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Abstract

Gated cameras hold promise as an alternative to scan-

ning LiDAR sensors with high-resolution 3D depth that is

robust to back-scatter in fog, snow, and rain. Instead of

sequentially scanning a scene and directly recording depth

via the photon time-of-flight, as in pulsed LiDAR sensors,

gated imagers encode depth in the relative intensity of a

handful of gated slices, captured at megapixel resolution.

Although existing methods have shown that it is possible

to decode high-resolution depth from such measurements,

these methods require synchronized and calibrated LiDAR

to supervise the gated depth decoder – prohibiting fast

adoption across geographies, training on large unpaired

datasets, and exploring alternative applications outside of

automotive use cases. In this work, propose an entirely

self-supervised depth estimation method that uses gated in-

tensity profiles and temporal consistency as a training sig-

nal. The proposed model is trained end-to-end from gated

video sequences, does not require LiDAR or RGB data, and

learns to estimate absolute depth values. We take gated

slices as input and disentangle the estimation of the scene

albedo, depth, and ambient light, which are then used to

learn to reconstruct the input slices through a cyclic loss.

We rely on temporal consistency between a given frame

and neighboring gated slices to estimate depth in regions

with shadows and reflections. We experimentally validate

that the proposed approach outperforms existing super-

vised and self-supervised depth estimation methods based

on monocular RGB and stereo images, as well as super-

vised methods based on gated images. Code is available at

https://github.com/princeton-computational-

imaging/Gated2Gated.

1. Introduction

Depth sensing has become a cornerstone imaging modal-

ity for 3D scene understanding. Depth is used directly as in-

put to a vision module, or indirectly in training datasets, to

supervise models relying on other modalities across a wide

range of applications such as perception and planning in au-

tonomous driving, robotics, remote sensing, augmented and

virtual reality [40, 56].

The most successful methods for depth estimation are ei-

* These authors contributed equally to this work.

ther based on pulsed scanning LiDAR [43], or passive RGB

sensors, i.e., monocular [14,17,48] and stereo RGB [26,49].

LiDAR depth sensors [51] measure the time-of-flight of

pulses of light emitted into the scene and returned to the sen-

sor along a coaxial path that is sequentially scanned across

a scene. As a result, these sensors deliver precise depth with

high spatial resolution at short distances. However, they are

expensive, suffer from quadratic decreasing spatial resolu-

tion at longer distances, e.g., resulting in a few measure-

ment points for pedestrians at 100 m distance [51], and they

fail in the presence of strong back-scatter. Monocular and

stereo RGB methods offer a substantially cheaper alterna-

tive, but they struggle to achieve depth precision compara-

ble to time-of-flight imaging, struggle in low-light scenar-

ios, and at long distances that map to small disparities.

Recently, gated imaging has been proposed as an alter-

native sensor modality for depth estimation and 3D detec-

tion [22, 32] which promises to overcome the spatial reso-

lution limitation of scanning LiDAR while providing com-

parable depth precision. Gated cameras combine low-cost

CMOS sensors with analog gated readout and active flash

illumination, allowing to capture a sequence of gated im-

age slices that each encode time-resolved illumination via

their relative intensity and, as such, provide depth cues not

present in RGB cameras. Thanks to this active gated flash

acquisition mode, gated imaging methods have shown to be

more robust in low-light scenarios and in the presence of

strong back-scatter that can be suppressed during acquisi-

tion [22]. For a comprehensive review of Gated Sensors

see Sec. 3. Gated images provide dense depth informa-

tion at megapixel resolution of the gated camera, allow-

ing for long-range perception where LiDAR-based meth-

ods fail [32]. However, all of these existing methods re-

quire calibrated and synchronized LiDAR data for train-

ing supervision. Although commercial gated cameras have

become available [20], the requirement of such a multi-

modal capture system prohibits the rapid adoption of gated

depth imaging not only in automotive applications but also

in other robotic use cases. Moreover, large unpaired se-

quences of gated imagery cannot be exploited in training

existing gated depth estimation methods. In this work, we

propose the first self-supervised method for depth estima-

tion from gated cameras. The proposed method takes gated



slices as input and predicts the scene albedo, depth, and

ambient illumination. We reconstruct the input slices us-

ing calibrated gated profiles enforcing measurement cycle

consistency and warping from the nearby slices in a tem-

poral window enforcing temporal consistency. To this end,

we introduce a differentiable gated image formation model

that uses depth-dependent calibrated gating profiles for self-

supervised measurement cycle loss. To learn in the absence

of reliable gated measurements due to shadows, we utilize

temporal depth consistency using differentiable structure-

from-motion and the proposed image formation model.

Specifically, we make the following main contributions:

• We propose a novel self-supervised method that uses

measurement cycle consistency and temporal consis-

tency as training signals.

• The proposed model is trained end-to-end, and by ex-

ploiting calibrated gating profiles, the method is able to

accurately estimate metric depth using the cycle con-

sistency component.

• We validate that the proposed method outperforms

self-supervised and supervised depth estimation us-

ing monocular and stereo RGB images and supervised

gated depth estimation methods.

We have released models and code used to reproduce the

results from this work.

2. Related Work

Depth from Time-of-Flight Time-of-Flight (ToF) cam-

eras acquire depth by measuring the round-trip time of mod-

ulated flood-illuminated light returned from a scene. Exist-

ing methods can be classified into three categories: correla-

tion [25,35,37], pulsed ToF [51] and gated imaging [20,27].

Correlation ToF cameras [25,35,37] estimate the depth from

the phase difference of the sent and received laser pulse,

which allows high spatial resolution, but is limited to short

distances and indoor environments [28]. Pulsed ToF sensors

[51] emit pulses of light and directly measure the round-trip

time of the returned pulses, but require a scanning mecha-

nism for large distances reducing the spatial resolution. Ad-

ditionally, experiments have shown that they can be affected

by adverse weather disturbances [4, 8, 31]. Gated imag-

ing [5, 20, 27] records the returned light within a short inte-

gration time on the imaging sensor. This limits the capture

to certain depth ranges and allows short-range back-scatter

to be ignored. In [2, 6, 7] a sequence of three gated slices

was used to reconstruct depth information. Further methods

introduced analytical approximations [38,39,58] or learned

the depth prediction through Bayesian methods [1, 50] and

deep neural networks [23].

Supervised Depth Estimation Learning to predict depth

from intensity images requires appropriate ground truth

data. Methods either use the supervision from time-of-flight

data [9, 14, 22, 30, 43] or ground truth depth from multi-

view systems [33, 40, 44]. Previous imaging systems ei-

ther process images from monocular cameras [12, 36, 40],

can reason about multiple views [9, 60], or utilize the com-

bination of monocular images with sparse LiDAR point-

clouds [30, 43]. All of these existing methods can fail in

low-light or low-contrast scenarios, for example, at night

or in cluttered scenes, that active methods [22] tackle using

illumination. Furthermore, RGB-only monocular depth es-

timation can only reconstruct up to an unknown scale factor.

Self-Supervised Depth Estimation Acquiring ground

truth data for supervised depth estimation methods is chal-

lenging. An extensive process was applied in [16, 53] to

overcome the limited range and spatial resolution by re-

quiring a thorough LiDAR camera synchronization with the

ego-motion correction and accumulating single point clouds

into LiDAR maps as ground truth. Nonetheless, the appli-

cation spectrum is limited, disallowing the use in areas such

as scattering media, where LiDAR data is cluttered [3] or

for vehicle fleet data without expensive ground truth sen-

sors. To tackle this challenge, self-supervised training ap-

proaches exploit multiview geometry by aligning stereo im-

age pairs [15, 18] or making use of image view synthesis

between temporally consecutive frames [19, 24, 61]. Align-

ing stereo images pairs for depth prediction was initially

proposed by Garg et al. [15]. Here, a neural network pre-

dicts the disparity from monocular camera images and su-

pervises it by warping the stereo images. Image synthesis

between temporally consecutive monocular image frames

was introduced in [18, 54]. This approach utilizes two in-

dependent networks, one predicting the depth and the other

estimating a rigid body transformation between two tem-

porally adjacent frames. A reprojection error between two

frames is then formulated to supervise the depth estimate.

The following monocular methods investigate novel neural

architectures [15, 19, 24] or extensions in the loss formula-

tion [13,18,19,24,42,46,55,59]. However, they have inher-

ent scale ambiguity, which can be reduced by relying on ve-

hicle velocity or LiDAR ground-truth depth measurements

at test-time [24]. Departing from these approaches, the pro-

posed depth estimation method relies on the calibrated gate

profiles used in a measurement cycle consistency loss to en-

force scale accuracy. Moreover, we extract further depth

cues from the motion between intra-capture gated frames

that are sequentially acquired for different gates.

3. Gated Imaging

Before presenting the proposed method, we briefly re-

view the principles of gated imaging. Figure 1 illustrates

a gated imaging system which consists of a synchronized

camera and flash illumination source. In contrast to scan-

ning LiDAR systems, the flash illumination source illumi-

nates the scene through a laser pulse p, before capturing the



Figure 1. A gated camera consists of a synchronized gated cam-

era and a flash pulsed illumination source (d). Using different

exposure gates, the image formation can be described with three

range-intensity profiles Ci, i ∈ {0, 1, 2} plotted depending on

distance r[m], and an ambient, unmodulated Λ̂ scene contribu-

tion. An overlay of all exposures is shown in green (b). Individual

range intensity profiles are shown for (f) short distance 3-72 m in

deepred, (g) moderate distance 18-123 m in petrol, (h) far distance

57-176 m in gray and (c) ambient light (Z
p
t ) in orange. A corre-

sponding RGB capture of the scene is shown in (a).

reflected light echo with a ξ delay. The reflected light is

captured through a CMOS imaging sensor, which only cap-

tures photons arriving in a given temporal gate with profile

g. Following Gruber et al. [23], we denote a single gated

exposure as

Zi
t(r) = αCi(r)

= α

∞
∫

−∞

gi(t− ξ)pi

(

t −
2r

c

)

β(r)dt,
(1)

where Zi
t(r) is the gated exposure, indexed by i, at distance

r and time t; Ci(r) is the range intensity profile, i.e., the

convolution of the gated slice and its corresponding pulse

profile; α is the surface reflectance (albedo), and β the atten-

uation along a given path due to atmospheric interactions.

The depth dependent path attenuation becomes unity in the

absence of any participating media.

We note that during daytime, this model is incomplete

due the high spectral solar power within the NIR band that

leads to a significant number of unmodulated photons cap-

tured as an ambient light Λ component. We modifiy the

model from [23] as

Zi
t(r) = αCi(r) + Λ. (2)

Similar to other CMOS-based sensing methods, gated imag-

ing is also affected by noise, that can be modelled with a

signal-dependent Poisson ηp and Gaussian ηg , resulting in

Zi
t = αCi(r) + Λ + ηg + ηp. (3)

In this work, at a given time t, we capture three sequential

gated slices with spatial resolution H ×W as Zi
t ∈ R

H×W
+

with delays ξ{0,1,2} and an unmodulated NIR passive image

Z
p
t as illustrated in Figure 1. With a native frame rate of

120 Hz, the proposed gated camera provides a full set of

observations at 30 Hz.

4. Self-Supervised Gated Depth Estimation

The proposed method learns to predict depth r̂t without

ground truth supervision from LiDAR or simulation. To

this end, we exploit the cyclic measurement consistency of

gated images and temporal consistency in the depth predic-

tions. Self-supervision allows us to overcome the limited

depth range (80 m) of methods trained on LiDAR ground-

truth and removes complex synchronization processes be-

tween LiDAR and cameras. Furthermore, we can train our

models on harsh weather conditions, e.g., fog, rain, or snow,

where LiDAR-based ground-truth is not available.

The proposed Gated2Gated architecture is illustrated in

Figure 2. While our model is general in terms of the input

gated slices, we consider three slices Z
i
t, for i = 0, 1, 2,

at each time t. The gated measurements Z
i
t are concate-

nated in a tensor Zt that is fed to three convolutional neu-

ral networks that disentangle the input into albedo, ambient

light, and depth, which are then used to reconstruct the in-

put slices using a cyclic loss. The disentanglement is simi-

lar to [41, 52], where a network is trained to decompose an

conventional RGB image into albedo and lighting compo-

nents. In addition to this novel gated imaging-based training

signal, we exploit temporal consistency between temporally

adjacent gated frames to handle regions with shadows and

multi-path reflections.

Specifically, the proposed architecture is composed of

three networks. The first network predicts a dense depth

map per gated tensor Zt, denoted as fr : Zt → r̂t. The

second network also takes Zt as input, and predicts ambient

and albedo, denoted as fΛα : Zt → (Λ̂t, α̂t). The third net-

work takes two temporally adjacent gated tensors as input

(Zt,Zn), and predicts a rigid 6 DoF pose transformation

X̂ from Zn to Zt, denoted as X̂n =

(

Rt→n tt→n

0 1

)

,

with Rt→n ∈ SO(3) and tt→n ∈ R
3×1 generated by

ft→n : (Zt,Zn) → X̂t→n.

The learned function fr is optimized to predict the abso-

lute depth value and is supervised using the other two aux-

iliary functions, fΛα and ft→n. The first auxiliary function

is used to exploit cyclic measurement consistency with the

measured gated slice, i.e., enforce that the predicted depth

is consistent with a gated measurement. The second aux-

iliary function allows us to exploit temporal consistency

between nearby gated frames. Using these cues, the pro-

posed method resolves scale ambiguity inherent in monoc-

ular depth estimation. The two consistency components are

discussed in the following sections.



Figure 2. The proposed self-supervised Gated2Gated architecture estimates dense depth from a set of three gated images, by learning from

cyclic gated and temporal consistency. Thereby, the inherent scale ambiguity is solved through the range intensity profiles introducing a

scale cue during training. Additional, mask b, v resolve multi-path and shadow artifacts breaking Eq. (5).

4.1. Cyclic Gated Consistency

The cyclic gated consistency loss supervises the pre-

dicted depth r̂t, ambient Λ̂t and albedo α̂t, by reconstruct-

ing the gated slices. To this end, we use a simplified version

of Equation 3, in which we model ambient and noise to-

gether, that is
Λ̂ = ηg + ηp + Λ. (4)

The final model then can be written as

Ẑ
i
t = α̂tCi(r̂t) + Λ̂t, (5)

with Ci being range-intensity profiles (as defined in Fig-

ure 1). The Ci profiles are measured experimentally with

calibrated targets and approximated with Chebyshev poly-

nomials Tn

T0 = 1, T1 = x, Tn+1 = 2xTn − Tn−1, (6)

up to order of N = 6. The ambient predictions Λ̂ can be

directly supervised using the ground truth captured passive

images Z
p
t and the photometric loss Lp.

As loss function Lp [18], we use Structural Similarity

(SSIM) [57] and L1 norm, that is

Lp(Z
i
t, Ẑ

i
t) = 0.85 ·

1−SSIM(Zi

t
,Ẑi

t
)

2
+0.15 · ||Zi

t
−Ẑ

i

t
||1. (7)

Gated2Gated Cyclic Loss Masks. The gated slices Ẑ
i
t

can be reconstructed using the proposed cyclic gated con-

sistency, which enforces a match between a predicted depth

estimate and the ground truth Z
i
t measurement it came from.

Specifically, having predicted depth r using fr and α using

fΛα, we can predict a gated image using Eq. (5). How-

ever, adopting a photometric loss [18,61] between the mea-

surement and the prediction fails in practice as severe mul-

tipath effects, missing illumination due to occlusion, and

saturation due to retro-reflective signs can break the model

in Eq. (5). We illustrate these issues in Figure 3. To this

end, we introduce the following pixel masks that optimize

the performance of the cyclic self-supervised model in those

conditions.

Pixel Variance. Pixels pxy with similar intensity across

all slices are not modulated and are either beyond the range

of the illumination, or highly absorptive. We then define a

mask to filter out pixels with low variance as follows,

Dxy := { (x, y) |
(

max
i

(

pixy
)

−min
i

(

pixy
)

)

> θ }. (8)

Saturated Pixels. We also exclude saturated pixels, i.e.,

pixels with high-intensity values in all three gated slices,

using the mask

Mxy := { (x, y) | max
i

(pixy) < γ }. (9)

The pixel variance and saturated pixels masks are combined

into a binary mask b′xy , defined as

b′xy =

{

1 if (x, y) ∈ Dxy ∧ (x, y) ∈ Mxy

0 otherwise.
(10)

Multipath Correction. The binary mask b′ is further refined

by modeling multipath effects, taking advantage of the view

geometry, as illustrated in Figure 3. In automotive scenes,

the most severe multipath effects result from reflective road

surfaces. Using the camera intrinsics, we estimate a con-

servative constant ground plane with normal n and height

h. Furthermore, we estimate an approximated depth mea-

surement r̃ by comparing the intensity values of the three

gated slices. This allows us to filter out pixels (x, y) that get

back-projected to 3D coordinates substantially lower than

the ground plane

Exy := { (x, y) | (r̂K−1xt)n < h }, (11)



Figure 3. Illustration of the valid pixel mask b. Retro-reflective

traffic signs reflect the illumination light back towards the cam-

era (orange path), but spread out the light illuminating the ground

causing multipath effects (blue path). This superposes the low

intense groundplane intensity with the high intensity multi-path

reflection containing further distant pulse information, leading to

a wrong depth estimate (green path). Mitigation strategies are

shown below using a valid pixel mask b′ (middle) and next to it

the depth prediction (right). The last row shows the refined mask

b (middle) and the corresponding training output (right).

Figure 4. The top row shows two temporally adjacent frames and

their rigid transformation X̂n as motivation for the valid mask v.

Note that moving objects that remain in the same place in both

frames are indistinguishable from objects at an infinite distance,

causing holes in the predicted depth maps (middle right). Estimat-

ing close pixels in m (middle) infinite distances can be filtered ac-

cording to the mask v (last row middle) with corresponding depth

results (last row right).

where xt = [x, y, 1] denotes homogeneous pixel coor-

dinates and K denotes the camera matrix. The final

Gated2Gated cyclic loss mask b is then defined as

bxy =

{

1 if (x, y) /∈ Exy ∧ b′xy = 1

0 otherwise,
(12)

and the cyclic loss function is defined as

Lcyc =
2
∑

i=0

Lp(b⊙ Z
i
t, b⊙ Ẑ

i
t) + Lp(Λ̂,Zp

t ). (13)

4.2. Temporal Depth Consistency

As illustrated in Figure 2, we use view synthesis to in-

troduce temporal consistency between adjacent gated im-

ages during training. Specifically, we reconstruct the view

of central gated image Zt from temporal neighbors Zn us-

ing the camera matrix K, the predicted depth r̂t and camera

pose transformation X̂t→n. Considering xt and xn homo-

geneous (pixel) coordinates from Z
i
t and Z

i
n, the mapping

from source pixels xt to target pixels xn is defined as fol-

lows
xn ∼ KX̂t→nr̂tK

−1xt. (14)

Similar to [61], we compare the reconstructed view Ẑt with

Zt using photometric loss and use it to train the depth pre-

diction network fr. Unfortunately, this naive approach fails

in the presence of moving occlusions due to ego-motion and

the movement of non-stationary objects, which violate the

rigid pose transformation. As earlier for the cyclic loss, we

introduce validity masks as illustrated in Figure 4.

Infinity Correction Masks. To handle the dynamic scene

objects, we use gated illumination cues to prevent projec-

tions to infinity (see Figure 4). Specifically, we define two

valid sets per pixel position (x, y). The first set S1 ana-

lyzes the pixel relation between first Z0
t and last slice Z

2
t .

This allows to find valid pixels in a range from 3-s0 m,

where C0(s0) = cC2(s0). The second set S2 analyses

the distance in the medium ranges 18-s1 m (18 m due to

the specific gate selection we made, see Supplemental Doc-

ument) comparing the second Z
1
t and last slice Z

2
t with

C1(s1) = cC2(s1). In terms of measured pixel intensities

the sets can be given as

S1
xy :={ (x, y) | Z0

t (x, y) ≥ c · Z2
t (x, y) }, (15)

S2
xy :={ (x, y) | Z1

t (x, y) ≥ c · Z2
t (x, y) }. (16)

This allows us to filter points illuminated by the last
slice ranging from max(s0, s1)-176 m (specific to our gates

again) and to find close regions with a binary mask m

mxy =

{

1 if (x, y) ∈ S1
xy ∨ (x, y) ∈ S2

xy

0 otherwise.
(17)

Then for the pixels with Pxy := { (x, y) | mxy = 1 }
the average median r̄t is calculated. Comparing the median

r̄t to the predicted depth r̂t allows us to filter mispredicted

depth values stemming from moving objects which cannot

be captured by the rigid transformation X̂n, see Figure 4.

Specifically, we omit all depth values twice the average me-

dian leading to a binary mask

vxy =

{

1 if (x, y) ∈ Vxy

0 otherwise,
(18)

with set Vxy := { (x, y) | mxy = 1 ∧ r̂t(x, y) < 2 · r̄ }.

Additionally, scene points that are only visible either in

the source or the target image break our image formation

model. Such scenarios can be caused by foreground oc-

cluders obstructing the view of the background. In dynamic

scenes, this occlusion changes in each timestep. For a triplet

of adjacent frames (t − 1, t, t + 1), we can define the min-

imum pixel error out of those pairwise differences, as oc-

clusions cause a higher re-projection error. This can be



(a) Clear Day: Gated2Gated mitigates artefacts in depth map at far distances.

RGB Full Gated LiDAR

Gated2Gated Gated2Depth [22] LiDAR+RGB [43]

Stereo-SGM [29] PSM-Net [10] PackNet-Sfm [24]

(b) Snow: Gated2Gated provides more robust depth predictions in adverse weather.

RGB Full Gated LiDAR

Gated2Gated Gated2Depth [22] LiDAR+RGB [43]

Stereo-SGM [29] PSM-Net [10] PackNet-Sfm [24]

[m]
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Figure 5. Qualitative comparison of Gated2Gated and existing methods. For two examples (a) clear day and (b) snow day, Gated2Gated

predicts sharper depth maps than existing methods. (Full-Gated image refers here to an integral image
∑

2

i=0
Z

i
t − 2Zp

t ).

explained as occluder and background have larger differ-

ences in texture than neighboring pixels in the background.

Therefore, we calculate minimum of per-pixel loss between

the re-projection from two temporal adjacent pairs similar

to [19] as

Ltemp = min
n={t−1,t+1}

2
∑

i=0

(

Lp

(

v ⊙ Z
i
t, v ⊙ Ẑ

i
t(n)

))

.

(19)The complete loss function is

L = Ltemp + λcycLcyc, (20)

where λcyc = 0.01 is determined empirically on the valida-

tion set.

5. Dataset

In order to train our proposed models, we collected 1835

video sequences, which comprised about 130,000 frames

(note that previous gated imaging datasets [3,22] do not in-

clude sequential data). Each time history is centered around

one of the 13,000 middle frames and provides a temporal

history of 1 second at a sampling rate of 10 Hz. The cen-

ter frames are pre-selected by human annotators depending

on the scene of interest from an underlying data distribution

covering diverse winter road scenes collected in Northern

Europe following the settings proposed in [3]. Please see

the supplemental material for additional information.

We evaluate our proposed method on the open-source

Gated2Depth [22] and Seeing Through Fog [3] datasets.

While the first dataset contains a large variety of day and

night captured images, the second contains diverse cluttered

recordings in light fog, dense fog and snowfall conditions,

which allow us to evaluate the performance of our model

in harsh weather conditions and scenarios where obtaining

ground truth data is difficult. In the last case, to filter out

clutter from LiDAR ground truth, we use the DROR filter-

ing algorithm [11], removing 8.2 % LiDAR points.

6. Experiments

In this section, we evaluate the proposed method by com-

paring it against the existing depth estimation approaches

based on monocular gated, RGB images, and stereo RGB

images; in both supervised and self-supervised training set-

tings.

METHOD
Modality Train RMSE ARD MAE δ1 δ2 δ3 Compl.

[m] [m] [%] [%] [%] [%]

Real Data – Night (Evaluated on Lidar Ground Truth Points)

S
U

P
E

R
V

I
S

E
D

PSMNET [10] Stereo-RGB D 14.58 0.21 8.34 68.75 82.63 89.36 100

SGM [29] Stereo-RGB - 15.51 0.36 8.75 63.94 76.19 82.31 63

SPARSE-TO-DENSE [43] Lidar(GT)+RGB D 8.79 0.21 4.38 87.64 93.74 95.88 100

REGRESSION TREE [1] Gated D 10.54 0.24 6.01 76.73 89.74 93.45 40

LEAST SQUARES Gated - 13.13 0.42 8.88 43.60 55.80 63.54 31

GATED2DEPTH [22] Full-Gated D 14.86 0.29 8.84 58.79 58.79 79.84 100

GATED2DEPTH [22] Gated D 8.39 0.15 3.79 87.52 93.00 95.21 100

U
N

S
U

P
E

R
V

I
S

E
D

MONODEPTH [17] RGB S 11.41 0.23 6.18 76.64 89.53 94.19 100

MONODEPTH [17] Full-Gated S 15.41 0.52 11.33 31.72 71.23 88.74 100

*PACKNET [24] RGB M 12.15 0.27 6.87 69.14 86.93 92.57 100

*PACKNET-SLIM [24] Gated M 10.78 0.22 6.02 74.37 89.44 94.34 100

*MONODEPTH2 [19] RGB M 14.92 0.38 9.98 39.85 68.57 83.99 100

*MONODEPTH2 [19] Gated M 11.18 0.25 5.99 76.79 87.04 91.58 100

GATED2GATED Gated MG 9.43 0.21 4.86 82.17 91.54 94.48 100

A
B

L
A

T
I
O

N GATED2GATED [v ✗, b ✗] Gated MG 10.05 0.27 5.36 80.06 90.44 93.75 100

GATED2GATED [v ✓, b ✗] Gated MG 9.88 0.26 5.45 78.87 90.71 94.01 100

GATED2GATED [v ✗, b ✓] Gated MG 9.58 0.25 5.03 80.68 91.25 94.40 100

GATED2GATED [v ✓, b ✓] Gated MG 9.43 0.21 4.86 82.17 91.54 94.48 100

Real Data – Day (Evaluated on Lidar Ground Truth Points)

S
U

P
E

R
V

I
S

E
D

PSMNET [10] Stereo-RGB D 13.94 0.19 7.78 71.32 84.67 91.38 100

SGM [29] Stereo-RGB - 9.63 0.17 4.59 85.80 92.72 95.20 86

SPARSE-TO-DENSE [43] Lidar(GT)+RGB D 8.21 0.16 4.05 88.52 94.71 96.87 100

REGRESSION TREE [1] Gated D 15.83 0.49 11.40 56.30 75.54 82.45 23

LEAST SQUARES Gated - 19.52 0.75 14.05 43.42 54.63 63.76 16

GATED2DEPTH [22] Full-Gated D 13.75 0.26 8.16 62.48 62.48 82.93 100

GATED2DEPTH [22] Gated D 7.61 0.12 3.53 88.07 94.32 96.60 100

U
N

S
U

P
E

R
V

I
S

E
D

MONODEPTH [17] RGB S 10.24 0.18 5.47 80.49 91.78 95.61 100

MONODEPTH [17] Full Gated S 13.33 0.40 9.51 36.64 81.63 92.86 100

*PACKNET [24] RGB M 12.44 0.27 7.23 66.32 85.85 92.40 100

*PACKNET-SLIM [24] Gated M 9.93 0.18 5.34 78.98 91.83 96.06 100

*MONODEPTH2 [19] RGB M 13.18 0.33 8.79 44.99 75.87 90.65 100

*MONODEPTH2 [19] Gated M 9.57 0.18 4.76 83.20 91.75 94.94 100

GATED2GATED Gated MG 8.46 0.17 4.37 83.56 93.12 96.09 100

A
B

L
A

T
I
O

N GATED2GATED [v ✗, b ✗] Gated MG 9.29 0.22 4.99 80.74 91.88 95.40 100

GATED2GATED [v ✓, b ✗] Gated MG 9.14 0.20 4.99 80.82 92.26 95.58 100

GATED2GATED [v ✗, b ✓] Gated MG 8.85 0.20 4.75 81.20 92.57 95.85 100

GATED2GATED [v ✓, b ✓] Gated MG 8.46 0.17 4.37 83.56 93.12 96.09 100

Table 1. Comparison of our proposed framework and state-of-

the-art methods on the Gated2Depth test dataset. We compare

our model to supervised and unsupervised approaches. M refers

to methods that use temporal data for training, S for stereo su-

pervision, G for gated consistency and D for depth supervision.

* marked method are scaled with LiDAR ground truth. Best re-

sults in each category are in bold and second best are underlined.

6.1. Implementation Details

Although the proposed approach is not limited to a spe-

cific architecture, we estimate fr depth maps with the Pack-

Net [24] network architecture. To estimate ambient fΛα

and albedo α̂t, we use a UNet-based [47] architecture with

a single encoder and two decoder heads. Pose transforma-

tion ft→n is learned through the model introduced by Zhou

et al. [61], without the explainability mask. The joint neu-

ral networks are implemented using PyTorch [45]. We de-



clear light fog dense fog snow

METHOD RMSE MAE δ1 δ2 δ3 RMSE MAE δ1 δ2 δ3 RMSE MAE δ1 δ2 δ3 RMSE MAE δ1 δ2 δ3

D
A

Y

MONODEPTH RGB [17] 12.74 8.43 75.11 90.18 94.81 14.04 9.10 72.70 88.43 94.32 14.67 10.64 63.49 82.90 91.89 13.17 8.73 71.56 89.06 94.81

SPARSE-TO-DENSE [43] 13.66 9.85 54.20 82.42 91.47 14.23 10.66 49.75 79.62 90.10 18.50 15.35 37.04 64.67 78.25 13.42 9.81 53.12 82.29 92.04

PACKNET-SLIM G [24] 16.46 11.62 56.91 78.43 88.48 16.95 11.80 59.09 78.80 88.81 17.01 12.09 54.93 76.37 88.89 15.30 10.33 62.22 82.29 90.65

MONODEPTH2 G [19] 13.26 7.40 78.59 88.95 92.77 18.17 10.43 72.91 83.20 89.27 15.56 8.72 76.79 85.38 90.68 12.84 7.12 80.04 89.34 93.13

GATED2DEPTH [22] 11.48 6.60 79.17 87.38 91.58 11.28 6.63 81.20 88.66 92.56 11.86 7.85 71.72 87.10 91.70 11.28 6.61 78.87 87.93 92.50

GATED2GATED 11.15 6.31 80.82 90.48 93.97 10.70 6.01 84.71 91.52 94.65 11.09 6.86 81.09 91.43 94.47 10.97 6.28 80.01 91.12 94.63

N
I
G

H
T

MONODEPTH RGB [17] 13.78 8.92 72.63 88.48 93.37 13.30 8.75 72.52 88.88 94.45 16.31 10.99 69.15 85.92 91.33 15.28 9.89 68.88 86.86 93.44

SPARSE-TO-DENSE [43] 14.43 10.40 50.32 78.66 89.58 13.92 10.01 51.88 80.41 90.70 16.54 12.07 47.15 73.45 84.36 14.08 10.05 52.91 81.03 90.85

PACKNET-SLIM G [24] 15.81 11.11 59.80 79.52 88.65 16.01 11.23 58.44 80.60 89.57 17.49 12.60 57.72 77.77 87.26 16.47 11.40 60.17 79.55 88.62

MONODEPTH2 G [19] 14.52 8.30 74.45 85.41 89.73 14.21 8.29 74.56 85.06 91.01 18.33 11.88 66.61 79.25 84.48 15.11 8.46 76.15 86.38 90.52

GATED2DEPTH [22] 10.06 5.17 84.81 90.59 93.39 9.94 5.37 81.95 89.80 93.63 12.51 7.72 76.90 86.59 90.81 10.70 5.81 81.81 89.45 93.02

GATED2GATED 11.69 6.74 80.25 89.58 92.83 11.29 6.46 79.39 89.31 93.17 13.52 8.69 76.43 86.70 90.61 11.91 6.80 80.76 90.09 93.31

Table 2. Evaluation of the proposed Gated2Gated framework and state-of-the-art-methods on adverse weather scenes. All metrics are

evaluated in bins of approximately 7m to weight all distances equally. G indicates training and evaluation on gated images. Best results in

each category are in bold and second best are underlined.

fine a 512 × 1024 gated image input resolution and trained

the model on an NVIDIA A100 GPU with a batch size of

four. As optimizer we use ADAM [34] with β1 = 0.9 and

β2 = 0.9999 and learning rate of 10−4. In total, the model

is trained for 30 epochs, with first 10 epochs used to train the

depth fr and pose ft→n prediction networks using tempo-

ral consistency only, and the last 20 epochs to jointly train

ambient+albedo fΛα alongside depth and pose. For valid

pixel masks, we set γ = 0.98, θ = 0.04 and c = 0.995,

chosen with grid search on the validation set.

6.2. Assessment

Experimental Setup. We compare the performance of

the proposed Gated2Gated method against state-of-the-art

supervised and self-supervised depth estimation methods.

As supervised approaches, we compare against gated depth

estimation [1,22], LiDAR depth completion [43] and stereo

vision [9, 29]. For comparison with unsupervised methods,

we consider stereo [18] and temporal based self-learning

approaches [19, 24]. Since the self-supervised baseline

methods do not provide absolute depth predictions, we fol-

low previous works [19, 24, 61] and scale the estimated

depth maps with median ground-truth LiDAR information.

For completeness, we train and evaluate these approaches

both on gated and on RGB input images. All supervised

methods and [18] are trained on the Gated2Depth training

set, where LiDAR labels are available. The self-supervised

monocular approaches are trained on the proposed temporal

dataset. For further training details, we refer the readers to

the supplemental document.

Following [14], we evaluate using the metrics RMSE,

MAE, ARD and δi < 1.25i for i ∈ 1, 2, 3. These metrics

are computed for distances between 3m and 80m, limited by

the maximum LiDAR distance. To evaluate the long range

influence in adverse weather we rely on 7 m bins. We apply

binned metrics in adverse weather following [21].

Evaluation on Clear Data - Gated2Depth Dataset. Ta-

ble 1 reports a quantitative comparison of our proposed

Gated2Gated method and other state-of-the-art methods on

the test set of the Gated2Depth dataset [22]. Our model out-

performs all other self-supervised methods [18, 19, 24], and

even temporal approaches [19, 24] that use LiDAR ground

truth for depth scaling. The proposed method also outper-

forms stereo [9, 29] and Bayesian-based gated depth esti-

mation methods [1]. Among the supervised methods, only

Sparse-to-Dense [43] and Gated2Depth [22] obtain bet-

ter results. We note, however, that Sparse-to-Dense [43]

relies on sparse ground truth depth inputs from LiDAR

sensors. Figure 5 qualitatively compares our method to

baseline methods for depth estimation. In Figure 5b, our

method accurately shows all scene objects located at a far-

ther distance – car, traffic signs and two pedestrians in ad-

verse weather conditions like snowfall, whereas RGB-based

and LiDAR-based methods deliver only poor depth pre-

dictions. While Gated2Depth [22] is also able to recover

the scene elements, the generated depth map shows arti-

facts at a farther distance in contrast to our method. Sim-

ilarly in Figure 5a, Gated2Gated generates accurate depth

maps whereas all other methods fail here. Figure 6 shows

the qualitative comparison of the supervised Gated2Depth

[22] and the proposed self-supervised approach. While the

performance metrics for Gated2Depth are on par with the

proposed method, the qualitative comparison shows that

Gated2Gated predicts much finer grain details and sharper

object contours in depth maps. Furthermore, the proposed

method generalizes better to far distances: Gated2Depth of-

ten estimates far distances and sky as close regions.

Ablation Study. To evaluate the individual contributions

of all components of the proposed method, we perform an

ablation study reported in Table 1. Without validity masks,

the proposed method performs worst and improves when

adding b or v the; RMSE score increases by 9.1 %. Training

with both masks is mutually beneficial and provides a sig-

nificant boost to all performance metrics. We provide addi-

tional ablation experiments in the Supplemental Document.

Evaluation on Adverse Weather Scenes – Seeing

Through Fog Dataset. We also evaluate the proposed

method in adverse weather, adopting the test splits provided

in [3]. The performance is measured in binned metrics to

weight all distances equally. Table 2 shows the quantita-
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Figure 6. The top row for each example shows the gated image Zt with three gated slices (Z0

t , Z1

t , Z2

t ) for each capture, second row

shows depth maps predicted by the Gated2Gated (G2G) – self-supervised method, third row shows depth predictions from Gated2Depth

(G2D) [22] – supervised, and the bottom row shows corresponding LiDAR point clouds in gated view.

tive results of the Gated2Gated method and state-of-the-art

methods. We note that absolute metrics may improve in

adverse weather conditions, as the number and range of

ground-truth LiDAR points decreases with worse weather

conditions. We validate that Gated2Gated achieves robust

performance overall weather conditions. In contrast, Mon-

odepth2 and Sparse-to-Dense struggle to maintain perfor-

mance in adverse weather. Since Sparse-to-Dense uses Li-

DAR points as additional inputs, wrong depth measure-

ments from backscatter negatively impact the predicted

depth maps. Furthermore, Table 2 validates that the pro-

posed approach performs on par with Gated2Depth, and for

daytime as well as in harsh weather scenarios, Gated2Gated

even outperforms Gated2Depth. These results highlight the

generalization capabilities of the proposed method over a

wide range of distances and weather conditions.

7. Conclusion

We introduce Gated2Gated, a method that learns to esti-

mate depth from gated images in a self-supervised fashion

– only by observing gated video sequences. The proposed

method exploits cyclic measurement and temporal consis-

tency cues as training signals. This approach allows us

to resolve monocular scale ambiguity by relying on gated

illumination profiles and shadow/multi-path reflection via

multi-view observations. To train our method, we create a

novel gated video dataset containing 130,000 frames from

1835 sequences. We validate Gated2Gated in extensive

real-world experimentation, where it outperforms fully su-

pervised methods by up to 1.25 m (↓ 11.25%) in RMSE in

daytime adverse weather and by at least 1.2 m (↓ 9.73%) in-

dependently of adverse weather. In the future, we plan to

add wide-baseline active stereo cues to our self-supervised

method by using two synchronized gated imagers.

8. Acknowledgments

This work was supported by Mitacs through the Mitacs
Accelerate program. The work also received funding
by the AI-SEE project with national funding from the
FFG, BMBF, and NRC-IRA. We also thank the Federal
Ministry for Economic Affairs and Energy for support
within “VVM-Verification and Validation Methods for
Automated Vehicles Level 4 and 5”, a PEGASUS family
project. Felix Heide was supported by an NSF CA-
REER Award (2047359), a Sony Young Faculty Award,
and a Project X Innovation Award. We thank Karina
Müller and Tom Riley for comments on the manuscript.



References

[1] Amit Adam, Christoph Dann, Omer Yair, Shai Mazor, and

Sebastian Nowozin. Bayesian time-of-flight for realtime

shape, illumination and albedo. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(5):851–864,

2017. 2, 6, 7

[2] Pierre Andersson. Long-range three-dimensional imaging

using range-gated laser radar images. Optical Engineering,

45(3):034301, 2006. 2

[3] Mario Bijelic, Tobias Gruber, Fahim Mannan, Florian Kraus,

Werner Ritter, Klaus Dietmayer, and Felix Heide. Seeing

through fog without seeing fog: Deep multimodal sensor fu-

sion in unseen adverse weather. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2020. 2, 6, 7

[4] Mario Bijelic, Tobias Gruber, and Werner Ritter. A bench-

mark for lidar sensors in fog: Is detection breaking down? In

2018 IEEE Intelligent Vehicles Symposium (IV), pages 760–

767, 2018. 2

[5] Mario Bijelic, Tobias Gruber, and Werner Ritter. Bench-

marking image sensors under adverse weather conditions for

autonomous driving. In IEEE Intelligent Vehicle Symposium,

2018. 2

[6] Jens Busck. Underwater 3-D optical imaging with a gated

viewing laser radar. Optical Engineering, 2005. 2

[7] Jens Busck and Henning Heiselberg. Gated viewing and

high-accuracy three-dimensional laser radar. Applied Optics,

43(24):4705–10, 2004. 2

[8] A. Carballo, J. Lambert, A. Monrroy, D. Wong, P. Narksri,

Y. Kitsukawa, E. Takeuchi, S. Kato, and K. Takeda. Libre:

The multiple 3d lidar dataset. In IEEE Intelligent Vehicles

Symposium (IV), 2020. 2

[9] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5410–

5418, 2018. 2, 7

[10] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5410–

5418, 2018. 6

[11] Nicholas Charron, Stephen Phillips, and Steven L. Waslan-

der. De-noising of lidar point clouds corrupted by snow-

fall. In 2018 15th Conference on Computer and Robot Vision

(CRV), pages 254–261, 2018. 6

[12] Richard Chen, Faisal Mahmood, Alan Yuille, and Nicholas J

Durr. Rethinking monocular depth estimation with adversar-

ial training. arXiv preprint arXiv:1808.07528, 2018. 2

[13] Qi Dai, Vaishakh Patil, Simon Hecker, Dengxin Dai, Luc

Van Gool, and Konrad Schindler. Self-supervised object mo-

tion and depth estimation from video. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 1004–1005, 2020. 2

[14] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In Advances in Neural Information Processing Sys-

tems, pages 2366–2374, 2014. 1, 2, 7

[15] Ravi Garg, B.G. Vijay Kumar, Gustavo Carneiro, and Ian

Reid. Unsupervised CNN for single view depth estimation:

Geometry to the rescue. In Proceedings of the IEEE Euro-

pean Conf. on Computer Vision, pages 740–756, 2016. 2

[16] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3354–3361, 2012. 2

[17] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2017. 1, 6, 7

[18] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 270–279,

2017. 2, 4, 7

[19] Clément Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J Brostow. Digging into self-supervised monocular

depth estimation. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 3828–3838,

2019. 2, 6, 7

[20] Yoav Grauer. Active gated imaging in driver assistance sys-

tem. Advanced Optical Technologies, 3(2):151–160, 2014.

1, 2

[21] Tobias Gruber, Mario Bijelic, Felix Heide, Werner Ritter,

and Klaus Dietmayer. Pixel-accurate depth evaluation in re-

alistic driving scenarios. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

95–105. IEEE, 2019. 7

[22] Tobias Gruber, Frank Julca-Aguilar, Mario Bijelic, and Fe-

lix Heide. Gated2depth: Real-time dense lidar from gated

images. In The IEEE International Conference on Computer

Vision (ICCV), 2019. 1, 2, 6, 7, 8

[23] Tobias Gruber, Mariia Kokhova, Werner Ritter, Norbert

Haala, and Klaus Dictmayer. Learning super-resolved depth

from active gated imaging. In 2018 21st International Con-

ference on Intelligent Transportation Systems (ITSC), pages

3051–3058. IEEE, 2018. 2, 3

[24] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-

tos, and Adrien Gaidon. 3d packing for self-supervised

monocular depth estimation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2485–2494, 2020. 2, 6, 7

[25] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Patrice

Horaud. Time-of-flight cameras: principles, methods and

applications. Springer Science & Business Media, 2012. 2

[26] Richard Hartley and Andrew Zisserman. Multiple view ge-

ometry in computer vision. Cambridge university press,

2003. 1

[27] Paul Heckman and Robert T. Hodgson. Underwater opti-

cal range gating. IEEE Journal of Quantum Electronics,

3(11):445–448, 1967. 2

[28] Felix Heide, Wolfgang Heidrich, Matthias Hullin, and Gor-

don Wetzstein. Doppler time-of-flight imaging. ACM Trans-

actions on Graphics (ToG), 34(4):36, 2015. 2



[29] Heiko Hirschmuller. Stereo processing by semiglobal match-

ing and mutual information. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 30(2):328–341, Feb

2008. 6, 7

[30] Maximilian Jaritz, Raoul De Charette, Emilie Wirbel, Xavier

Perrotton, and Fawzi Nashashibi. Sparse and dense data with

cnns: Depth completion and semantic segmentation. In In-

ternational Conference on 3D Vision (3DV), pages 52–60,

2018. 2

[31] Maria Jokela, Matti Kutila, and Pasi Pyykönen. Testing

and validation of automotive point-cloud sensors in adverse

weather conditions. Applied Sciences, 9, 2019. 2

[32] Frank Julca-Aguilar, Jason Taylor, Mario Bijelic, Fahim

Mannan, Ethan Tseng, and Felix Heide. Gated3d: Monoc-

ular 3d object detection from temporal illumination cues.

In The IEEE International Conference on Computer Vision

(ICCV), 2021. 1

[33] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In Proceedings of the IEEE International Con-

ference on Computer Vision, 2017. 2

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 7

[35] Andreas Kolb, Erhardt Barth, Reinhard Koch, and Rasmus

Larsen. Time-of-flight cameras in computer graphics. In

Computer Graphics Forum, volume 29, pages 141–159. Wi-

ley Online Library, 2010. 2

[36] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-

erico Tombari, and Nassir Navab. Deeper depth prediction

with fully convolutional residual networks. In International

Conference on 3D Vision (3DV), pages 239–248, 2016. 2

[37] Robert Lange. 3D time-of-flight distance measurement

with custom solid-state image sensors in CMOS/CCD-

technology. 2000. 2

[38] Martin Laurenzis, Frank Christnacher, Nicolas Metzger, Em-

manuel Bacher, and Ingo Zielenski. Three-dimensional

range-gated imaging at infrared wavelengths with super-

resolution depth mapping. In SPIE Infrared Technology and

Applications XXXV, volume 7298, 2009. 2

[39] Martin Laurenzis, Frank Christnacher, and David Monnin.

Long-range three-dimensional active imaging with superres-

olution depth mapping. Optics letters, 32(21):3146–8, 2007.

2

[40] Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker,

Noah Snavely, Ce Liu, and William T. Freeman. Mannequin-

challenge: Learning the depths of moving people by watch-

ing frozen people. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 43(12):4229–4241, 2021. 1, 2

[41] Zhengqi Li and Noah Snavely. Learning intrinsic image de-

composition from watching the world. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 9039–9048, 2018. 3

[42] Chenxu Luo, Zhenheng Yang, Peng Wang, Yang Wang, Wei

Xu, Ram Nevatia, and Alan Yuille. Every pixel counts++:

Joint learning of geometry and motion with 3d holistic un-

derstanding. IEEE transactions on pattern analysis and ma-

chine intelligence, 42(10):2624–2641, 2019. 2

[43] Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth

prediction from sparse depth samples and a single image. In

IEEE International Conference on Robotics and Automation,

pages 1–8, 2018. 1, 2, 6, 7
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