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Abstract

Time-of-flight (ToF) sensors provide an image modal-
ity fueling diverse applications, including LiDAR in au-
tonomous driving, robotics, and augmented reality. Con-
ventional ToF imaging methods estimate depth by sending
pulses of light into a scene and measuring the ToF of the
first-arriving photons directly reflected from a scene surface
without any temporal delay. As such, all photons follow-
ing this first response are typically considered as unwanted
noise. In this paper, we depart from the principle of us-
ing first-arriving photons and propose an all-photon ToF
imaging method that relies on the temporal-polarimetric
analysis of first- and late-arriving photons which encode
rich scene information in terms of geometry and material.
To this end, we propose a novel temporal-polarimetric re-
flectance model, an efficient capture method, and a recon-
struction method that exploits the temporal-polarimetric
changes of light reflected by the surface and sub-surface
reflection. The proposed all-photon polarimetric ToF imag-
ing method allows us to acquire depth, surface normals, and
material parameters of a scene by utilizing all photons cap-
tured by the system, whereas conventional ToF imaging only
obtains coarse depth from the first-arriving photons. We
validate our method in simulation and experimentally with
a prototype system.

1. Introduction
Depth cameras have equipped us with the ability to ac-

quire scene geometry that is essential for 3D vision both
directly as a geometric input to a perception or reconstruc-
tion method, and indirectly, as training data for supervised
learning in rich 3D vision datasets [9,11,42]. As such, depth
sensor have fueled diverse applications across domains, in-
cluding autonomous vehicles, virtual and augmented real-
ity, mobile photography, and robotics. A large body of prior
work explores different approaches to extract depth, includ-
ing parallax [37], defocus [23], double refraction [4], and
correlation imaging [22]. In particular, pulsed ToF cam-
eras [32] have been rapidly adopted across application do-
mains for their high depth precision, low baseline, long
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Figure 1. All-photon polarimetric ToF imaging. In contrast to
conventional ToF imaging methods that analyze the first-reflected
light, we propose to capture and exploit both early and late pho-
tons and untangle them via polarization. We analyze temporal-
polarimetric characteristics of surface and sub-surface reflections
that enable us to infer scene parameters (depth, normals, and ma-
terial parameters) from all captured photons.

range and robustness to scene texture.
ToF cameras directly measure the round-trip return time

of light emitted into a scene. This requires high-speed sen-
sors and electronics that can time-tag photon arrival events,
such as single-photon avalanche diode (SPAD) and time-
correlated single-photon counting (TSCPC) electronics. By
repeating pulses and recording arrival events hundreds of
thousands of times per measurement, these pulsed ToF cam-
eras are capable of recording an entire temporal histogram
for each pixel, reporting the number of photons detected by
the sensor for each travel time bin.

Photons that arrive at different times at a single pixel can
be broadly categorized into two temporally distinct compo-
nents that sum up to the total measured photons. The first
group of photons originates from the light directly reflected
off from an object surface. Therefore, this surface reflec-
tion allows for estimating the object depth directly from its
ToF measurement. Surface reflection often has higher in-
tensity in comparison to the other component. As a result,
one common practice for ToF depth imaging is to estimate



the ToF through peak-finding over the photon counts. In
contrast to the surface reflection, the second group of pho-
tons comes from the light that penetrates the object surface,
undergoes sub-surface scattering, and leaves the surface to-
wards the detector. This sub-surface scattered light arrives
at the sensor with a longer travel time than the light origi-
nating from surface reflections. At first glance, sub-surface
scattering appears to harm accurate depth estimation as
it disturbs the true ToF by an additional unknown scatter-
ing time. Existing ToF methods typically discard this sub-
surface observation and only rely on the surface reflection.

In this work, we treat this sub-surface scattering com-
ponent as a signal instead of noise in estimating geometric
and material properties of a scene. The proposed all-photon
ToF imaging method combines ToF imaging with polariza-
tion analysis, exploiting the unique temporal-polarimetric
signature of surface and sub-surface reflections, as shown in
Figure 1. The proposed method hinges on a novel temporal-
polarimetric bidirectional reflectance distribution function
(BRDF) model that describes both surface and sub-surface
reflections in temporal and polarimetric domains. We im-
plement this BRDF model with differentiable operators al-
lowing us to pose scene reconstruction as an inverse ren-
dering problem. To efficiently acquire high-dimensional
polarimetric-temporal data, we also propose a light-efficient
temporal-polarimetric acquisition approach that captures
the temporal-polarimetric signals of a scene combined with
a learned optical ellipsometry. We demonstrate that all-
photon polarimetric ToF imaging can record diverse scene
information, including depth, normals, and material param-
eters from temporal-polarimetric measurements – both in
simulation and experimentally. Specifically, we make the
following contributions.

• We devise an all-photon polarimetric ToF imaging
method that combines ToF imaging and polarization
analysis to jointly exploit surface and sub-surface re-
flected photons for scene reconstruction.

• We present the first temporal-polarimetric BRDF
model which characterizes surface and sub-surface re-
flection based on micro-facet theory and the Stokes-
Mueller formalism.

• We propose an efficient temporal-polarimetric acqui-
sition approach tailored for polarimetric imaging with
polarized-laser illumination.

• We validate our method in simulation and with an ex-
perimental prototype for capturing depth, normals, and
material parameters.

Limitations As a result of the mechanical rotation of
the polarizing optics and sequential scanning, the acquisi-
tion of the temporal-polarimetric data takes five hours for

each scene. We note that the limited number of temporal-
polarimetric photons and low sensor quantum efficiency
makes the acquisition challenging. In the future, accelerat-
ing the polarimetric capture with electronically-controllable
liquid crystal modulators instead of mechanically rotating
polarizers, or using a polarization array filters placed on
photon-efficient SPAD sensor arrays, may eliminate the
need for sequential acquisition. Our experimental proto-
type employs a laser module with low average power of
0.13 mW available to us. We note that higher-power laser
sources are commercially available which could increase
the signal-to-noise ratio of the measurements for a given
exposure time budget.

2. Related Work
ToF Imaging Modern ToF imaging methods can be
broadly categorized into correlation and pulsed approaches.
Correlation ToF methods emit intensity-modulated light
into a scene and indirectly estimate the round-trip time of
the light returned back to the sensor by performing intensity
demodulation [22, 49]. In contrast, pulsed ToF methods di-
rectly measure ToF of light in an emitted pulse. These meth-
ods combine picosecond-pulsed illumination with time-
resolved sensors, such as a SPAD, synchronized with the
laser using TSCPC electronics [15, 26]. Not only have
pulsed ToF approaches been deployed broadly for LiDAR
systems in autonomous vehicles [40], robotics [21], and
space missions [1], but recently in consumer mobile phones
such as the iPhone 12 Pro. Typical LiDAR sensors extract
depth by reporting a detection event for the first-arriving
photons among all photons reflected from a scene surface.
To this end, existing methods implement peak finding via
analog thresholding [40], spatial coherence [31], tempo-
ral coherence [41], and learned priors [24]. This acquisi-
tion principle also means that photons arriving later are
ignored, along with rich material and geometric informa-
tion that these photons carry about the scene. Researchers
have attempted to utilize this hidden information by mod-
eling a more comprehensive temporal response of a scene
with analytic temporal BRDF models [35, 36, 48]. How-
ever, temporal-only analysis restricts them to only extract-
ing scene depth from the fitted first-arriving photons, while
the later arriving photons are only used for obtaining a bet-
ter fit of the first-arriving photons. In contrast, we analyze
all detected photons by jointly analyzing their polarization
and temporal characteristics to extract geometric and mate-
rial properties of a scene.

Polarimetric Imaging A rich body of work has explored
using polarization of light for various visual-computing
tasks. Early works rely on cross-polarization, which equips
illumination and detector with orthogonal polarization fil-
ters. This allows for separating polarized reflection from



unpolarized reflection, or vice versa [28,38]. This principle
has led to many applications such as seeing through scat-
tering media [44] and diffuse-specular separation [13, 25].
Recently, polarization cameras with spatially multiplexed
linear polarizers have been used for the acquisition of sur-
face normals [2,19]. These methods explicitly or implicitly
rely on polarimetric BRDFs that couple local geometry to
a polarization response [6, 7]. Combining polarization and
ToF imaging has largely been an unexplored field. Callen-
berg et al. [8] investigated polarization-difference imaging
by configuring a two-illumination correlation ToF camera in
a cross-polarization mode. Most relevant to our work, Baek
et al. [5] combine polarization imaging and ToF imaging
to capture the temporal-polarimetric response of a scene.
Their method is unable to extract geometry and reflectance
from the measurements due to the absence of a temporal-
polarimetric BRDF model that links the scene parameters
to the observation. We close this gap in this work and in-
troduce the first temporal-polarimetric BRDF model, which
makes it possible to estimate scene parameters directly from
temporal-polarimetric observations.

Polarization LiDAR Interestingly, combining polariza-
tion with ToF imaging has been studied for decades in geo-
science [34]. Notably, researchers in cloud science have ap-
plied polarization analysis to LiDAR systems in order to ex-
amine cloud properties and aerosol concentration by send-
ing out polarized laser pulses to the cloud and measure how
much of returned light, at a given travel time, is depolar-
ized [14, 33, 47]. This principle, first studied by Schotland
et al. [39], has led to remarkable success, not only in cloud
analysis but also in other fields, including biology [17] and
ocean science [45]. The proposed method shares this mo-
tivation in that we combine polarization and ToF imaging,
however, we tackle the problem of scene reconstruction.

3. Temporal-polarimetric Light Transport

The proposed method hinges on a novel analytical model
for temporal-polarimetric light transport, which we intro-
duce in this section. Our model is the first to describe
both surface and sub-surface reflection based on the Stokes-
Mueller formalism. We represent polarized light and re-
flectance with a Stokes vector and a Mueller matrix [10].

3.1. Temporal-polarimetric Reflectance

We introduce a temporal-polarimetric reflectance model
M(τ,ωi,ωo). This model describes how light polariza-
tion and intensity change when impinging on a surface with
given incident and outgoing direction of light (ωi and ωo),
and with temporal delay upon the arrival of incident light
(τ ). Specifically, we model reflectance M as a sum of sur-
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Figure 2. We introduce the first temporal-polarimetric reflectance
model which explains the total reflection (left) as a sum of the
temporal polarization change of surface (middle) and sub-surface
reflections (right). Here, we visualize an example reflectance func-
tion in the form of a temporal-polarimetric Mueller matrix. Time-
varying Mueller matrix elements are shown in the second and third
rows for diagonal and non-diagonal elements, respectively.

face and sub-surface reflection (Ms and Mss)

M (τ,ωi,ωo) = Ms (τ,ωi,ωo) +Mss (τ,ωi,ωo) . (1)

We describe both components next, see also Figure 2.

Surface Reflection Some of the incident photons are im-
mediately scattered in a surface reflection, including both
retro-reflection and specular reflection [29]. Following mi-
crofacet theory [43], we can model a surface as a col-
lection of microfacets. Surface reflection originates from
the microfacets oriented orthogonal to the halfway vector
h = ωi+ωo

2 . To describe the polarimetric change induced
by this microfacet reflection, existing work has relied on
the Fresnel-reflection Mueller matrix FR. This is a func-
tion of the refractive index of the material η [6, 10, 18].
In our work, we also consider time in addition to polar-
ization, which can induce a slight temporal delay of the
surface reflection, e.g., originating from reflection between
near surfaces or microfacets. This results in the depolar-
ization of light, which we model with a time-varying atten-
uation Mueller matrix Ds(τ) using polarization-dependent
Gaussian distributions, that is Ds

i (τ) = asi exp(
(τ−µs

i )
2

2(σs
i )

2 ),
where Ds

i is the i-th diagonal element, asi is the amplitude,
and µs

i and (σs
i )

2 are the mean and variance, respectively.
The matrix Ds can attenuate the intensity and polarization
components of incident light at different degrees. Combin-
ing this with Smith’s shading and masking function [16] and



the GGX normal distribution function [46], we arrive at the
proposed temporal-polarimetric surface-reflection model

Ms (τ,ωi,ωo) =
D(θh;σ)G(θi, θo;m)

4 cos θi cos θo
Ds(τ)FR, (2)

where θh = cos−1(h · n) is the halfway angle, n is the
normal, m is the roughness, and θi = cos−1 n · ωi and
θo = cos−1 n · ωo are the incident/outgoing angles.

Sub-surface Reflection The second type of reflection
originates from the light transmitted into the object. The
transmitted light undergoes sub-surface scattering and even-
tually leaves the object. The Fresnel-transmission Mueller
matrix FT [10] describes the polarization change of light
passing through the interface between the two mediums (air
and bulk material). Baek et al. [6] combined this Fresnel
matrix with a perfect depolarization Mueller matrix to de-
scribe sub-surface reflection with an assumption that light
becomes completely unpolarized after sub-surface scatter-
ing. However, in reality, depolarization by sub-surface scat-
tering is highly correlated with the path length of light;
sub-surface scattering with longer path lengths results in
more depolarization [12]. Modeling this behavior is essen-
tial for the proposed temporal-polarimetric imaging method
because path length determines the temporal delay. To this
end, we model sub-surface scattering with time-varying de-
polarization. We use time-varying Gaussian distributions
as the diagonal elements of a depolarization Mueller ma-
trix Dss(τ) similar to the surface-reflection model with the
parameters assi , µss

i , σss
i . For sub-surface scattering, we

also consider the coordinates of Stokes vectors. As a Stokes
vector of light can only be defined in a basis coordinate sys-
tem [10], we use the halfway coordinate approach [7]. For
more details on the coordinate conversion, see the Supple-
mental Document.

With all components described above, we define our
temporal-polarimetric sub-surface reflection model

Mss (τ,ωi,ωo) = Cn→oF
o
TD

ss(τ)Fi
TCi→n, (3)

where Ci→n and Cn→o are the coordinate-conversion
Mueller matrices from the halfway coordinates of incident
and outgoing light to the surface normal coordinate [10].
Here, Fi

T and Fo
T are the Fresnel transmission Mueller ma-

trices for the incident and outgoing light which both depend
on the refractive index of the material η. Note that our
surface-reflection model does not require coordinate con-
version, as surface reflection is already defined in halfway
coordinates following microfacet theory [43].

3.2. Temporal-polarimetric Rendering
The proposed temporal-polarimetric reflectance model

returns a Mueller matrix M(τ,ωi,ωo) at a temporal delay

τ and incident and outgoing directions, ωi and ωo. Incorpo-
rating this Mueller matrix into the rendering equation [20]
describes the Stokes vector of the outgoing light at each
temporal delay as

so (ωo, t) =

∫
S2

∫ t

0

cos θiM(τ,ωi,ωo)si(ωi, t− τ)dτdωi

=

∫
S2

∫ t

0

H(τ,ωi,ωo)si(ωi, t− τ)dτdωi, (4)

where H is the Mueller matrix scaled by the cosine fore-
shortening. As such, the Stokes vector of the outgoing light
(si) is the function of time and propagation direction.

4. Polarimetric ToF Imaging
We now turn to developing a polarimetric ToF imaging

system to capture a temporal-polarimetric scene response.

Coaxial ToF Imaging Although the proposed method is
not restricted to a specific time-resolved sensing system, we
opt to use a pulsed laser illumination and a synchronized
SPAD sensor in a coaxial configuration typical to LiDAR
systems [40]. This means that the illumination and detec-
tion share the same optical path to optically sample direct
illumination with minimal indirect illumination by inter-
reflection. This allows us to simplify the rendering equa-
tion (4) by removing the outer integral over direction, that
is

I(t,ω) =

[∫ t′

0

H(τ,ω,ω)sillum(ω, t′ − τ)dτ

]
0

= [H(t′,ω,ω)sillum(ω, 0)]0 , (5)

where I(t,ω) is the captured intensity of light with ToF t
along the direction ω. The term [x]0 denotes the first ele-
ment of a Stokes vector x, c is the speed of light, and sillum
is the Stokes vector of the laser illumination. Here, t′ is
the shifted time by the ToF (t′ = t − 2d

c ), where d is the
Euclidean distance between the collocated laser at position
0, set to the origin without loss of generality, and a scene
point p = 0+ dω. In addition, the second integral over the
temporal dimension is simplified as a result of using pulsed
laser illumination.

Rotating Ellipsometry for Polarized Illumination
Starting with the coaxial ToF imaging systems described
above, we acquire the complete polarization change
induced by light-matter interaction using rotating optical
ellipsometry [10]. Rotating optical ellipsometry com-
monly incorporates pairs of linear polarizers (LP) and
quarter-wave plates (QWP) in front of an unpolarized
illumination source and a detector [3, 5]. Multiple intensity
measurements Ii∈{1,··· ,N} are then captured by rotating
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Figure 3. Energy-efficient Polarimetric ToF Imaging. (a) For a
polarimetric capture, we rotate a HWP instead of a LP to preserve
the light intensity of the polarized source. (b) We learn the rotation
angles of the polarizing optics with uniform initialization (see text)
which allows us to reconstruct polarimetric reflectance with fewer
captures than conventional ellipsometry methods. We visualize
the Poincaré sphere of the polarizing (c) and analyzing (d) Stokes
vectors ([Pi]∀,0, [Ai]0,∀) before and after learning.

the quarter-wave plates [3], or together with rotating linear
polarizers [5] to reduce the required number of captures.

Unfortunately, rotating linear polarizers in our ToF imag-
ing setup results in significant loss of light energy, because
our laser illumination itself is linearly polarized; the polar-
ized laser illumination loses energy as it passes through the
linear polarizer. Instead of a linear polarizer, we present a
simple solution for this light-inefficient polarization modu-
lation by placing a half-wave plate (HWP) in front of the
laser illumination. This allows us to rotate the polarization
axis of the laser illumination without sacrificing illumina-
tion intensity as shown in Figure 3(a).

As a result, our coaxial polarimetric ToF imaging system
consists of a pulsed laser, HWP, and QWP, i.e., the illumina-
tion module, and QWP, LP, and SPAD forming an analyzer
module. We model the image formation of the proposed
method as

Ii(t,ω) = [AiH(t′,ω,ω)Pisillum(ω, 0)]0 , (6)

where Ai and Pi are the i-th Mueller matrices of the an-
alyzing optics and the polarizing optics defined as Ai =

L(θ4i )Q(θ3i ) and Pi = Q(θ2i )W(θ1i ), with θ
{1,2,3,4}
i as the

rotation angles of the polarizing module HWP and QWP
and the analyzing module QWP and LP. Here, W, Q, and
L are the Mueller matrices of HWP, QWP, and LP [10].
Equation (6) formulates the temporal-polarimetric transport
in our system from laser illumination via polarizing op-
tics, scene transport, and analyzing optics, to SPAD detec-
tion. The polarimetric response of the galvo-mirror is cal-

ibrated by capturing an uncoated gold mirror with known
response [7].

Learned Ellipsometry with Uniform Initialization
Next, we investigate how few intensity measurements Ii
can be captured to faithfully reconstruct the Mueller ma-
trix H. This is critical for the proposed polarimetric ToF
imaging method, as it performs high-dimensional probing
via sequential galvo scanning and rotation of polarization
optics, resulting in hour-long capture time. Recently, Baek
and Heide [5] presented a learned ellipsometry which op-
timizes the rotation angles of polarizing optics using first-
order data-driven optimization. In the same spirit, we learn
the optimal rotation angles using a differentiable implemen-
tation of Equation (6). One modification we make is to use
a different initialization scheme for the angles, which is es-
sential to overcome local minima. Specifically, we initial-
ize the rotation angles of the polarization optics to produce
diverse polarization states, uniformly distributed over the
Poincaré sphere [10]. Obtained with the proposed initial-
ization scheme, the experiments in Figure 3(b) validate that
the polarization states provide more reliable constructions
than using the non-uniform initialization [5].

5. All-photon Scene Reconstruction
The proposed temporal-polarimetric image formation

model explains how geometric and material parameters of
a scene relate to our sensor measurements in the pres-
ence of surface and sub-surface reflections. This allows
us to solve the corresponding inverse problem: Given the
temporal-polarimetric sensor measurements Ii, we estimate
a set of scene parameters Θ, including travel distance (d),
surface normals (n), refractive index (η), surface rough-
ness (m), and scattering parameters (as/ssi , µ

s/ss
i , σ

s/ss
i ):

Θ = {d,n, η,m, a
s/ss
i , µ

s/ss
i , σ

s/ss
i }. Note that conven-

tional ToF imaging methods estimate travel distance by
measuring the round-trip time of the first-returning photons
with digital or analog peak-finding methods. In contrast, we
do not discard photons that are arriving later and exploit the
temporal-polarimetric information in the surface and sub-
surface reflections to reconstruct a scene.

Ellipsometric Reconstruction We first convert the tem-
poral measurements Ii for all the rotation angles of the po-
larizing optics into a time-varying Mueller matrix Hmeas.
To this end, we invert the image formation model of Equa-
tion (6) in a least-squares manner following Baek et al. [7],
solving the following optimization problem for each spatio-
temporal pixel

minimize
Hmeas

N∑
i=1

(Ii − [Ai Hmeas Pisillum]0)
2
. (7)



(b) Schematic diagram(a) Experimental prototype
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Figure 4. Experimental Setup. We built (a) an experimental proto-
type for polarimetric ToF imaging, allowing us to efficiently cap-
ture temporal-polarimetric images. Its optical path is shown in (b).

We implement the corresponding solver efficiently by par-
allelizing the pseudo-inverse matrix-vector product, see de-
tails in the Supplemental Document.

Scene Reconstruction Once we have obtained the
Mueller matrix Hmeas for each temporal bin t′ and coax-
ial incident/outgoing direction ω, we estimate the scene pa-
rameters Θ best explaining the Mueller matrix Hmeas, that
is

minimize
Θ̇

∥∥∥Ẇp ⊙
(
f(Θ̇)− Ḣmeas

)∥∥∥
1︸ ︷︷ ︸

Data term

+
∥∥∥Ẇd ⊙∇ṅ

∥∥∥
1︸ ︷︷ ︸

Regularization term

, (8)

where ẋ is the stacked vector of pixel quantities of vari-
able x for each temporal bin, spatial direction, and Mueller
matrix element. Here, ⊙ is the Hadamard product, and ∇
is the spatial gradient operator. The data term evaluates
the predicted Mueller matrix using the forward rendering
function f(Θ) = H(τ,ω,ω;Θ). The matrix Wp weights
the diagonal/non-diagonal Mueller matrix elements due to
their different scales, see Supplemental Document for de-
tails. The regularization term penalizes steep surface nor-
mal changes in the spatial dimension. The matrix Wd is
a weighting matrix that penalizes the the occlusion edges.
With the objective in Equation (8) being differentiable with
respect to the scene parameters Θ, we solve it using the
first-order Adam optimization [30].

To circumvent the ill-posedness of Equation (8), we
propose the three following modifications. First, we take
a regional approach commonly used in inverse rendering
methods [6, 27]. That is, while surface normals and travel
distance are per-pixel quantities, we define refractive in-
dex, surface roughness, and scattering parameters as per-
material quantities specified by a given cluster map. This
reduces the total parameter count. We compute the cluster
map based on the per-pixel average intensity using k-means
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Figure 5. Temporal-Polarimetric BRDF Analysis. The pro-
posed BRDF model is a parametric representation that is capa-
ble of describing temporal-polarimetric reflections for surface (or-
ange arrows) and sub-surface scattering (pink arrows). For vali-
dation of the proposed BRDF model, we measured the temporal-
polarimetric response of a spherical object (top) using our proto-
type. Our parametric BRDF model (bottom) accurately describes
the measurements in terms of surface reflection (middle) and sub-
surface reflection (right) at different time stamps.

clustering. Second, we incorporate the unit-norm and range
constraints of each scene parameter to reduce the parameter
search space with vector normalization and scaled sigmoid
functions, see Supplemental Document for details. Third,
we initialize the travel distance d and surface normals n
with conventional peak-finding outputs from the unpolar-
ized ToF measurements corresponding to the first element
of the Mueller matrix [Hmeas]00.

6. Experimental Setup

Figure 4 shows our experimental prototype. We use a
picosecond pulsed laser of optical wavelength 635 nm (Ed-
inburgh Instruments EPL-635) and a SPAD sensor (MPD
Series) with 25 ps temporal resolution. A time-correlation
circuit (PicoQuant TimeHarp 260 PICO) synchronizes the
laser and the SPAD. Light emitted from the laser passes
through a half-wave plate (Thorlabs AHWP10M-600) and
a quarter-wave plate (Thorlabs AQWP10M-580). A galvo
mirror (Thorlabs GVS012) redirects the beam to a scene.
We use a non-polarizing beamsplitter (Thorlabs BS013) to
implement a coaxial configuration. Another quarter-wave
plate and a linear polarizer (Newport 10LP-VIS-B) modu-
late the returning light. We use a 50 mm objective lens for
the SPAD sensor, and mount the polarizing optics on mo-
torized rotary stages (Thorlabs KPRM1E). We implement
capture and reconstruction in Matlab and Pytorch.
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object material parameters, (d) travel distance, and (e) surface normals.

7. Assessment
Temporal-polarimetric BRDF To evaluate the represen-
tation capacity of our temporal-polarimetric BRDF model,
we capture a spherical object and reconstruct its corre-
sponding Mueller matrix for each time bin: Hmeas(t,ω,ω).
We then find the scene parameters Θ of a spherical ob-
ject, which best explains the observed temporal Mueller
matrices, resulting in the reconstructed Mueller matrix
H(t,ω,ω;Θ). We further convert H to another Mueller
matrix H′ so that it follows similar noise statistics of the
measured Mueller matrix Hmeas by simulating the sensor
measurements I ′i with the reconstructed Mueller matrix H
and again reconstructing this Mueller matrix. The ex-
periment in Figure 5 validates that the measured temporal-
polarimetric data from our prototype matches simulated
data from the proposed BRDF model. In particular, our
model predicts the normal-dependent temporal-polarimetric
structure of sub-surface reflection at the boundaries of the
spherical object in H′

{i,0},{0,i},∀i. We also see the sign
changes of the circular polarimetric sub-surface and surface
reflection in H′

3,3.

Synthetic Evaluation We evaluate the proposed method
on three synthetic scenes shown in Figure 6. As ground-

truth scene parameters Θ for the synthetic scenes are
known, we simulate the synthetic sensor measurements Ii
using the image formation model from Equation (6). Here,
we add Gaussian noise with a standard deviation of 10−4 to
simulate measurement noise. With the simulated observa-
tions in hand, we solve Equation (8) by performing the pro-
posed all-photon scene reconstruction, that is ellipsometric
reconstruction of the temporal-polarimetric Mueller matrix
Hmeas and scene reconstruction. Figure 6 validates that our
reconstruction approach estimates geometric and material
parameters accurately, both qualitatively and quantitatively.
For additional results, we refer to the Supplemental Docu-
ment.

Experimental Evaluation Next, we validate the pro-
posed method on the additional real-world scenes shown in
Figures 7 and 8. We reconstruct the temporal-polarimetric
Mueller matrix Hmeas from experimental measurements Ii
followed by finding the optimal scene parameters Θ. Our
all-photon polarimetric ToF imaging reconstructs travel dis-
tance estimates that correspond to per-point depth and sur-
face normals. We also acquire scattering parameters of the
scene. Together with the obtained geometry, the proposed
method accurately reconstructs the original measurements.
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Figure 7. Experimental Validation. We validate our all-photon polarimetric ToF imaging on real-world scenes. (a) Conventional peak-
finding ToF imaging methods acquire scene depth from first-reflected photons only, resulting in inaccurate geometry reflected in imperfect
depth and surface normals estimates. In contrast, the proposed method relies on all photons, enabling (b) accurate geometry reconstruction
and the recovery of material parameters by (c) decomposing light transport into surface and sub-surface components.
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Figure 8. Material Editing. We edit the material parameters re-
constructed from our polarimetric ToF imaging. Specifically, we
change the scattering parameters of sub-surface and surface re-
flection as well as the surface roughness. We refer to the text for
details.

Figure 7 shows the rendered measurements with our esti-
mated parameters Θ and the corresponding sensor mea-
surements. Our scene reconstructions and the proposed
reflectance model also facilitate material editing, which
we demonstrate with three editing examples in each col-
umn of Figure 8. Specifically, we first change the sub-
surface scattering parameters by boosting ai ← 3ai, and
changing its polarization-dependent temporal shift to µ ←
[0.1µ0, 2µ1, 2µ2, 2µ3]. This results in stronger sub-surface
scattering. We then edit the surface scattering parameters in
the same fashion, but only doubling ai ← 2ai. This mimics
a material with stronger surface reflection. Lastly, increas-
ing the surface roughness provides the appearance of rough
surface with a dominating sub-surface reflection.

8. Conclusion

We introduce an all-photon polarimetric ToF imaging
method, which extracts information from both surface and
sub-surface reflection for acquiring geometry and scatter-
ing parameters. To this end, we propose the first temporal-
polarimetric BRDF model, which relates sensor measure-
ments to geometric and scattering parameters of a scene.
The proposed learned ellipsometric ToF imaging system
permits the acquisition of temporal-polarimetric data with
energy-efficient polarimetric modulation. We reconstruct
scene parameters from all photons instead of the first re-
flected ones. We validate the proposed method in simula-
tion and experimentally. Although we validate the utility
of temporal-polarimetric measurements, our experimental
setup is restricted to sequential scanning by the mechanical
rotation of the polarization optics available to us. Excit-
ing future directions include the extension of the proposed
system with electronically-controllable liquid crystal mod-
ulators, or combining SPAD array sensors with polarization
filter arrays, which may pave the way towards single-shot
temporal-polarimetric acquisition. Aside from making a
step towards high-dimensional computational imaging, the
approach may also pave the way for practical implementa-
tion such as gated imaging with polarization cues as a low-
cost automotive imaging modality.
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