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In this Supplemental Document, we present supporting material including additional results, ablation experiments, and
discussion that could not otherwise fit within the main text. Specifically we provide:

• Analysis of hand shake data:

1. Visualization of individuals’ hand shake data and commentary on inter-person variance. (Section 1.1)

2. Hand shake statistics and probabilistic view of bundle recording. (Section 1.2)

• Additional results and visualizations:

1. Reconstruction results for additional test scenes. (Section 2.1)

2. Photometric error maps. (Section 2.2)

3. Reconstruction results for room-scale (>1m) scenes. (Section 2.3)

4. Reconstruction results for close-range (<10cm) unfocused scenes. (Section 2.4)

5. Reconstruction results for mixed-range (<0.5m + >1m) scenes. (Section 2.5)

6. Reconstruction results for variable levels of hand shake. (Section 2.6)

7. Comparison to RGB-guided upsampling. (Section 2.7)

• Additional ablation results:

1. Effects of changes in sampled patch size K. (Section 3.1)

2. Effects of changes in geometric regularization weight α. (Section 3.2)

3. Effects of changes in number of encoding functions L. (Section 3.3)

4. Effects of Gaussian versus square patch weighting. (Section 3.4)
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1. Additional Hand Shake Analysis

1.1. Hand Shake Visualization

In Figure 1 we present per-individual point clouds which we create by aggregating all the hand shake paths recorded by
each of our 10 volunteers, as outlined in Section 4 of the main text.
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Figure 1: Hand-shake point clouds for individual volunteers. Each hand shake path is recentered to start at the same location,
and follows the progression from blue to red over the recorded N = 120 frames. Each green dashed oval illustrates a radius
of 6mm from the center of the starting point of these hand shake paths, and serves to denote the scale of the point cloud. We
find that both the scale and symmetry of hand shake paths is user-dependent, with volunteer 7 exhibiting large asymmetric
hand tremors, and volunteer 4 small relatively symmetric hand shakes.



1.2. Hand Shake Statistics

Bundle Length N : 120 Frames 100 Frames 80 Frames 60 Frames 30 Frames 15 Frames

Median Effective
Baseline [mm] 5.75 5.34 4.60 4.021 2.62 1.5

Fraction of Effective
Baselines > 5mm 0.589 0.517 0.461 0.369 0.183 0.06

Fraction of Effective
Baselines > 3mm 0.844 0.794 0.756 0.661 0.433 0.19

Table 1: Quantitative analysis of the maximum displacement, or equivalently the effective baseline, of recorded N frame
bundles. We investigate the median effective baseline of these bundles, as well as the fraction of bundles which achieve a
greater than 5mm and 3mm effective baseline.
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Figure 2: Plot to illustrate the hand shake statistics presented in Table 1. We see that for frame count 120 ≥ N ≥ 60 there is
not a sharp drop in the fraction of bundles which record a >5mm maximum displacement.

Probabilistic View of Hand Shake Bundles. Given the randomness of natural hand tremor present during a snapshot
recording, there is a corresponding randomness in the effective baseline of a recorded length N bundle. While we can
consider the direct correlation between N and phone displacement during recording, where we expect the phone to move
farther as we record longer, we offer a more probabilistic view of this process. Given a target for micro-baseline depth
reconstruction, for example an effective 5mm or 3mm baseline, we can ask with what probability we expect a length N

recorded bundle to provide meet this target. Looking to Table 1, we find that for our collected hand shake data N = 100

frames is sufficient to record a 5mm maximum displacement approximately half the time. As seen in Figure 2, bundles
between N = 60 and N = 120 frames in length offer a reasonable probability (> 1

3 ) of capturing >5mm baseline data.
Thus, much like in multi-frame superresolution [2, 3], we can limit the amount of data we acquire during one snapshot bundle
if we expect the phone photographer to take multiple snapshots of an object of interest – looking for the perfect angle, a sharp
photo – one of which we expect to achieve our target baseline.



2. Additional Results

2.1. Additional Scenes

Figure 3 shows reconstruction results for five additional captured scenes.
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Figure 3: Qualitative comparison of depth reconstruction methods for five additional tabletop scenes (eagle, double, elephant,
elephant, frog). Of note is our recovery of fine depth details in the complex double scene, correctly reconstructing the wooden
legs of the dolphin statue, and how our proposed method fixes the artifacts in the underling LiDAR depth around the trunk of
the elephant example. These examples also demonstrate how our proposed method can reconstruct objects at varying scales,
where the embrace statue is only 10cm tall while the elephant is a full half meter in height.



2.2. Photometric Error Maps

Figure 4 visualizes squared photometric error for our proposed method and the next best reconstruction.
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Figure 4: Visualization of squared photometric error PE, as defined in Section 5 of the main text. We see that nearly all
the photometric error is accumulated from the high image contrast areas (e.g. object borders and large color features). This
matches our previous intuition, as these are the regions our proposed method refines. We see a significant reduction in error
around depth discontinuities, such as around the borders of the objects, as well as intra-object features such as the feathers of
eagle, the central curves of gourd, and the body of ganesha.



2.3. Long-Range Scenes

Figure 5 shows reconstruction results for captured room-scale scenes outside the main operating range of our method (1+
meters).
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Figure 5: As outlined in Section 4 of the main text, even well-textured objects at depths of greater than 1 meter produce sub-
pixel disparities for a micro-baseline stereo setup. In this scenario there is insufficient photometric guidance to reconstruct
any new depth features, and our results gracefully degrade to the averaged LiDAR depth output. As we learn depth offsets
∆z rather than the direct depth z, our model can trivially output no offset – unperturbed by the minimal photometric loss.



2.4. Close-Range Scenes

Figure 6 contains a set of captured scenes where the majority of the object was out of focus, closer to the phone camera
than its minimum focus distance.
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Figure 6: While closer-range objects provide better parallax cues from which to reconstruct depth, our phone has a minimum
focus distance of approximately 8cm. Objects closer than this exhibit significant lens blur as can be seen in the scene photos
above. In this regime, useful photometric information is overpowered by lens distortions and the now mixed background
and foreground pixel colors. While our method can recover depth features for in-focus regions (e.g. the flower pot and
lower petals), neither our method nor the underlying LiDAR depth data is able to produce reliable depth for regions under
extreme blur. In practical application we expect this to be a rare edge case as a phone photographer is unlikely to capture a
snapshot of scene which is clearly blurry in the viewfinder. One potential workaround, implemented by many popular camera
applications, is to produce a notification which urges the user to “move back to improve focus”.



2.5. Mixed-Range Scenes

Figure 7 demonstrates what happens when a scene contains both close-range (<0.5m) and distant (>1m) content.

Scene

Normals Normals

Reprojected LiDAR Proposed

Reprojected LiDAR Proposed

Absolute Difference

Ab
so

lu
te

 D
iff

er
en

ce
 [m

]
0.

1
0

D
ep

th
 [m

]
10

0
D

ep
th

 [m
]

0.
5

0

Figure 7: In this scene we have an object resting on a couch arm approximately 15cm away from the phone, with the
background content of the room extending 8+ meters into the distance. We note that the short focus distance also noticeably
blurs these distant regions. Similar to what is observed in Figure 6, the depth of the background regions remains unperturbed,
as it provides virtually no meaningful photometric information. At the same time, the foreground object is successfully
reconstructed and we recover fine geometric features such as bumps and protrusions on the surface of the replica clock-tower.
This demonstrates that our method, by virtue of its design alone, refines close-range objects without adversely affecting their
un-refineable surroundings.



2.6. Reconstructions for Variable Scale of Hand Shake

Figure 8 illustrates how depth reconstruction is affected by the maximum effective baseline of a bundle capture.
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Figure 8: As discussed in Section 1.2 of this supplemental document and Section 4 of the main text, the maximum effective
baseline of a recorded bundle is important in determining what we are able and unable to reconstruct. As seen above, with
a static camera (and thus an effective baseline of 0mm), there is not only insufficient parallax information from which to
reconstruct new depth features, but nearly all the information we do have is incorrect. Small errors in the pose estimation
algorithm dominate the overall signal, and we reconstruct incorrect and noisy depths. As we increase the effective baseline
to 1mm we see the effects of this noise diminish, however there still appear to be depth artifacts where we find incorrect local
minima solutions due to the small view variation. At 5mm we see recovery of fine depth details consistent with Figure 3 and
results in the main text, this is what is considered an example of a good hand shake. When the effective baseline is further
increased to 5cm (closer to a typical stereo camera setup), we see some improvement in reconstruction of fine features such
as the model’s feet, however both our and the reprojected lidar depth produce a large number of flying pixels around the
edges of the statue. This is due to the fact that neither model can explicitly handle occlusions, and instead mix foreground
and background depths around discontinuities.



2.7. RGB-Guided Upsampling Results

Figure 9 shows results for an RGB-guided depth upsampling approach Deformable Kernel Networks (DKN) [1] when
used on our reconstructed depth data.
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Figure 9: RGB-guided depth upsampling methods use a high-resolution RGB image as guidance for the superresolution and
refinement of potentially noisy depth data. These leverage the prior that depth and color changes are often highly correlated
to produce visually consistent high-resolution depth outputs. We find that for our data that DKN can use this correlation to
improve the reconstruction of sharp depth edges, matching them to the edges of objects in the image, as seen in the zoomed
views above. This can often correct for the edge blurring caused by occlusions as discussed in Section 2.6. However, as
RGB-guided upsampling does not take parallax effects into account, this approach cannot extract any new depth features that
were not already present in the underlying data. Correspondingly, areas not along an edge see very little change in depth after
the application of DKN.



3. Ablation Experiments

3.1. Patch Size Ablation

Figure 10 illustrates changes in reconstruction for two representative scenes produced by varying the patch size K used to
calculate photometric loss during training, as outlined in Section 3 of the main text.
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Figure 10: Reconstruction results for varying patch size K. Note the depth artifacts, highlighted with red arrows, where
single-pixel photometric information is insufficient to correctly resolve depth, and false matches drive the reconstruction to
find incorrect local minima solutions. As we increase patch size these artifacts disappear, but we also fatten the reconstructed
object edges and can blur thin structures. Patch size 11 achieves a reasonable mezzanine between artifact suppression and
fine feature reconstruction.



3.2. Regularization Weight Ablation

Figure 11 shows reconstruction results for our method with varying geometric regularization weight α.
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Figure 11: Reconstruction results for varying geometric regularization weight α. With no geometric regularization term
(α = 0) we see that the depth reconstruction of the textureless object backgrounds erroneously drift away from the underlying
LiDAR data as there is no guiding photometric loss in those regions. When α is non-zero, these textureless regions are
effectively locked to the LiDAR depth solution. As we increase α, the overall reconstruction is pulled closer to the LiDAR
depth, with the reconstructed depth for α = 100 being virtually identical to the reprojected LiDAR depth Zavg . As we desire
a reconstruction almost entirely guided by micro-baseline photometric information, to fix LiDAR depth artifacts like those at
the top of the castle example, we choose a small α = 0.01.



3.3. Encoding Function Ablation

Figure 12 illustrates changes in reconstruction for our method produced by varying positional encoding function count L.
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Figure 12: Reconstruction results for varying encoding function count L. We see that without positional encoding, for L = 0,
our reconstruction is quite noisy and does not correct for the depth artifact at the top of the castle example. We speculate
the MLP overfits to RGB and depth information in this case, rather than learning true corrective offsets for depth refinement.
At L = 8 encoding function we start to see high frequency artifacts bleed into the reconstruction. We thus choose L = 6
functions as a reasonable mezzanine where neither of these effects are present.



3.4. Gaussian Versus Square Patch Ablation

Figure 13 highlights the effects of Gaussian weighted patches, as described in Section 3 of the main text, as compared to
uniformly weighted square patches.
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Figure 13: In the micro-baseline problem setup we have very little view variation between frames in a captured bundle. Thus
patch-matching, as shown in Section 3.1, is important to avoid returning incorrect depth solutions for uniformly colored
patches of the image space. Large square patches, however, uniformly integrate signal from potentially non-planar surfaces
and introduce noise when the actual deformation of these pixels doesn’t match our planar-warp assumption. The Gaussian
kernel weighting emphasizes correctly matching the center of these image patches (where this warping would be minimal),
but still provides the edge information for situations where the center might not contain salient color information for matching.
This results in overall smoother reconstructions, as can be seen in the normal maps above.
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