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Abstract

We introduce Neural Point Light Fields that represent
scenes implicitly with a light field living on a sparse point
cloud. Combining differentiable volume rendering with
learned implicit density representations has made it pos-
sible to synthesize photo-realistic images for novel views
of small scenes. As neural volumetric rendering methods
require dense sampling of the underlying functional scene
representation, at hundreds of samples along a ray cast
through the volume, they are fundamentally limited to small
scenes with the same objects projected to hundreds of train-
ing views. Promoting sparse point clouds to neural implicit
light fields allows us to represent large scenes effectively
with only a single radiance evaluation per ray. These point
light fields are as a function of the ray direction, and local
point feature neighborhood, allowing us to interpolate the
light field conditioned training images without dense object
coverage and parallax. We assess the proposed method for
novel view synthesis on large driving scenarios, where we
synthesize realistic unseen views that existing implicit ap-
proaches fail to represent. We validate that Neural Point
Light Fields make it possible to predict videos along unseen
trajectories previously only feasible to generate by explic-
itly modeling the scene.

1. Introduction

Learning implicit volumetric scene representations has
made it possible to synthesize photo-realistic images of sin-
gle scenes [20, 24, 27, 39]. The most successful meth-
ods combine a conventional volumetric rendering approach
with a coordinate-based neural network that predicts den-
sity and radiance [24]. As such, instead of explicitly stor-
ing density and radiance in a high-dimensional 5D volume,
these methods represent this volume as a learned function,
that can be further decomposed into radiance and illumina-
tion [53, 40, 5]. Although the implicit volumetric represen-
tation is highly memory-efficient and differentiable, it also
fundamentally requires sampling the volume, that is evalu-
ating the coordinate-based network, hundreds of times for
each ray for a given pixel. This mandates long training and
small volumetric support inside the volume.

Figure 1: Neural Point Light Fields encode the information of a
Light Field representation of a scene on a point cloud capture. An
image is rendered for each camera ray based on the local encoding
of the Light Field on relevant points.

To tackle these challenges, hybrid representations [13,
19, 15] are used to embed or “bake” local radiance func-
tions on explicit sparse proxy representations such as coarse
voxel grids, point clouds or meshes to enable faster render-
ing by ignoring empty space. While this approach drasti-
cally improves rendering speed at test time, it still requires
volumetric sampling during training. This is because the
scene geometry must be learned during the training pro-
cess. These methods share the limitations of volumetric
approaches during training and, as such, have also been lim-
ited to small scenes that are costly to train. Learning repre-
sentations for large outdoor scenes is an open challenge.

Unfortunately, approaches that are free of implicit rep-
resentations do not yet offer an alternative. Specifically,
explicitly storing features on proxy geometry [34, 33, 17]
has not been able to achieve the same quality as volumetric
methods when interpolating a view without a nearby train-
ing sample. Existing formulations utilize geometry as a pro-
jection canvas combined with features extracted from target
views, and therefore require a large number of input images
near the target view.

In this work, we depart from volumetric models and in-
troduce Neural Point Light Fields, a local implicit repre-
sentation that encodes a light field on a point cloud. The
proposed representation supports novel view synthesis in



large outdoor scenes without strong parallax needed as in
volumetric methods. Although recent automotive depth es-
timation networks make it possible to estimate dense depth
point clouds from video data, we assume measured lidar
point clouds as input to our method, especially as lidar data
is readily available in most outdoor vehicle datasets [42, 10]
and recently released smartphones. Although sparse, the li-
dar geometry provides enough cues to encode a local light
field on the point cloud. Instead of a 5D volumetric radiance
function, or a conventional 4D light field [18], we propose
to formulate a light field only depending on the two dimen-
sional ray direction and a one dimensional index pointing to
a point cloud featureThis formulation makes it possible to
evaluate a single radiance prediction per ray.

We extract features for each point with a learned feature
extractor on point cloud projections [11]. For a given cam-
era pose, we shoot rays for each pixel and select a set of
close points inside the point cloud. The features from these
selected points are then weighted by passing the points rel-
ative position to the ray and features through an attention
module, resulting in a single ray feature code. The color
for each ray is then reconstructed by an implicit light field
representation conditioned by this feature code. We assess
the proposed method on a large-scale automotive driving
dataset [42] and demonstrate novel view synthesis along un-
seen trajectories with quality unseen before.

Specifically, we make the following contributions

• We introduce Neural Point Light Fields, a representa-
tion that implicitly encodes features in a point cloud,
requiring only a single radiance evaluation per ray.

• The proposed method lifts the restrictions of volumet-
ric scene representations by exploiting sparse geome-
try available in estimated or captured point clouds.

• We validate the proposed method on novel video syn-
thesis tasks for large-scale driving scenes, demonstrat-
ing the proposed method’s capability of generating re-
alistic novel views along trajectories which cannot be
handled by existing implicit representation methods.

Our code and trained models are available online.

Scope Even though existing automotive datasets include
data from multiple cameras, lidar and radar sensors, we
focus on learning from a single camera with a single tra-
jectory per scene, and without highly dynamic scene mo-
tion. In contrast to densely observing the scene across a full
hemisphere [24], captured images in our case are sparsely
distributed along the driving trajectory We note that ex-
tending training to multiple camera views is not straightfor-
ward, as camera poses, exposure and tone-mapping differ-
ences have to be accounted for. Exploiting multiple cameras

and adding dynamic object support to the proposed method
could constitute exciting future directions.

2. Related Work

Novel View Synthesis. Synthesizing novel views from a
set of unstructured images of a scene is a long standing
problem in computer vision and graphics. Early work on
image-based rendering introduced light fields [18] as a 4D
parameterization of light rays and their respective radiance
in a scene. Light fields are derived by considering a convex
subspace of the 5D plenoptic function [1] that parameterizes
a ray by a point in space and a direction. Conventional light
field rendering, i.e., interpolation of novel views, requires a
large set of densely sampled views of the light field, as tradi-
tional optimization methods [47, 48] handle only small par-
allax changes between the interpolated and measured view.
Recently, methods relying on deep learning [23] allowed
recovering light field from plane sweep volumes, using 3D
convolutional neural networks.

An orthogonal line of work investigates the reconstruc-
tion of explicit 3D models from a set of images. By opti-
mizing the reprojection error between features found in all
images, multi-view reconstruction methods are capable of
reconstructing the underlying scene geometry and camera
poses [2, 36]. These methods can reconstruct large scenes,
but require many images to achieve high quality, and, in
contrast to image-based rendering methods, struggle to syn-
thesize photorealistic novel views.

Neural Scene Representations. An emerging large body
of work explores learned representations in scene recon-
struction pipelines. These neural rendering approaches
are able to generate photo-realistic novel views [20, 27],
while reconstructing high-quality scene geometry. Exist-
ing methods rely on explicit, implicit, or hybrid representa-
tions of the scene. Explicit methods encode texture or ra-
diance on recovered proxy scene geometry, such as meshes
[44], multi-planes [8, 21, 23, 41, 54], voxels [38] or points
[3, 31]. Instead of jointly recovering geometry and appear-
ance, these methods can focus on recovering image details.
Nonetheless, relying on explicit proxy geometry limits the
achievable image quality. To overcome the reliance on such
geometry, researchers explored implicit representations us-
ing coordinate-based networks, e.g. the successful NeRF
method [24]. However, achieving photo-realistic quality for
diverse tasks [22, 29, 49, 40, 37, 26, 28] comes at the cost
of expensive training and testing. The lack of explicit ge-
ometric knowledge requires densely evaluating the implicit
network within the volume, with the majority of samples
located in empty space, and therefore not contributing to
the rendered pixel color. Extensions [9] have tackled this
issue at test time evaluation by either predicting the sam-
pling regions [25, 4] or explicitly extracting proxy geometry



[19] after training. DS-NeRF [6] uses 3D keypoints recon-
structed from COLMAP on a scene to supervise the opac-
ity prediction with those sparse keypoints, which speeds
up training. Neural Sparse Voxel Fields (NSVF) [19] use
a hybrid representation that stores implicit functions in a
voxel grid. NeRF++ proposes to separate background and
foreground scene components [51], which help improve the
rendering quality, primarily for distant scene objects. How-
ever, all of these methods struggle with large scale outdoor
scenes or scenes with very few view directions. In con-
trast, the proposed approach allows rendering large outdoor
scenes from a sparse set of observations, by introducing a
light field parameterization on sparse scene geometry.

Multi-View Structure (MVS) Reconstruction. Recon-
structing geometry such as point clouds or meshes from
images [36, 35] can guide the training of implicit scene
representations [6] or offer a scaffold for learned fea-
tures [34, 17]. Riegler and Koltun [34, 33] propose such
geometric scaffolds living on MVS-meshes. Kopanas et al.
[17] showed that optimizing point locations from an ini-
tial point cloud, together with their novel view synthesis
pipeline, can compensate for errors during reconstruction
from MVS. These methods and similar [3] point based ap-
proaches use point clouds as a geometric proxy, while fol-
lowing a strict rendering and projection approach. In con-
trast, we propose a method that uses features not only by
projecting them on to a proxy geometry, but encodes them
from a 3D point cloud, and requires no input images during
test time.

In the context of automotive scene reconstruction, Sur-
felGAN [50] proposes a representation with discrete tex-
tured surface elements (surfels), recovered from captured
Lidar and RGB data. Novel views are rendered by a gen-
erator network from projections of the surfel RGB data. In
contrast, we learn features directly embedded in the cap-
tured point cloud.

Encoding features directly on a point clouds has been
extensively explored [32] for diverse tasks. Recent work re-
visited the use of multi-view projections of a point cloud
for classification tasks [11, 12], similar to the proposed
reconstructions from point clouds, but without using im-
age features. Their method is robust to occlusions [12],
and achieves state-of-the-art results on selected downstream
tasks. Rather than solving a classification or segmentation
task, we show that multi-view point cloud encoding can de-
liver rich local point features for reconstruction of novel
views.

3. Point Light Fields

In this section, we introduce Point Light Fields. A Point
Light Field encodes the light field of a scene on sparse point
clouds. Assuming a camera-lidar sensor setup typical in

robotic and automotive contexts [10], at time step i, the
proposed method learns an RGB frame Ii as input and the
corresponding point cloud capture Pi. To learn a light field
embedded on the point clouds corresponding to a video se-
quence, we devise three steps: an encoding step, a feature
aggregation, and a point-conditioned light field prediction,
all of which we describe in the following.

3.1. Per-point Feature Encoding

We first produce a feature embedding for each point in
the point cloud. To do this, we follow the simple strategy
presented by Goyal et al. [11]. The input point cloud is
projected onto six planes, producing sparse depth images.
These images are each fed directly into a convolutional net-
work. We use the initial layers of a vanilla ResNet18 [14]
to extract per-pixel features at one-quarter the input reso-
lution. For a given point xk, we retrieve the correspond-
ing feature vector at its projected location in each of the six
views. These are concatenated together to produce the final
feature encoding lk ∈ R6×128.

We find it sufficient to normalize input point clouds to a
canonical cube bounded by [−1, 1] and use the 6 sides of the
cube as projection planes. This works robustly even given
the complexity of in-the-wild large-scale scenes. We per-
form ablations comparing features encoded using this strat-
egy against alternative point-based models such as Point-
Net [32], see Supplementary Material.

The learned per-point features lk do not depend on any
image data and can be trained end-to-end with the full light
field rendering. We can introduce augmentations such that
the model does not overfit to a particular arrangement of
points. This includes sampling different subsets of points
from the full captured point cloud, and using point cloud
captures from nearby time steps.

3.2. Light Field Feature Interpolation

Given a set of points Pi = {x0, ...,xN}iwith xk ∈ R3,
their encoded features lk ∈ R6×128, and a camera view Ci,
defined by its intrinsic K, extrinsic Ei and sensor dimen-
sions W and H , we aggregate the features that are relevant
for reconstructing the local light field around each ray. For
all W × H pixels from Ci we cast a set of rays Ri into
the scene using a pinhole camera model. Each rj ∈ R is
defined by its origin oj and viewing direction dj .

Local Point Selection. The local point cloud encoding can
explain the scene properties at their sparse locations. Ex-
plicitly representing high-frequency light field details from
all views would necessitate a dense descriptor. Instead, we
implicitly interpolate a representation descriptor for each
ray. The work of DeVries et al. [7] shows that the inter-
polation of local latent descriptors allows for implicit scene
representations for large indoor scenes. Unlike their regular
grid structure, we want to leverage the information given



Figure 2: Neural Point Light Field Rendering Pipeline. For each ray rj , a set of K closest points is selected from a point cloud of the
scene. From each point xk, a feature vector lk and the relative location with respect to rj predict a key and value vectors. The most
relevant point features are aggregated for the ray with a multi-head attention module, using the encoded ray direction dj to form the query
vector. A light field function FθLF computes the ray color given the ray feature lj and ray direction dj .

through the geometric properties of the point cloud. We
assume that point features lk hold enough information not
only to represent the light field at their exact location, but
also in their neighbourhood. For each ray rj , we aggregate
a descriptor from a relevant set of sparse points. To this
end, we select a set of K points Pj,i ⊂ Pi inside the view-
ing frustum of the camera Ci, with the smallest orthogonal
distance dk,j between the points and the ray:

cos (ϕk,j) = dj,i ·
(

xk,i − oj,i
||xk,i − oj,i||

)
, (1)

dk,j = sin (ϕk,j) · (xk,i − oj,i)

with sin (ϕk,j) =
√
1− cos 2 (ϕk,j).

(2)

The ray origin oj,i, normalized ray direction dj,i, and
point xk,i are all given in a local reference frame centered
in the captured Pi. A light field descriptor is then generated
for each ray, considering all encoded features on the points
in Pj,i.

Ray-centric Point Encoding. There are several immediate
choices for the point embeddings of Pj,i, including average
pooling, max pooling or a linear weighting by the distance
dj,k of the selected K point features. However, these inter-
polation methods are ambiguous, i.e. they can deliver the
same descriptor for various rays and features on the same
set of closest points Pi,j . In order to ensure a consistent and
unique description for each ray from the set Pj,i, we must
use the unambiguous relative position of all points with re-
spect to that ray, with coherence across different time steps
i of the same scene.

As illustrated in Fig. 3 and formalized in Eq. 2, 4 and 5,
we parameterize a close point using the angle θk,j between
xk and ray dj , the orthogonal distance between the point
and ray, and the angle ψ, defined as the radial coordinate of
a projected xk onto a plane determined by a projection of
the global Y -axis and it’s cross product with the ray direc-

tion dj : [
x
y

]
k,j,proj

=

[
yTj(

dj × yj
)T]xk,

with yj =
Y − (Y · dj)dj
‖Y − (Y · dj)dj‖

and y ∈ R3,

(3)

ψk,j = arctan
xk,j,proj
yk,j,proj

. (4)

The angle between the global point xk and dj is computed
as

θk,j = arccos

(
dj,i ·

xk
||xk||

)
. (5)

This is computed in world coordinates, independently of lo-
cal position, unlike ϕk,j in Eq. 1, that is used for computing
the distance.

Ray Feature Attention. Instead of applying an arbi-
trary weighting for the ray features, we propose a learned
multi-head attention module (depicted in Fig. 4) to com-
pute ray feature vector lj . We propose a variant of
the multi-head attention module presented by Vaswani
et al. [45]. We compare the chosen attention based
weighting with linear interpolation schemes In the ex-
perimental Sec. 4. The two angular distances θk,j and
ψk,j , as well as dk,j are transformed using a posi-
tional encoding γ (s) = [..., sin (2tπs), cos (2tπs), ...] with
t = 0, . . . , T and T = 4 [24, 43] to interpolate
high frequency data from a low frequency input do-
main. The point feature vectors lk and the positional en-
coded distances are concatenated to form a unique de-
scriptor vk,j = (lk ⊕ γ (θk,j)⊕ γ (ψk,j)⊕ γ (dk,j)) corre-
sponding to ray rj and point k, that encompasses the posi-
tional encoding and the feature vector of that point. The de-
scriptor vk,j is then passed through two double-layer MLPs
that predict a key Kk,j and value Vk,j for each of the K
point ray pairs.

Vk,j = F θV (vk,j) , Kk,j = F θK (vk,j) (6)



Figure 3: Ray-point distances are illustrated for a ray j and the
k = 3 closest points. For better visualization, the ray and points
are translated with −oj into the scenes coordinate frame, and all
points are projected into a single plane instead of 3 parallel planes.

Qj = F θQ (γ (dj)) (7)

Query vector Qj is derived from the positionally encoded
ray direction γ (dj). Ray direction dj is again presented in
world coordinates, to make it independent of any local ref-
erence coordinate system. The multi-head attention learns
to predict a weight for all Vk,j given Kk,j , for each selected
point ray pair (k, j) and query ray Qj . The aggregated out-
put of the multi-head attention module comprises a feature
code lj ∈ R128, that describes the light fields for each ray
rj :

multi-head attention: lj = F θattn
(Qj ,Kk,j , Vk,j). (8)

Points Beyond the Point Cloud. Point clouds in most au-
tomotive datasets only capture the scene geometry from the
ground plane up to a few meters height. This results in scene
regions which are not explicitly captured in the point cloud
data, such as high building structures and the sky. We there-
fore set a threshold d∞ below which we consider rays to
intersect with the point cloud. The value d∞ is chosen as
the maximum distance between two points in any Pi af-
ter ignoring outlying points. For points that exceed d∞,
we concatenate vk,j with a learned global feature code l∞,
such that the attention module can leverage both a global
and a local point feature representation, as point features
may contain relevant context and geometry for structures
that rise above the point cloud, and may therefore still be
useful.

3.3. RGB Prediction

After predicting a feature vector lj for any ray rj from
encodings on a sparse point cloud, we are finally able to
reconstruct the color Cj corresponding to any arbitrary ray
in our global scene, that is

Cj = F θLF
(dj ⊕ lj) . (9)

Here F θLF
is an 8-layer MLP (with 256 channels) that

takes the concatenation of ray direction dj and feature vec-
tor lj corresponding to the ray at index j, to predict output

Figure 4: The multi-headed self-attention module aggregates the
feature vector lj of ray j given the ray direction dj from the in-
formation of the K closest points. For each point k an embedding
vk,j is computed from the point’s feature and the positionally en-
coded location relative to rj for each ray-point pair (j, k). FθK

and FθV compute the key K and value V vectors from vk,j . The
query vector Q is predicted for the ray’s direction dj .

color Cj . Implementation details for this and all other mod-
ules are provided in the supplementary materials.

For each predicted ray color Ĉ (rj) we can compute the
mean-squared error image loss

L =
∑
j∈R

∥∥∥Ĉ (rj)− C (rj)
∥∥∥2
2
. (10)

Training All model parameters, namely θResNet18, θK , θV ,

θQ, θattn and θLF , are jointly optimized by minimizing the
loss in Eq. 10 using the Adam optimizer [16] with a linear
learning rate decay, where at each step we randomly sample
8192 rays from a small batch of frames.

4. Assessment
To assess the proposed method and evaluate its com-

plexity, we train neural point light fields on an automotive
driving dataset. We compare against state-of-the-art neural
rendering methods by generating novel views interpolating
between poses on the driven trajectory, as well as extrap-
olating to completely new trajectories. Moreover, we ana-
lyze how architecture and parameter choices in the proposed
method affect reconstruction quality.

4.1. Complexity

Volumetric neural rendering methods require a large
number of samples per ray for obtaining accurate results.
Even though existing methods allow speeding up rendering
times [15], training often requires hundreds of ray samples.
We report the measured time and evaluations count corre-
sponding to processing a single ray during training and in-
ference in Tab. 1. To ignore differences related to specific



RGB Frame NeRF DS-NeRF GSN Neural Point Light Fields

Figure 5: Scene Reconstruction. We present results for reconstructing images for poses seen during training of NeRF [23], DS-NeRF [6],
GSN [7] and Neural Point Light Fields. All methods were trained on the same set of scenes from the Waymo Open Dataset [42]. NeRF
(even with substantially increased model capacity) and DS-NeRF show similar blurriness and other artifacts, while the depth supervision
allows DS-NeRF to improve over existing methods. GSN produces fewer artifacts while struggling to reconstruct fine details, and fails for
sparsely observed views (center scene). Neural Point Light Fields most faithfully reconstructs the image from the data set, see also Tab. 2.

implementation speed-ups (such as rays pre-caching), eval-
uation time is measured after the ray sampling step for a re-
spective PyTorch [30] implementation of the method. Mea-
sured times include encoding and decoding steps (e.g., point
encoding in our method or convolution refinement in GSN),
normalized by the number of image pixels to correspond to
a single ray.

In contrast to volumetric scene representations, that need
a high number of sampling points, even when supported by
local feature vectors, Neural Point Light Fields only require
a single evaluation per ray during rendering. This leads to
a two times speedup, despite the overhead incured due to
extraction of point features.

Cost NeRF [24] DS-NeRF [6] GSN [7] Ours
No. of Evaluations ↓ 192 192 64 1
Time per ray, training (in µs) ↓ 146 146 37 34
Time per ray, inference (in µs) ↓ 49 49 17 10

Table 1: Complexity per ray during training and inference. All
volumetric approaches require multiple evaluations per ray. Neu-
ral Point Light Fields (Ours) has a complexity of O(1) per ren-
dered ray. Despite an added complexity in the feature extraction
step, this allows for shorter training and inference.

4.2. Experimental Setup

We quantitatively and qualitatively validate the proposed
method on two tasks, namely view reconstruction and
novel view synthesis, where we compare against Genera-
tive Scene Networks (GSN), NeRF and depth-supervised
NeRF (DS-NeRF). GSN has been successfully applied to
large scale indoor scenes [7] and takes advantage of a lo-
cal embedding of the scene that is jointly learned with the

scene. In contrast to our sparse point features, the latent
codes are located on a sparse 2D floorplan. We evaluate
NeRF [24] as a state-of-the-art volumetric scene represen-
tation. Additionally we evaluate DS-NeRF [6], which takes
advantage of an additional depth supervision for the opacity
prediction. In the Supplementary Document, we present ad-
ditional comparisons to NeRF++ [51] and Free View Syn-
thesis [33], which employs features on a mesh proxy ge-
ometry as discussed in Sec. 2. All methods were trained
with their official publicly available code, by choosing the
configuration closest to our outdoor/free moving scene sce-
nario. For our method we use a maximum of N = 20000
randomly sampled points, K = 8 closest points, 128 di-
mensional point and ray embedding lk and lj , and 8 heads
in the multi-head attention module.

All methods except GSN were trained on 6 scenes from
the Waymo Open Dataset [42] with a length ≤ 200 frames,
see Supplemental Document. To allow training on a single
GPU, we downsample the captured images by a factor of
8, resulting in a resolution of 240 × 160 pixels. For GSN,
a convolutional refinement step requires the models to be
trained on the full image resolution, and the code provided
hard-coded settings that required us (after consulting with
the authors) to use 64 × 64 image crops. For a fair eval-
uation, we report GSN results for 3 scenes, while calcu-
lating metrics on downsampled dataset images. Note that
GSN has an advantage in all quantitative evaluations as a
smaller FOV at lower resolution needs to be synthesized.
All models were trained until convergence on each scene
on a mixture of NVIDIA TITAN Xp and NVIDIA V100



RGB Frame NeRF DS-NeRF GSN Neural Point Light Fields

Figure 6: Novel View Interpolation. We predict views for unseen poses held-out from the training data. images in middle row are taken
from the longest selected scenes ( 200 frames), while the rest are taken from shorter ones ( 80 frames). NeRF and DS-NeRF show blurry
and overly smooth results, but perform better on smaller scenes. NeRF synthesizes the details on the small scenes better, while failing
completely on larger scenes, even when substantially increasing the model’s capacity. GSN performs consistently across all scenes, but
exhibits artifacts and lacks detail. Our Neural Point Light Fields representation allows high-quality synthesis for novel view interpolation.

NeRF [24] DS-NeRF [6] GSN [7] Ours
Reconstruction

PSNR ↑ 29.48 26.53 17.98 31.52
SSIM ↑ 0.815 0.778 0.512 0.882
LPIPS ↓ 0.289 0.306 0.136 0.110

Novel View Synthesis
PSNR ↑ 22.47 26.15 16.83 29.96
SSIM ↑ 0.700 0.772 0.464 0.868
LPIPS ↓ 0.389 0.310 0.174 0.119

Table 2: We report PSNR, SSIM and LPIPS on 5 static scenes
from the Waymo Open Dataset [42] using images from the front
camera for NeRF [24], DS-NeRF [6], GSN [7] and Neural Point
Light Fields. For PSNR and SSIM, higher is better; for LPIPS
lower is better. The best values are emphasized in bold, while the
next best are underlined. Our method outperforms all methods in
all metrics. While NeRF shows only slightly worse reconstruc-
tion performance, DS-NeRF provides better novel view synthesis
capabilities.

GPUs. Complexity evaluations were computed on the same
hardware. The lower resolution requirements on GSN for
over-fitting on a single scene resulted in a training time of
2 days, while the other models trained for 2 to 3 days, de-
pending on the number of scene frames.

Quantitative Evaluation. We train all methods using the
same 90% of all driven trajectory frames, leaving the re-
maining 10% for evaluating interpolation of unseen views
within the observed trajectory. Tab. 2 reports quantita-
tive results for both tasks using the PSNR, SSIM [46] and
LPIPS [52] metrics. GSN makes an overall worse impres-
sion than the other methods in both tasks. The proposed

method outperforms all other methods in all metrics. While
NeRF performs significantly worse in the Novel View Syn-
thesis task, DS-NeRF exhibit only a slight performance
drop compared to its reconstruction results, probably ben-
efiting from a better opacity prediction when trained on a
sparse set of images. Our method performs the best in the
view synthesis task as well, exhibiting only a minor perfor-
mance degradation compared to the reconstruction task, in
contrast to NeRFs results.

Scene Reconstruction. The results shown in Fig. 5 sup-
port the quantitative evaluation from Tab. 2. While NeRF
produces inconsistent and blurry predictions for the large
scenes we address in this work, it is still able to recover
some details on straight scenes. We hypothesize that the
blurriness arises from the requirements of an accurate pose
information and the sparse set of training views on long
scene trajectories. DS-NeRF shows a similar behavior,
but lacks some detail that has been reconstructed in NeRF,
while producing smooth artifacts. Renderings of the depth
map of the trained scene suggest that the point cloud cap-
ture is too smooth for DS-NeRF representation and, as such,
suppresses high frequency features. In contrast, GSN pro-
duces an overall consistent reconstruction, independent of
scene length. Nevertheless results show smoothing even
in the significantly downsampled resolution accepted by
GSN. In contrast, Neural Point Fields allows reconstructing
all structures, independent of their position and appearance
across frames resulting on only few artifacts on very fine
structures (e.g. individual tree branches, leafs). Please also
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Figure 7: Novel View Trajectory Extrapolation. Extrapolating
views (orange) using the training trajectory (blue). While NeRF
and DS-NeRF fail to synthesize views far from the training trajec-
tory, the proposed method produces high quality results, similar to
its performance in the reconstruction and view interpolation tasks.

see the video in the Supplementary Materials.

Novel View Trajectory Interpolation. We next compare
views synthesized for frames excluded from the training
data in Fig. 6. DS-NeRF suffers from blur and ghosting in
the interpolation task. NeRF shows similar, though slightly
weaker artifacts on the few scenes it was able to converge
on. Our method produces high quality renderings when
handling both short (top and bottom rows) and long (middle
row) scenes. The results validate that these existing meth-
ods are not able to effectively synthesize scenes just from a
sparse set of images. GSN, which uses local support, seems
to be more consistent, producing similar output quality in
both tasks, regardless of scene length. Neural Point Light
Fields encode the scenes features on a sparse set of points,
hence achieve high-quality novel view interpolation, even
for long sequences.

Novel View Trajectory Extrapolation. The results shown
in Fig. 7 report visual extrapolation experiments. We
present a map of the novel view camera poses with respect
to the training trajectory. Our method is able to generate
a set of novel trajectories and scenes, that can hardly be
differentiated from the interpolation and reconstruction re-
sults. This is possible within certain regions of the scene
which are at least partially covered by the training images
see Supplemental Material. Views into scene regions which
were not seen during training, e.g., the back of a vehicle
only seen from the front, result in imaginary objects, proba-
bly hallucinated from points similar to the observed objects.
Incorporating information from additional cameras (possi-
bly covering 360◦) may allow synthesizing such occluded
scene regions in the future.

4.3. Ablations

We analyze architecture and parameter choices in Fig. 8.
Choosing self-attention for aggregating ray features proves
to be crucial, as we find that a heuristic weighting or naive
summation over all point features are not able to achieve
similar results. While merely summing prohibits training
completely, heuristic weighting of each point feature by the
inverse distance dk,j achieves better results. However, this

Heuristic K = 0 K = 1

Self-Attn. (Ours) K = 2 K = 8 (Ours)

Naive Sum Heuristic K = 0 K = 1 K = 2 Ours

PSNR ↑ 4.84 24.56 18.88 29.83 30.95 31.52

Figure 8: Ablation studies. Qualitative and quantitative compar-
isons of using different numbers K of closest points per ray and
different feature aggregation approaches.

weighting still lacks details and suffers from artifacts and
noisy scene reconstruction. We propose to index a set of
points, in contrast to methods that purely parameterize a ray.
In addition, we compare between using a different number
of points K per ray in Fig. 8, indicating that a substantial
number of points is essential for learning large scene light
fields. Additional ablation studies are reported in the Sup-
plementary Materials.

5. Conclusion

We introduce an implicit representation that encodes a
local light field on a point cloud. Departing from volumet-
ric representations that require querying radiance estimates
at hundreds of sample points along each ray, we learn real-
istic radiance fields with only a single radiance sample per
ray. Neural point light fields are functions of the ray di-
rection and local point feature neighborhood, which allows
us to interpolate the light field conditioned training images
without densely captured input views. As such, the method
allows for novel view synthesis in large-scale automotive
scenarios, with only a few sparse view directions available
during a drive-by capture. We validate the proposed method
for novel view synthesis when interpolating and extrapolat-
ing along unseen trajectories, where existing implicit repre-
sentation methods fail. While it is typical in automotive sce-
narios to have point cloud captures available, in the future
we plan to jointly recover point positions and local features
of the proposed neural point light fields.
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