".

Xia and Wang 2007], and the kernel density method (KDE) [Lawin
et al. 2016], which is also used in the Kinect V2 software. We also
compare to an unmodified U-Net [Ronneberger et al. 2015] baseline
and three recent regression-based deep learning approaches [Su
et al. 2018; Wang et al. 2019; Zhang et al. 2019].

We show qualitative performance of our proposed neural unwrap-
ping method and baseline methods including CRT [Xia and Wang
2007], KDE [Lawin et al. 2016] and the next best network-based
method [Zhang et al. 2019] in Fig. 10, and refer to the Supplemental
Document for additional qualitative comparisons. Tab. 2 presents

Method ↑ 𝛿 < 1 ↑ 𝛿 < 2 ↑ 𝛿 < 3 ↓ 𝛿 ≥ 3 ↓ 𝛿 ≥ 10

Phasor [2015] 0.74% 1.66% 3.50% 96.5% 84.4%
CRT [2007] 9.29% 14.7% 19.7% 80.3% 56.0%
KDE [2016] 9.46% 18.56% 27.0% 73.0% 8.93%

One-Step [2019] 19.9% 37.6% 52.2% 47.8% 14.6%
U-Net [2015] 21.8% 45.6% 64.4% 35.6% 10.0%

Deep-ToF [2018] 20.1% 47.5% 67.6% 32.4% 8.40%
Rapid. [2019] 23.1% 45.4% 61.1% 38.9% 9.74%
Proposed 51.6% 69.1% 77.0% 23.0% 7.59%

Table 2. Quantitative comparison table for proposed neural phase unwrap-
ping method and baselines, as evaluated on the synthetic test scenes. 𝛿 ≥ 10
metric added to better quantify outlier performance.

quantitative classification results for the full range of methods in
increasingly widening error bands, as well as outlier percentages.
Visually CRT and KDE achieve similar results, as they have similar
underlying mechanics for wrap calculation, however KDE’s spatial
aggregation allows it better tackle noise andmake significantly more
correct estimates. This is quantitatively confirmed by the fact that
more than half of CRT’s predictions are outliers (𝛿 ≥ 10) while for
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Fig. 11. Noise matching example. Left: simulated synthetic data. Right:
experimental measurement.

KDE this number is less than 9%. The last conventional method, pha-
sor imaging, struggles heavily under added noise and sub-optimal
modulation frequencies, leading to nearly all the measurements
being incorrectly unwrapped. The U-Net and three comparison
deep learning methods produce similar spatially smoother predic-
tions than the classical methods, however often bin entire patches
of the image into the wrong wrap count, leading to a marginally
higher rate of outliers than KDE while making more than double
the number of correct predictions. Deep-ToF [Su et al. 2018] solves
the phase unwrapping problem by directly regressing the raw cor-
relation measurements to depth using the modified U-Net with skip
connections. This regression-based method often results in globally
inaccurate phase unwrapping as it hallucinates depth directly with-
out the exact meaning of wrap counts. In contrast, our unwrapping
network avoids this problem by estimating wrap counts with the
segmentation-inspired network architecture and loss functions. The
proposed neural unwrapping method more than doubles the rate of
correct predictions when compared to Zhang et al.’s [2019] baseline.
This is confirmed qualitatively in Fig. 10 with spatially-consistent
outputs and object discontinuities that accurately align with the
amplitude measurement. The proposed network outperforms all
existing methods in GHz frequency unwrapping.

Impact ofMeasurement Noise. In addition to simulating the Poisson-
Gaussian noise as described in Section 3, we further test our method
with two differentmeasurement distortions. First, we simulate global
phase offsets between the two high modulation frequencies. Note
that we used a phase-accurate clock (SDG2024X) to mitigate phase
offsets, however, high GHz modulation frequencies can make the
system sensitive to the phase shifts. We add ±0.01 radians global
offset to one of the phase measurements. Tab. 3 shows that our
neural phase unwrapping is robust to such phase shift, resulting
in minor performance drop of less than 1% for all metrics. Second,
we simulate a high noise level 𝜎 = 2000 instead of 1200 to mimic
low-signal scenario with strong ambient light present. Again, we
obtain a minor performance drop for 1.6× higher noise level than
the training as shown in Tab. 3.

Training Details. For all methods except phasor imaging we sim-
ulate measurements for two modulation frequencies, a fundamental
7.15GHz signal and a shifted plus frequency doubled (7.15GHz +
10MHz) × 2 = 14.32GHz signal. We note that these frequencies
correspond to the frequencies we can implement in the experimen-
tal setup. For the phasor imaging method, we input 7.15GHz and

Environment ↑ 𝛿 < 1 ↑ 𝛿 < 2 ↑ 𝛿 < 3 ↓ 𝛿 ≥ 3

Conventional 51.6% 69.1% 77.0% 23.0%
With Phase Offset 51.0% 68.9% 77.0% 23.0%
With Ambient Light 42.7% 60.4% 70.0% 30.0%

Table 3. Quantitative results for our phase unwrapping method against
phase offset error and higher noise level due to the ambient light.

7.16GHz simulated measurements, as these are the locally optimal
feasible shifts achieved by the optical amplitude modulation system.
To be robust against real-world noise, we simulate measurements
with sensor gain 𝐺 = 20 and integration time 𝑇 = 1000ms, with
noise parameters 𝜇 = 0, 𝜎 = 1200. The models are trained for 1000
epochs each, with 500 samples drawn per epoch, each consisting
of a 512×512 image and ground truth depth patch (sampled ran-
domly from the full RGB-D datum). We use a OneCycle learning
rate schedule with a ratio of 0.995 per epoch and an initial rate of
1𝑒 − 3; training on 3 Nvidia V100 GPUs with a batch size of 12 takes
approximately 24 hours. The synthetic test set consists of the 42nd
frame of each simulated scene, withheld from both the training and
validation sets. We balance the losses by setting𝑤𝐿1 = 0.1, which
leads to noticable improvements in smoothness without the clas-
sifier’s early training behavior. During inference, running on one
Nvidia V100 GPU, we achieve an average runtime of 16.5ms≈60FPS
per image of size 256×256, and 50ms≈20FPS with the full synthetic
image size of 768x1024.

8.2 Experimental Assessment
In this section, we validate the proposed computational ToF imaging
approach on experimental scenes.

Qualitative Reconstruction. We demonstrate depth captures on
diverse real-world scenes as shown in Fig. 16. All scenes were cap-
tured with the galvo on the floor plane with respect to the scene,
and swept through 16 phase shifts from 0 − 𝜋 , corresponding to
13ms integration time for a single galvo measurement point. Note
that we perform this capture procedure under strong room ambient
light for all captured scenes, demonstrating the robustness to ambi-
ent illumination. Operating outside the visible range (our system
uses 532 nm for lab eye safety reasons), and employing narrow-
band spectral filters can further enhance this robustness. We use
a single-frequency 7.15GHz and double-frequency 14.32GHz pair
for depth measurement. Fig. 16 shows that combining the proposed
free-space correlation acquisition and neural unwrapping method
enables high-fidelity depth reconstruction of all the tested objects
with wide dynamic range.

Compared to RF demodulation after photon conversion, using the
highspeed GaAs 12GHz photodetector as described in Section 7, the
proposed method drastically outperforms post-detection modula-
tion across all experimental tests for an identical photon budget. We
tested even for a 10× higher laser power of 30 mW with the same
result, again validating the photon-efficiency of the proposed free-
space modulation approach. Our measured phase maps clearly show
depth-dependent contours for diverse surface reflectance types (see
also Supplemental Material), demonstrating the robustness of the
proposed system. Moreover, our imager handles large variations
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Fig. 12. (c) We validate our optical GHz modulation by capturing the instru-
ment response of the complete system for a fixed mirror with varying phase
shifts of the detection EOM, controlled by (a) the voltage-control RF drivers.
(b) As predicted in the model, the amplitude measurements accurately fol-
low a sinusoidal function, validating the effective GHz correlation mode.
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Fig. 13. We measure depth precision of our system for (a) a specular mirror
and (b) a diffuse reflector mounted on a linear motion stage, placed at 60 cm
distance from the system. Compared to the known positions of the target
objects in a sweep of the mirror and diffuse reflector, we achieve a depth
accuracy of 33.5 um with a standard deviation of 7.5 um, outperforming
the post-photoconversion RF-based method and approaching (c) optical
interferometry. Note that while interferometry is extremely sensitive to
short travel distance and scene reflectance, the proposed method effectively
estimates depth independently of these environmental influences.

in object reflectance. From a diffuse bust, a highly specular hel-
met with a very small diffuse component, to a textured owl object
with low albedo components. We evaluate the impact of our neural
phase unwrapping on these challenging scenes compared with the
existing KDE [Lawin et al. 2016], recent learned network [Zhang
et al. 2019] method, and micro ToF phasor unwrapping [Gupta et al.
2015] methods. KDE unwrapping [Lawin et al. 2016] struggles with
the high frequencies of the proposed system and residual measure-
ments noise, failing to provide high-quality residual measurements.
The other two methods [Gupta et al. 2015; Lawin et al. 2016] also
fail to recover correct meaningful geometric structures which can
be found in the Supplemental Document. The lookup-table based
unwrapping method from [Gupta et al. 2015] fails here due to the
small modulation bandwidth available in our experimental system.
We note that we use the optimal frequency settings for the phasor
unwrapping [Gupta et al. 2015] in our operating bandwidth. Our
neural phase unwrapping successfully handles high wrap counts in
the GHz regime, enabling us to obtain accurate depth maps across all
scenes. Thus, these experiments validate that the proposed method
robustly performs high-frequency correlation depth imaging, out-
performing existing approaches and phase unwrapping methods
across all tested scenarios.

Validation of Correlation Profiles. We validate the functionality
of the proposed imaging system by acquiring correlation measure-
ments as figure of merit. Specifically, we capture measurements of a

Method RMSE Mirror MAE Mirror RMSE Diffuse MAE Diffuse

Interferometry 20 𝜇m 20 𝜇m 14 𝜇m 14 𝜇m
RF 49.5 𝜇m 48.8 𝜇m 11800 𝜇m 11800 𝜇m

Proposed 33.5 𝜇m 32.5 𝜇m 34.6 𝜇m 32.9 𝜇m

Table 4. Quantitative comparison of the proposed method for diffuse and
specular objects corresponding to the measurements in Fig. 13.
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Fig. 14. As additional illustrative validation of the depth resolution provided
by the proposed method, we capture gage blocks and a slanted flat plane.
Our method accurately recovers the height difference of the gage blocks.
For the plane object, we fit a plane equation to the acquired 3D points and
achieves an R-squared value of 0.9998. This validates the effectiveness and
precision of our method independent of phase unwrapping.

Scene MHz AMCW ToF Proposed

Depth [mm]800 1100

Fig. 15. Our all-optical GHz ToF imaging captures fine geometric details
which cannot be revealed in MHz correlation ToF imaging. In the MHz
regime, fundamentally limiting depth resolution and phase contrast by
modulation in the analog domain instead of the optical domain, conven-
tional correlation ToF fails to recover correct depth and fine-grained normals.
Noticeably, we observe artifacts on the specular surface of the helmet, which
only returns a very faint diffuse component, and the texture-dependent
artifacts on the bright and dark spots of the owl object.

static target without galvo movement while sweeping the phase of
the reference signal driven by the RF driver. To this end, we place
a mirror (Thorlabs PF10-03-P01) at a fixed position and uniformly
sample𝜓 over a range of 0 to 2𝜋 . Fig. 12 confirms that the measured
correlation values accurately follow the sinusoidal image formation
model from Eq. (20).

Quantitative Evaluation of Depth Precision. We quantitatively eval-
uate depth precision of our experimental prototype by capturing
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Fig. 16. (a) We experimentally validate the proposed method on challenging real-world scenes, for which we show photographs and recovered amplitude
measurements (b) & (c). While our all-optical neural ToF system captures accurate phase at 7.15 and 14.32 GHz (frequency-doubled 7.16 GHz), (d) the existing
GHz radio-frequency (RF) method electronically computes the correlation after photo-electron conversion (see text for details). As a result, this method
struggles with low photon flux of the returned signal, producing noisy depth reconstructions. (e) We also evaluate existing phase-unwrapping methods for
unwrapping measured GHz phase measurements which fail for most scenes due to the high wrapping counts of GHz frequencies (f) & (g). The proposed
neural unwrapping method successfully resolves this issue and enables accurate geometry reconstruction visualized as depth and normals.
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objects at known distances using amotion stage (ThorlabsMTS50/M-
Z8) as shown in Fig. 13 and Tab. 2. We control the position of the
target object that is placed at 60 cm distance from the setup. At
this depth offset, we sweep over 1mm travel distance with 50 𝜇m
step size (stage error 0.05 𝜇m) and estimate corresponding depth
values using the proposed method. Our imaging system achieves a
mean depth error of 32.5 um and 32.9 um for a specular mirror and
a diffuse reflector respectively.

Furthermore, we measure the height difference between the two
metallic precision-fabricated gage blocks at 100 cm distance as
shown in Fig. 14. The two gage blocks (ACCUSIZE DIN861 Metric,
Grade2) are placed on a static mount. The difference of the measured
depths, the height difference, is 0.4988mm which is only 12 𝜇m off
from the ground truth 0.5mm, demonstrating the precision of our
depth acquisition. We also captured the shape of a large diffuse flat
plane at a slanted angle. Once we obtain the depth map from our
measurements, we fit a plane equation and the fitting R-squared
value is 0.9998, demonstrating the accuracy of our method over
longer travel distance than the translation-stage experiment.

Comparison with MHz Correlation ToF Imaging. The proposed
method performs all-optical GHz modulation for high-resolution
depth imaging. Fig. 15 compares our method with the conventional
MHz correlation ToF imaging used in LUCID Helios Flex camera
equipped with four VCSEL diodes of cumulatively 8mW illumi-
nation module at 850 nm wavelength and 8ms exposure, which is
comparable to the effective photon budget of our system, although
less susceptible to ambient light due to the wavelength filter. Our es-
timated depth contains fine geometric details for challenging scenes
at correct depth scales, whereas the MHz correlation ToF suffers
from low-precision depth with mm deviation on diffuse highly re-
flecting surfaces and larger cm to 10 cm deviation for surface areas of
low reflectance. We ignore errors due to multipath effects (naturally
suppressed by scanning in the proposed method) in this evalua-
tion by focusing on convex object shapes. We note that we provide
here qualitative comparisons with RGB frames as reference rather
than ground truth depth,which is challenging to acquire for highly
specular objects such as the helmet. Qualitatively, MHz correlation
ToF fails to recover correct geometry for bright and dark spots on
the owl, resulting in a 200mm depth error (i.e. texture-dependent
depth errors). The method also fails for the faint diffuse component
returned from the specular helmet scene. While this trend is also
confirmed in the estimated normals, we note that the holes in the
helmet are “closed” by an incorrect wrapping estimate.

Comparison to RF Demodulation and Optical Interferometry. We
compare the proposed method to RF demodulation after photo-
conversion and to interferometric depth estimation. To compare
to RF demodulation, we use the same highspeed GaAs 12GHz pho-
todetector as before. We note that this was the fastest photodiode
available to us, see again Sec. 7 and the Supplement for additional
details. To compare interferometric depth estimation with the pro-
posed method, we add a moving reference mirror and an intensity
detector so that interference can be detected with the superposed
reference and scene beams as shown in Fig. 13(c). To implement
this approach with the same proposed setup, we place a beam block
in front of the reference mirror when we use the system in the

proposed correlation mode. For fair comparison, we unwrap the
interferometric data with sequential unwrapping which adds the
smallest multiple of 2pi whenever the phase exceeds 2pi.
Tab. 4 shows that for a 1 mm sweep at 0.6 m distance, our pro-

posed method with an emitter-decoder setup outperforms the RF
demodulation in depth accuracy. The proposed method has a lower
depth error than the RF method for RMSE and MAE for both a
specular reflector shown in (a), and a diffuse reflector shown in (b).
The depth estimates for all methods are shown for a 1 mm range
compared to a ground truth for both specular and diffuse reflectors.
We validate that, while post-photoconversion performs well for high
flux levels, typical diffuse scenes results in low photon counts that
are challenging to sense at high frequencies. As such, the RF demod-
ulation approach fails for the diffuse scene object. We note that in
contrast to direct fast sampling at rates higher than 10 GHz in the
RF setup, our all-optical sensing enables us to get away low-frequency
kHz sampling (six orders of magnitude slower) with high SNR.

The RSME andMAE for interferometry, RF and proposedmethods
are shown in Tab. 4 for specular and diffuse reflectors. The inter-
ferometric depth estimation performs best in terms of RMSE and
MAE for specular and diffuse reflectors as expected. In this experi-
ment, the proposed method achieves a depth precision of around
30 microns. We note that optical interferometry setup is extremely
sensitive to scene scale, system vibrations, to the point where mea-
surements had to be completed remotely from outside the lab and
repeated multiple times due to tiny measurement fluctuations.

9 DISCUSSION
We have introduced a computational imaging method, that presents
a complementary direction to existing ToF methods. Specifically,
we have jointly designed the optics, sensing and neural network
reconstruction such that computation that is typically done on the
sensor, or digitally after sensing, is executed optically on incident
photon stream. Doing so, we introduce concepts from optics on
electro-optical modulation to the graphics and imaging commu-
nity, while devising a new method for two-pass modulation and a
new method for unwrapping high-frequency phase measurements.
Although we experimentally and synthetically validate that our
system performs effective centimeter-wave ToF depth imaging, as
a nascent technology, our work also leaves the reader with some
open questions regarding its future, which are discussed below.

Implementing Array Sensors. We have opted for sequential point-
wise scanning using a galvo system as the beam diameter passing
through our EOMs is limited by the EOM’s small active area, 2.5
× 2.5 mm. An alternative implementation requiring further engi-
neering efforts is the use of telescope optics to spatially expand the
EOM-modulated light, hence exploiting that correlation ToF only
mandates global intensity modulation instead of per-pixel intensity
control, see also [Kim et al. 2019].

Flood-Illumination and Multi-Path Interference. As our prototype
performs point-wise scanning, direct reflection dominates the mea-
surement, which mitigates multi-path interference. When imple-
menting the proposed system with flood illumination in the future,
and using 2D array sensing with large-area EOMs, retraining the
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network with flood-illumination might appear as an immediate
solution to multi-path interference. We note that proposed high-
frequency modulation may already provide sufficient robustness to
the multi-path problem [Gupta et al. 2015].

Generalization to Complex Geometry and Reflectance. For scenes
with simple shapes, moving planar targets in Fig. 13 and gage blocks
and a slanted plane in Fig. 14, we demonstrate micron-scale depth
resolution. In the future, we hope this approach can be extended
to resolve micron-scale features in more complex scenes. While
the proposed method outperforms previous methods for complex
macroscopic scenes, capturing accurate depth still proves challeng-
ing; local geometries induce phase noise as the angular light beams
are integrated over uneven depths. In the future, narrow beam
sampling or flood-illuminated setups with array sensing might be
a hardware solution to this challenge. In addition, more accurate
ground truth sensing in the fine-tuning step might also overcome
this domain gap issue in the neural network reconstruction.

Phase Unwrapping and Denoising. The proposed neural unwrap-
ping method exploits the ordinal nature of the wrap counts and
segmentation-based image semantics to recover dozens of wrap
counts, while existing methods fail for more than a handful. While
this approach shares some similarities with denoising in that we
want to recover clean phase measurements from noisy readings, it
does so in a joint manner. Rather than performing denoising and
unwrapping sequentially, the proposed network ingests both corre-
lation measurements simultaneously and can use their joint informa-
tion – and independent noise distributions – to inform unwrapping.
In this way we avoid accidentally denoising phase measurements
into the wrong wrap count bin.

10 CONCLUSION
We propose a computational ToF imaging method that correlates
light all-optically at centimeter-wave frequencies, without fiber
coupling or photon-conversion – enabling high SNR sensing with
more than 10 GHz modulation frequency. To this end, we solve
two technical challenges: modulating without large signal losses
at GHz rates, and unwrapping phase at theses rates which ren-
der conventional phase unwrapping methods ineffective. Specifi-
cally, we propose a two-pass intensity modulation with free-space
EOMs and polarizing optics, which works in tandem with a neu-
ral phase unwrapping method to handle high wrapping counts in
GHz-frequency measurements, on the order of dozens of wraps. The
resulting imaging method achieves ToF imaging with centimeter
intensity modulation for macroscopic scenes, robust to materials of
low reflectance, highly-specular materials, and ambient light. We
demonstrate accurate depth reconstructions, outperforming exist-
ing phase-unwrapping and post-photo-conversion ToF methods for
all synthetic and real-world experiments. Our approach makes a
step towards the goal of filling the gap between interferometric
and correlation ToF. Our method performs computation optically
that traditionally has been done after or during the sensing process.
As such, in the future, we envision that the proposed approach
could serve as an optical compute block for a diverse array of tasks,
including velocity imaging, transient imaging, non-line-of-sight

imaging, and imaging in scattering media, with the potential for
fueling imaging of ultrafast phenomena across disciplines.
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uation of the azure Kinect and its comparison to Kinect V1 and Kinect V2. Sensors
21, 2 (2021), 413.

Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. 2018. Multi-view consistency
as supervisory signal for learning shape and pose prediction. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2897–2905.

Kaiqiang Wang, Ying Li, Qian Kemao, Jianglei Di, and Jianlin Zhao. 2019. One-step
robust deep learning phase unwrapping. Optics express 27, 10 (2019), 15100–15115.

Xiang-Gen Xia and Genyuan Wang. 2007. Phase unwrapping and a robust Chinese
remainder theorem. IEEE Signal Processing Letters 14, 4 (2007), 247–250.

Amnon Yariv. 1967. Quantum electronics. Wiley.
Amnon Yariv and Pochi Yeh. 2007. Photonics: optical electronics in modern communica-

tions. Oxford University Press.
Teng Zhang, Shaowei Jiang, Zixin Zhao, Krishna Dixit, Xiaofei Zhou, Jia Hou, Yong-

bing Zhang, and Chenggang Yan. 2019. Rapid and robust two-dimensional phase
unwrapping via deep learning. Optics express 27, 16 (2019), 23173–23185.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2021.


	Abstract
	1 Introduction
	2 Related Work
	3 Correlation ToF Imaging
	4 Overview
	5 Neural Phase Unwrapping
	5.1 Segmentation-based Fourier Phase Unwrapping
	5.2 Ordinal Classification Loss
	5.3 ToF Simulation from RGBD
	5.4 Correlation Images to Wrapped Phase and Amplitude

	6 All-optical GHz Correlation ToF Imaging
	6.1 Backgrounds on EOM and Jones Calculus
	6.2 Two-pass GHz Intensity Modulation
	6.3 Coaxial Spatial Intensity Imaging
	6.4 Fine-tuning with Active Stereo Supervision

	7 Experimental Setup
	7.1 Illumination Module
	7.2 Detection Module
	7.3 RF Driver
	7.4 Comparison to Analog RF Demodulation

	8 Assessment
	8.1 Simulated Analysis
	8.2 Experimental Assessment

	9 Discussion
	10 Conclusion
	Acknowledgments
	References

