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Fig. 1. Thallo is a domain-specific language (DSL) that generates tailored high-performance GPU solvers and schedules from a concise, high-level energy

description without the hassle of manually constructing and maintaining tedious and error-prone solvers. We compare algorithms in our language, Thallo, to
state-of-the-art implementations of four visual computing applications, including hand crafted GPU solvers and solvers generated with Opt [2017]. Thallo
code is compact, and exceeds state-of-the-art performance across diverse applications in graphics and vision.

Large-scale optimization problems at the core of many graphics, vision,
and imaging applications are often implemented by hand in tedious and
error-prone processes in order to achieve high performance (in particular
on GPUs), despite recent developments in libraries and DSLs. At the same
time, these hand-crafted solver implementations reveal that the key for high
performance is a problem-specific schedule that enables efficient usage of
the underlying hardware. In this work, we incorporate this insight into
Thallo, a domain-specific language for large-scale non-linear least squares
optimization problems. We observe various code reorganizations performed
by implementers of high-performance solvers in the literature, and then
define a set of basic operations that span these scheduling choices, thereby
defining a large scheduling space. Users can either specify code transform-
ations in a scheduling language or use an autoscheduler. Thallo takes as
input a compact, shader-like representation of an energy function and a
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(potentially auto-generated) schedule, translating the combination into high-
performance GPU solvers. Since Thallo can generate solvers from a large
scheduling space, it can handle a large set of large-scale non-linear and
non-smooth problems with various degrees of non-locality and compute-to-
memory ratios, including diverse applications such as bundle adjustment,
face blendshape fitting, and spatially-varying Poisson deconvolution. Ab-
stracting schedules from the optimization, we outperform state-of-the-art
GPU-based optimization DSLs by an average of 16X across all applications
introduced in this work, and even some published hand-written GPU solvers
by 30%+.
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1 INTRODUCTION

Optimization lies at the core of a variety of computer graphics,
vision, and imaging problems. Traditionally, high-performance op-
timizers for image processing and computer vision algorithms have
been hand-crafted specifically for these application domains, with
little cross-domain use of a method or its implementation.
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Expressing tasks instead as formal optimization problems allows
researchers to reuse energy functions and problem settings that
generalize across problem domains. Development and adoption is
accelerated in practice by efficient tools that enable researchers to
prototype optimization methods. Solving non-linear optimization
problems efficiently is an open problem, though successful frame-
works [Abadi et al. 2015; Paszke et al. 2017; Ragan-Kelley et al. 2013]
exist for stencil-based homogeneous image and neural network
operations.

Specifically, global non-linear least-squares (NLLS) optimization
problems are commonly used for a large variety of approaches
across multiple problem domains, ranging from bundle adjustment
[Agarwal et al. 2011; Dai et al. 2017; Triggs et al. 2000] to 3D recon-
struction [Newcombe et al. 2011] to face tracking [Thies et al. 2016].
Furthermore, non-linear least-squares problems form the inner loop
of many more complicated optimization problems, such as those
in interactive computational imaging [Heide et al. 2014]. In many
of these applications, run-time performance is often critical, and
real-time performance typically is a strict requirement. As many
of these optimization problems are also computationally expensive,
researchers are currently required to invest significant effort in their
implementation — in sharp contrast to readily available domain-
specific deep learning frameworks [Abadi et al. 2015; Paszke et al.
2017].

A common way of developing new algorithms using optimization
is to adopt solver libraries that are based on auto-differentiation,
such as Ceres [Agarwal et al. 2010a] or g2o0 [Kimmerle et al. 2011].
These libraries make it easy to try different solver types. However,
the resulting performance, in particular on parallel architectures, is
relatively slow. On the other end of the spectrum, we see custom
solvers that are tailored to a specific problem and implemented by
hand, for instance as efficient CPU code [Grant and Boyd 2014] or
GPU code [Thies et al. 2016]. Here, skilled programmers achieve
impressive run-time performance; however, they require significant
implementation effort: deriving derivatives by hand, structuring a
solver tailored to the problem, and scheduling options, which makes
rapid prototyping infeasible.

Domain-specific languages (DSLs) offer a unique opportunity to
combine the benefits of these two approaches. For stencil-based
problems, where the solver or individual operations can exploit reg-
ularity, we have seen significant progress [Devito et al. 2017; Heide
et al. 2016]. These DSLs benefit from encoding matrix structures
implicitly in the compiled code, which also allows for matrix-free
implementations. While progress has been impressive, these state-
of-the-art optimization DSLs often still cannot produce efficient
code for a variety of problems.

The issue is that different problem types require massive reorgan-
ization of the computation in order to achieve high performance.
For example, the handwritten BundleFusion [Dai et al. 2017] (see
Section 6) implementation is 15X faster than one generated by the
most efficient nonlinear-least squares DSL today.

The solution to this is scheduling, explicitly modifying the method
by which work is assigned to computing resources in terms of reuse,
parallelization and locality. Splitting problems into an algorithm
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description and execution schedule has been demonstrated in Hal-
ide [Li et al. 2018; Ragan-Kelley et al. 2013] as successful strategy
for efficient image processing pipelines.

In order to schedule our computation appropriately we need to
define a space of schedules. We do this by first observing vari-
ous code reorganizations performed by implementers of high-
performance solvers in the literature [Dai et al. 2017; Thies et al.
2016], and then defining a set of basic operations that span these
scheduling choices. Once this scheduling space is defined, we intro-
duce autoscheduling in this space.

Specifically, we introduce a scheduling language for a NLLS DSL
that generates GPU-based solvers. We designed the language, called
Thallo, to span the space of schedules that exist in the nonlinear
least-square solving literature.

Specifically, this work makes the following contributions:

o We introduce scheduling transforms for nonlinear least
square (NLLS) problems that define a space of GPU schedules
encompassing prior work.

o We create a realization of these transforms in a scheduling
language for a NLLS DSL.

e We introduce a heuristic autoscheduler for this scheduling
language. We validate that this autoscheduler achieves high
performance schedules for diverse GPU architectures and
across problem instances.

o We demonstrate that our framework achieves state-of-the-
art results on a variety of non-local optimization problems
in graphics, vision and imaging, while producing efficient
solver implementations that outperform existing GPU DSLs
by an average of 16X and are comparable or even slightly
outperform hand-written implementations.

We release the framework and implemented applications to
the open-source community.1

2 BACKGROUND

Non-linear Least Squares Optimization Problems. Unconstrained
non-linear least squares optimization problems are ubiquitous in
graphics, vision, and imaging.

At the core of these problems, a solver is used to find the best
value x*, such that an optimization objective E is minimized

R

x* = argmin E(x), with E(x) = [F:0]” = Fol2 ()
X i=1

The energy function E is expressed as the sum of squared residual
terms F;. These residuals can be arbitrary functions of the input,
making the problem (potentially) non-linear and non-convex [Boyd
and Vandenberghe 2004].

A concrete example is fitting a parametric curve y = f(x), with
f(x) = bo-sin(by -x)+by - cos(bg - x), to an array of (x, y) observation
pairs of size N. The optimization problem is to find the values of the
unknowns, by and b1, that produces the curve geometrically closest

Lhttps://www.thallo-lang.org/
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to the observations

N
argmin )" (yn — (bo - sin(by - xn) + by - cos(bo - xp))*  (2)

bo, by n=1
Problems of this form are often tackled by methods such as Gauss-
Newton (GN) or Levenberg-Marquard (LM) [Nocedal and Wright
2006]. GN and LM perform a fixed point iteration by iteratively
solving a sequence of linear problems, formed at each step by using
a first-order approximation of the Hessian at the solution of the
previous iteration step. This approach permits data-parallel imple-
mentations, which have been exploited to solve a large variety of
sparse [Meka et al. 2016; Wu et al. 2014; Zollhofer et al. 2014], semi-
dense [Dai et al. 2017; Parikh and Boyd 2013], and dense [Izadi et al.
2011; Thies et al. 2016] computer graphics and vision problems at
real-time frame rates. In these approaches, each of the linearized
problems is solved using a data-parallel preconditioned conjugate
gradient (PCG) solver, where each implementation was made by a

domain expert tailored to the respective problem.

High-level CPU Solvers. High-level CPU solvers are widely em-
ployed to tackle many optimization problems. For example, solv-
ers such as CVX [Grant and Boyd 2008, 2014] construct a special-
ized CPU solver for each type of problem. Google’s Ceres [Agar-
wal et al. 2010a] solver combines operator overloading with tem-
plate meta-programming to implement automatic backwards auto-
differentiation to solve general non-linear least squares optimization
problems on the CPU. CPU libraries such as Alglib [Shearer and
Wolfe 1985], GTSAM [Dellaert 2012], and g2o [Kiimmerle et al.
2011] enable the implementation of a problem-specific solver by
the manual specification of the objective function and optionally
its derivatives. CPU solvers with support for auto-differentiation
are easy to use and free programmers from the burden of manual
differentiation, but do not scale to real-time performance even for
medium-sized real-world optimization problems. Our method aims
for the same functionality and ease of programming, only requir-
ing the specification of the optimization objective; however, Thallo
automatically generates problem-specific and highly efficient data-
parallel GPU optimization code that can use the more parallel GPU
hardware to outperform similar CPU solvers.

Hand-written Non-Linear GPU Solvers. One widely employed tech-
nique to overcome the performance limitations of high-level CPU
solvers is to hand-design problem-specific data-parallel GPU solv-
ers, achieving real-time performance even for large-scale computer
graphics and vision problems. Sparse problems that have been accel-
erated based on data-parallel solvers range from real-time deform-
able mesh tracking [Innmann et al. 2016; Zollhofer et al. 2014] to
shape-from-shading [Wu et al. 2014; Zollhofer et al. 2015] and in-
trinsic video decomposition [Meka et al. 2016]. Semi-dense problems
include the real-time GPU bundling approach of [Dai et al. 2017], but
such problems also have various applications in computational ima-
ging [Heide et al. 2016; Parikh and Boyd 2013]. Dense problems that
have been tackled using handwritten GPU solvers include model-
to-frame camera tracking [Izadi et al. 2011; Newcombe et al. 2011;
Niefner et al. 2013] and parametric model fitting for real-time face
reconstruction [Thies et al. 2015, 2016]. To design an efficient data-
parallel solver the implementer must take the low-level problem

structure into account. For example, different hand-designed solvers
take advantage of the varying sparsity patterns of the underlying Jac-
obian, which might be a sparse, semi-dense, or dense matrix. Skilled
programmers achieve impressive solver speeds, but hand-designed
data-parallel solvers require a significant implementation effort, i.e.,
manual differentiation and finding a suitable problem-dependent
parallelization strategy through trial and profiling. Therefore, writ-
ing hand-designed GPU solvers is a tedious and error-prone process,
which makes rapid prototyping infeasible.

Domain Specific Languages. Domain Specific Languages (DSLs)
are a tool to enable the easier development of domain-specific ap-
plication code and allow for rapid prototyping, which is especially
important for research projects and design space exploration. There
are a large variety of DSLs for tackling different tasks in computer
graphics and vision. DSLs such as Ebb [Bernstein et al. 2016] and
Simit [Kjolstad et al. 2016] allow users to express and abstract linear
algebra operations over graphs and other relations on heterogen-
eous architectures. ProxImaL [Heide et al. 2016] is a DSL for tackling
inverse problems in computational imaging that are defined on regu-
lar grid-based domains, such as deconvolution and denoising. Indigo
[Driscoll et al. 2018] is an embedded DSL for implementing linear
operators for computational imaging. It uses an expression tree
representation to combine matrix-free and materialized matrix com-
ponents. PyTorch [Paszke et al. 2017] and TensorFlow [Abadi et al.
2015] are popular DSLs used for solving large-scale machine learn-
ing problems, e.g., training deep neural networks using mini-batch
gradient descent. Most closely related to our approach is Opt [Devito
et al. 2017], an optimization DSL that enables the data-parallel solu-
tion of sparse stencil-based and graph-based optimization problems.
Followup work has used it to implement fast GPU NLLS solvers
for applications such as depth refinement in conjuction with deep
learning [Laidlow et al. 2019], 3D avatar reconstruction [Zeitvogel
and Laubenheimer 2018], and shading-based refinement [Deng et al.
2018]. In contrast to Opt, Thallo introduces the concept of schedul-
ing to the non-linear solver implementations, allowing massive
code transformations that are not available in Opt. As such, Thallo
tackles a much wider class of non-linear least squares optimization
problems.

Scheduling. Scheduling, or high-level specifications of computa-
tion and storage reorganization, has seen a surge of interest in the
last few years. Halide [Ragan-Kelley et al. 2013] is a domain specific
language that abstracts computations on images and tensors and
makes it easier to write high-performance code. It introduces a split
between specifying the algorithm and the schedule. The original
paper introduces an expensive autotuning process for schedule dis-
covery, but importantly exposes the scheduling language (based
around imperfect loop nests) to the user. The Tensor Algebra Com-
piler [Kjolstad et al. 2017] and Taichi [Hu et al. 2019] decouple
data structures from computation in tensor algebra and 3D spatial
computation, respectively. Users implicitly change the schedule by
changing the underlying data structures. Automatic differentiation
was later added to Taichi [Hu et al. 2020]. Darkroom [Hegarty et al.
2014] formulates hardware stencil pipelines as linebuffer programs;
reducing scheduling to choices in delay buffer sizes, which is solved
as an integer linear program. Rigel [Hegarty et al. 2016] extends this
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Fig. 2. Thallo at a glance. The core compiler takes a high-level energy spe-
cification and a schedule as input. The autoscheduler can automatically
generate a good schedule from the energy specification, so novice to inter-
mediate users never have to write their own schedule.

to a synchronous dataflow model to model multi-rate modules, sac-
rificing automatic scheduling, and exposing scheduling constructs
(FIFO sizes) to the user. Manual scheduling in Halide is much easier
than hand-writing implementations, but writing efficient schedules
is much harder than writing the algorithm. Follow-up work seeks to
efficiently and automatically schedule Halide pipelines [Adams et al.
2019; Mullapudi et al. 2016; Sioutas et al. 2019]. Gradient Halide [Li
et al. 2018] extends Halide with reverse mode auto-differentiation to
compute gradients of scalar functions, and a heuristic autoscheduler
targeting GPUs. We take inspiration from these approaches for our
own autoscheduler, using a drastically simplified rules cascade that
nevertheless produces good schedules. Users can choose to provide
their own schedules or use this autoscheduler. See Figure 2 for a
high-level overview.

3 SCHEDULING CHOICES

We treat scheduling as a problem of splitting, re-ordering, and par-
allelizing loop nests over data-parallel pure functions similar to Hal-
ide [Ragan-Kelley et al. 2013]. Specifically, we rely on re-ordering
and materialization (computing and storing for later reading) as core
scheduling approaches, while introducing new constructs tailored
to the NLLS-centered matrix calculus domain we operate in.

3.1 The Order of Computation in NLLS Solvers

The core scheduling choices for GN and LM solvers revolve around
the computation of the Jacobian of the energy, and related matrix
multiplies. In the following, we describe core scheduling aspects for
this computation.

GN and LM perform a fixed point iteration by iteratively solving
a sequence of linearized problems, where the non-linear problem is
always linearized with respect to the solution of the previous itera-
tion step based on a first order Taylor expansion. In each iteration
step, a linear system of the form J735 = JTF has to be solved, where
F is the vector of residuals described in Equation 1 evaluated at the
previous estimate of the unknowns xg, and J the Jacobian matrix
of F with respect to the unknowns at x¢. It has one row for each
residual, and one column for each unknown; each entry is a partial
derivative of a residual term in the specification language

_[or o
T 0x1” 7 Bxy

A standard Preconditioned Conjugate Gradient (PCG) solver for this
linear system will initialize by computing JTF, and then perform
repeated iterations of right-multiplying J7J by a data vector, p,
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with as many elements as the unknowns. That is, it will repeatedly
compute J7Jp for different values of p.

The JTF and ]T]p computations are where much of the schedul-
ing choice lies. The partial derivatives that make up the entries of J
often share intermediates and depend on the particular choice of en-
ergy function, much like the sparsity pattern of J. Furthermore, the
computation of each entry of J7Jp consists of the (mathematically
commutative and associative) summations

OF aF 6F, 6F,
Oxi pJ Z Z 6xj ®)

which provide the opportunity for reorganization.
In this work we restrict ourselves to the Jacobi preconditioner for
PCG, which we compute outside of the inner loop.

ypi =

3.2 Code Reorganization

Code reorganization is a key part of extracting maximum perform-
ance in handwritten GPU solvers.

Although there is extensive previous work, no two handwrit-
ten solvers in the literature are structured identically. Each one is
specialized for the particular energy it was written to solve, with
local and global code reorganization done to exploit two avenues
for increased performance:

(1) Increase data-parallelism.
(2) Tradeoff computation vs. materialization costs for faster lin-
ear solve iterations.

The first avenue is straightforward: GPUs are massively data-
parallel and so high-performance solver code must be structured
to take advantage of this. Code is reorganized such that as many
lanes of computation as possible are active at once; this is done
by parallelizing over as many dimensions as possible, but also by
limiting synchronization stalls (by avoiding atomic collisions).

The second avenue is exploited by hoisting computation from
the inner loop of the linear solve outside of the inner iterations. The
system matrix (J7J) remains constant for the linear solve, so any
type of partial evaluation and materialization of its intermediates
before the linear solve is valid.

We break the concept of materialization into a couple of re-
lated scheduling transforms: materialization of the Jacobian or its
products, and fine-grained materialization of its intermediates.

There are three algebraically meaningful intermediates that can
be materialized per residual template before computing J7Jp:

3. I3, Jp

We adopt a simple notation to refer to this: surrounding a term
with brackets means it is materialized before computation of J7 Jp.
For example, an explicit computation that one might adopt if im-
plementing a solver using library building blocks is (o7 [J1]p: first
materialize (write out to memory) the Jacobian, then use a matrix-
matrix multiply to compute J7J and store that, then finally use a
matrix-vector multiply to compute J7Jp. This is the strategy adop-
ted by Opt [Devito et al. 2017] for "materialized" solvers. On the
other hand, most solvers generated by Opt are J7Jp (no brackets)
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Fig. 3. There are 5 different ways of structuring just the coarse-grained
JTJp evaluation of a residual group in a Levenberg-Marquardt solver, each
corresponding to various existing solvers. The top-left is used in Opt [2017],
bottom-left in Ceres [2010a], top-right for the dense term in BundleFu-
sion [2017] and the mid-right for blendshape fitting [2016].

solvers; they are computed matrix-free, without ever materializing
an intermediate matrix to memory.

We detail the possible combinations and permutations in Figure 3.
Reviewing prior work, Wu et al. [2014] and Meka et al. [2016] use
]T]p, Zollhofer et al. [2014], Zollhofer et al. [2015], and Thies et al.
[2016] use JT [Jp], Innmann et al. [2016] use [J7 ][[J]p], and Dai et al.
[2017] uses [_]Tj]p for the dense term andJT[Jp] for the sparse term.

Each of the solver types have various strengths and weaknesses.
For sparse problems, Opt-style matrix-free solves can end up re-
quiring less bandwidth than reading from a materialized matrix.
On the other hand, dense problems, or problems with many more
residuals than unknowns may save both bandwidth and significant
redundant compute by materializing parts of J7 Jp before the inner
linear iterations.

In addition, intermediate expressions are often computed and
stored before computing the full Jacobian. For example, the spher-
ical harmonic shading term in Wu et al. [2014] and the transform
matrices in Dai et al. [2017] are computed before the linear solve
begins, and are used by the Jacobian product kernels.

4 DESIGNING THE SCHEDULING SPACE

Existing high-performance GPU solvers are structured in radically
different ways in terms of how the computation of Jacobian terms
are structured and split across data-parallel compute kernels.

We define the scheduling space as the space spanned by vari-
ous scheduling transforms extracted from hand-crafted solvers. For
every conceptual transform, we provide one or more corresponding
Thallo scheduling constructs.

U,N = Dims("U","N") -- Dimensions for Inputs and Residuals
in = Inputs {

B = Unknown(float2, {U}) -- Two unknowns

data = Array(float2, {N}) -- N (x,y) pairs
}

u,n = UQ,N() -- Get Index Domains from Dimensions
b,x,y = in.B(u),in.data(n)(@),in.data(n)(1)

term =y - (b(@)*sin(b(1)*x) + b(1)*cos(b(@)*x))
-- Residuals are squared and summed over their Index Domains
r = Residuals {

fit = term

}

Fig. 4. "curvefit.t": simple Thallo example for curve fitting, implementing
the example in Equation 2.

4.1

In order to discuss scheduling with a concrete syntax, we introduce
our energy syntax using the parametric curve fitting example from
Equation 2 in Figure 4.

Energy Functions

N
arg min Z (yn — (bo - sin(by - xp) + by - cos(by - xp)))?
bo,bi  p=1
Like Opt, we embed the energy specification language in Lua.

Line 10 is a direct transcription of the math inside the summation
in Equation 2, and by assigning the result in the Residual Block on
line 13, we declare that we are trying to find the argmin of that term,
squared and summed along the dimensions of the Index Domains
used in the expression, here the trivial dimension U of size one, and
N, the number of points. Multiple expressions can be assigned to a
single name, and multiple names can be used. Each name defines a
residual group, which can be scheduled independently.

At the top of the specification, we list the problem dimensions
(U,N = Dims("U","N")).

These abstract dimensions are used both for specifying the dimen-
sions of input arrays, as well as defining index domains for what we
are mapping residuals over.

Lines 2-4 are the Input Block, where we define multidimensional
arrays that we pass in via the C APL Line 7 creates index domain
variables from the abstract dimensions, which are used to index into
the input arrays on the following line.

The API and programming model are not the focus of the pa-
per, but they resemble those of Opt [Devito et al. 2017], see the
supplemental Language Details for a more complete description.

4.2

The energy description creates an IR which is then acted upon by the
scheduling constructions in Section 4.3. This IR represents the Resid-
ual Block of the objective, which is an associative array from names
to residual groups. These residual groups are lists of expressions,
each of which represents a residual mapped along the dimensions of
the Index Domains used in constructing the expression. The expres-
sions themselves are represented as Directed Acyclic Graphs (DAGs)
of operators constructed from inputs, mathematical expressions, and
Index Domains, which are used to access Arrays and Unknowns.
Redundant expressions are shared, thus the IR is not composed of

Intermediate Representation
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trees and there is no need for an explicit common subexpression
elimination pass.

The computation of a Jacobian product requires computing the
partial derivatives of these expressions, mapped along their Index
Domains. In order to compute these derivatives, we use the OnePass
algorithm, a variant of forward-mode differentiation that was first
used in the HLSL shading language compiler [Guenter et al. 2011].

The compiler generates an IR corresponding to a single residual
group or output, depending on the kernel being generated, and
then emits a GPU kernel that maps (in parallel) across the Index
Domains used in the expressions, calling the derivative subroutine to
construct the subexpressions it requires for any particular residual-
unknown pair.

Materialized intermediate terms are handled similarly, with ker-
nels generated mapping across the Index Domains for an expression
to be materialized. These kernels are merged if they map over the
same dimensions, which allows expressions to be shared.

The various scheduling constructs modify how the energy IR is
transformed into kernels. Split and Merge change the groupings of
expressions in the residual groups; for a set of N expressions that
map over the same index domain, its possible to construct schedules
that compute the Jacobian terms corresponding to each of the ex-
pressions in N separate kernels that each is scheduled separately, or
merge them into a single kernel which can share expressions. The
Materialize construct on intermediates marks subgraphs to be mater-
ialized in their own kernels that are executed before the full Jacobian
products. The rest of the constructs (Sum Parallelize, Compute at
Output, Reorder, and Materialize of the Jacobian terms) directly
annotate the residual group IR node with information consumed by
the code generator on what Jacobian terms are to be computed and
how to map over them them.

4.3 Scheduling Constructs

4.3.1 Materialize. As discussed in Section 3.2, portions of the Jac-
obian can be computed and stored (materialized) once per non-linear
iteration of the solver and then reused for multiple PCG iterations.

The algebraically relevant materialization choice can be made
using the scheduling constructs :materializeJ(), :materializeJp(),
and :materializeJtJ() on the residual terms. When materializing
J or JTJ we use either compressed sparse row (CSR) or a dense
matrix. Specifically, we set this behavior by using :set_sparseJ()
and :set_sparseJtJ(). We use cuBLAS and cuSPARSE? for post-
materialization matrix-matrix or matrix-vector products.

Additionally, we can mark any intermediate expressions used
in a residual for materialization (and their partial derivatives, i.e.
their own Jacobians), using the :materialize() (and materializeJ())
construct. These values will be computed and stored once per linear
solve and used by either later materialization stages or the various
JTJp kernels in the inner iterations. We can visualize these fine-
grained materialization choices as cuts in the expression DAG of
the residuals, as we do in Figure 5.

4.3.2 Compute At Output. There is a natural data-parallel strategy
for materializing any term involving a Jacobian: parallelize along
the Index Domains of the residuals within a group. There are in

Zhttps://developer.nvidia.com/cublas and https://developer.nvidia.com/cusparse
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Fig. 5. Thallo is highly flexible and allows materialization of intermediate
terms at many points. This is key to exploring tailored solver choices and
rapid development while focusing on run-time performance. Here we visual-
ize the expression DAG representing the computation of the Jacobian. Since
Thallo controls the compilation process, it is able to materialize intermediate
terms before the full computation of the Jacobian or its products.

We show a materialization choice unavailable to alternate solvers

or solver frameworks as a green cut in the expression DAG;

expressions at nodes immediately above the cut are materialized.

general multiple outputs per residual when computing J7Jp or J77J,
requiring an aggregation scheme. We generally rely on fast atomic
operations, which can introduce atomic contention and increase
write bandwidth load. Wu et al. [2014] and Meka et al. [2016] im-
prove performance significantly by computing the terms "at output”,
i.e. they compute a single element of J7Jp or J7F per lane of com-
putation. This involves a non-trivial code transform that inverts the
mapping from residuals to unknowns and inserts boundary condi-
tion checking; this transform is implemented for "Stencil Residuals”
in Opt [Devito et al. 2017], see Figure 6.

This transform increases redundant computation and bounds
checking and may decrease parallelism, but decreases write band-
width load and atomic contention. Additionally, when the residual
uses Sparse constructs, this can require an explicit inverse map-
ping data structure (we use a compressed sparse row analogue).
Since this transform has competing effects on performance, Thallo
exposes it as a scheduling transform, on both J'Jp and JTF as
compute_at_output().

4.3.3  Sum Parallelize. When multiple partial derivatives of a given
residual have identical form (but different data), its possible to ex-
ploit extra data parallelism when computing the Jacobian or Jac-
obian products, and Thies et al. [2015] does just that. Instead of
parallelizing over residuals, they parallelize over both residuals and
unknowns, materializing the partial for a given unknown-residual
pair on each lane of computation. This extra data-parallelism arises
naturally when a residual sums over a dimension corresponding to
an unknown read; the partial for a given unknown then corresponds
to the derivative of a single term of the sum. This is done in our
Blendshape Fitting example, see Figure 7.

The energy language for Thallo contains a Sum construct that sums
an expression over one or more dimensions, which allows users to


https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusparse
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Residual templates

Residuals {
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h_reg = w_reg*(X(x,y) - X(x+1,y)),
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Fig. 6. In order to compute a single entry of J7Jp, the compiler needs
to invert the mapping from residuals to unknowns. This corresponds to
computing the inverse of the stencil for stencil residuals. This transform

was done automatically by Opt, we expose it as a scheduling transform.

This figure is adapted (with permission) from Fig. 9 in [Devito et al. 2017]

#unknowns - S

v

#residuals
4

v

#(residuals x unknowns)

warp reduction = = = = = = = 4

thread —>
warp size = 4

Sequential Parallelized Sum

Fig. 7. For associative and commutative reductions (namely Sum()), we can
expose significantly more parallelism by parallelizing over both unknowns
and residuals instead of merely residuals. This is done, for example, in the
Blendshape solvers we compare against.

express ubiquitous concepts such as dot product or convolution in
our energy language. We can demonstrate this using a simple 5 X 5
deconvolution example:
W, H, K =Dims("W", "H", "K") - K =5
in = Inputs {
X = Unknown(float, {W,H}) -- Image

Target = Array(float, {W,H})

kernel = Array(float, {K,K}) -- Convolution Kernel

}

x,y,k_0,k_1 = WO, HO, KO, KO

kernel_weight = in.kernel(k_0,k_1)

pixel = in.X(x-k_0+2, y-k_1+2)

convolved = Sum({k_0,k_13}, kernel_weight*pixel))
Residuals = { conv = in.Target(x,y) - convolved}

This energy specification sets up an energy that is minimized
when the unknown image (X) convolved with kernel produces the
Target image. The partial derivatives for a given residual differ only
in the index of the kernel weight they read, and so can be computed
using a data-parallel kernel. We expose this in Thallo using the
:parallelize() construct, which can be specified on any Sum() term
(in this example, convolved).

4.3.4  Split/Merge. Residual contributions to a particular term are
separable due to the additive commutativity in Equation 3. This
is used in Dai et al. [2017] to have completely separate schedules
for the sparse and dense terms of the optimization problem. We
use Residual Groups and split/merge constructs to capture this
separability. Residual Groups that are defined over the same Index
Domains can be merged together or split apart. When executing
each Jacobian product, all of the expressions in a single residual
group are executed together, which allows for term sharing (and
thus common subexpression elimination). In Thallo, each separate
Residual Group corresponds to a separate GPU kernel launch for
every Jacobian product.

4.3.5 Reorder. The prior scheduling transforms can be viewed as
constructing a set of parallelizable loop nests, corresponding to par-
tial evaluation of the Jacobian and various Jacobian product terms.
The iterator order for these loop nests in handwritten code was
chosen by the implementors. This particular transform is important
for scheduling reductions on the GPU, as iterator order can determ-
ine whether it is possible to do fast local reductions and decrease
global memory bandwidth, see Figure 8.

In future work, we envision researchers could write a backend
that lowers these loop nests to Halide pipelines, which would im-
mediately suggest a large set of scheduling transforms that were
not used in prior work. For the initial implementation of Thallo, we
chose to only implement a transform that transposes the loops, i.e.
the reorder() construct.

4.4 Complete Schedule Example

We provide an example of a schedule using multiple scheduling
constructs in Figure 9. In total, this schedule accelerates the solver
by multiple orders of magnitude. The final three lines specify the
schedule: reorder computation to allow for coherent reductions,
force the matrix representation of the camera transformation to be
materialized before JJ computation, and then materialize the full
J7J matrix before the inner iterations of the solver, respectively.
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Fig. 8. By reordering the iteration over residuals, we can choose an iteration
order that enables us to use warp reductions (SIMD lane shuffles) that
bypass expensive memory hierarchies when associatively reducing into
unknown-indexed vectors or matrices. In this image, by a simple index
reordering (and adding simple warp reduction code), write bandwidth and
atomic contention is reduced by a factor of 4 as each separate Streaming
Multiprocessor (SM) only issues reductions to one output (in the best case
this can be improved by a factor of the SIMD width, 32 on all existing
NVIDIA GPUs).

Pairs,T,W,H = Dims("Pairs","T","W","H")

Inputs {
CamTranslation = Unknown(float3,{T},0),
CamEulerAngles = Unknown(float3,{T},1),
Positions = Array(float4, {W,H,T},2),
Normals = Array(float4, {W,H,T},3),
intrinsics = Param(float4, 4),
imageDim = Param(float2, 5),
TargetT = Sparse({Pairs}, {T}, 6),
SourceT = Sparse({Pairs}, {T}, 7)

}

t,w,h,p = TO,WO, HO, Pairs()
t_s, t_t = SourceT(p), TargetT(p)
posSrc, normalSrc = Positions(w,h,t_s), Normals(w,h,t_s)

xformT = convert_to_matrix(CamRotation(t), CamTranslation(t))
srcToTgtXform = matmul(xformT:get(t_t),invert(xformT:get(t_s))

normalSrcInTgt = vec3(gemv(srcToTgtXform,normalSrc))

posSrcInTgt = rigid_xform(srcToTgtXform,posSrc)

tgtScreenPos = camera_to_depth(intrinsics, Constant(posSrcInTgt))
inScreen = rect_contains_point(imageDim, tgtScreenPos)

posTgt = vec3(bilinear_sample(Positions,tgtScreenPos, t_t))
pointToPlane = dot(posTgt - posSrcToTgt, normalSrcInTgt)

r = Residuals {
dense = select(inScreen,pointToPlane,?.0)

}

r.dense:reorder({w,h,p})
xformT:set_materialize(true)
r.dense.JtJ:set_materialize(true)

Fig. 9. A simplified dense-only implementation of BundleFusion [Dai et al.
2017]. The final 3 lines specify a high-performance schedule.

5 AUTOSCHEDULER

The amount of scheduling choices for moderately complicated en-
ergy specifications can be overwhelming. In Figure 10, we show the
distribution of convergence time on thousands of solvers for Bundle-
Fusion, generated with different schedules. In order for non-domain
experts to achieve high performance without reasoning about the
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Fig. 10. Distribution of convergence times for solvers generated with various
schedules for the BundleFusion example. A randomly selected schedule
would perform much worse than a well-chosen one.

scheduling transforms, we developed a heuristic rule-based auto-
scheduler that mimics a basic strategy that domain experts use to
choose performant schedules for their handwritten solvers. This
autoscheduler is controlled by a single configuration flag. Our auto-
scheduler executes very quickly (under a millisecond) and requires
no user guidance. We empirically demonstrate that solvers gener-
ated by our autoscheduler achieve better performance than previous
work on all problems detailed in Section 6, despite there being no
formal performance guarantees.

We use a cost model that evaluates the total time to perform
one nonlinear iteration for a given scheduled solver. We found that
taking into account a few cost features provides efficient schedules.
Moreover, it makes the cost model interpretable by a human, but
elides many details of the underlying hardware that could be used
for more accurate comparisons. Alternative cost models, such as
Hong and Kim [2009] or the learned cost model for the latest Halide
autoscheduler Adams et al. [2019] could be incorporated into Thallo
and are left to future work.

We build our cost model on the following features:

e Total Memory

e Memory Accesses

o Compute Operations
e Atomic Collisions

For this cost model, we need to query a few properties of the
GPU: the theoretical peak FLOPs (t.), the peak bandwidth (t,), the
maximum available memory (M), the number of threads in a warp
W, and the minimum size of a global memory transaction gp,.

For a given schedule S, concrete dimensions, and an average
number of expected linear iterations per nonlinear iterations (£), we
can compute a featurization of the schedule.

First, we can separate out the generated compute kernels for S
into two disjoint sets Ky = {kn;, } for kernels executed once per
nonlinear iteration and K, = {kr, } for kernels executed each linear
iteration. For a given kernel k, We can then define a cost C for each
kernel k as

C(k) = t max (?, O—k) s

m tC
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where o is the number of arithmetic operations in kernel k, t.
is the number of threads launched by kernel k, my. is the amount
of memory accessed by one thread in the kernel, where a memory
access is rounded up to g, if adjacent threads do not access adjacent
locations in memory and atomic writes are only counted once per
warp if the iteration order (specified by reorder()) allows for warp
reductions before the atomic write.

Note that the two sides of the max correspond to the bandwidth-
bound and compute-bound regimes in the roofline model ( [Williams
et al. 2009]).

We also compute the amount of global memory necessary to store
all inputs/outputs and intermediates (M(S)).

We then compute a cost for S as

00 M(S) > M
C(S) = (
Sy ek CkN,)) + € (S ek, Clk,)) - M(S) < M

Our cost model is intentionally simple and elides many architec-
tural features, see the supplemental material for an examination of
its predictiveness on our application suite.

The autoscheduler uses the following rules-cascade as a greedy
scheme to find a low-cost schedule:

1. The autoscheduler aggressively merges all residual groups
that are mapped over the same Index Domains (this monotonically
reduces the cost in the cost model if there are any shared terms,
otherwise it is cost-neutral).

2. We use breadth-first search on the expression DAG for a re-
sidual group starting from array accesses, materializing whenever
reading an expression and its Jacobian would lower cost compared
to computing the original expression (including the new materializ-
ation kernel in the cost calculation).

3. For the merged groups, we choose the high-level J7 Jp material-
ization strategy by evaluating the costs over the five combinations.

4. If the schedule for a group is J7 Jp and the residuals are mapped
over the dimensions of the unknowns, we map over elements of
the output using the compute_at_output() transform (this does not
require a potentially expensive explicit inverse map, and lowers the
number of required memory writes).

5. We sort the indexing order of the residuals such that any Index
Domain used in the residual that is not used to access an unknown
is brought to the front (so it is the innermost iterator); this is a
mechanical process that, combined with coherent reduction code
emitted by our compiler, drastically improves performance, see
Figure 8.

6 RESULTS

In the following, we demonstrate the benefits of the scheduling
constructs in Thallo on a large variety of problems in imaging,
vision, and graphics. For extensive descriptions of the problems and
details of validation of solvers generated by Thallo on the NIST
StRD NLLS dataset?, see the supplementary material.

Shttps://www.itLnist.gov/div898/strd/nls/nls_main.shtml

6.1 Applications

We demonstrate the use of Thallo on six least-squares optimization
problems in visual computing:

Bundle Adjustment. Bundle Adjustment is at the core of every
structure-from-motion framework (SfM). It is used estimate accurate
and globally-consistent camera parameters alongside a sparse 3D
reconstruction [Agarwal et al. 2011; Jebara et al. 1999; Schonberger
and Frahm 2016; Triggs et al. 2000] from a set RGB images. We
implement standard Bundle Adjustment, formulated as in Bundle
Adjustment in the Large [Agarwal et al. 2010b]. In this section
we evaluate the solvers on the second largest problem in the BAL
dataset. The optimization is posed over 4585 cameras, each of which
has 9 unknown parameters. There are 1324582 correspondences,
and twice as many residual terms. See the supplement for a much
more comprehensive comparison on all of the BAL problems, with
various error thresholds.

BundleFusion. BundleFusion [Dai et al. 2017] formulates the ana-
log problem to Bundle Adjustment for the RGB-D case with known
depth. It uses both sparse image correspondences and dense depth
maps to achieve highly-accurate loop closure. For a sparse set of
inter-frame correspondences C and a set of N images, a global
alignment energy is optimized to find the best rigid camera trans-
formations T; (using 6 DoF parameterizations with Euler vectors
for the rotations) such that the total point-to-point error of a sparse
set of detected and matched feature points is minimized

N N
T; = arnginZ Z Z ||Tici'C - chjl'Hg : @

i i=1j=1(Lk)eC.j)

We use the sparse term of BundleFusion and the combined sparse
and dense energy as separate example problems. For the evaluated
dataset, the sparse-only problem has 2000 residuals, while the full
problem has > 265000.

Shape-and-Shading. We modify the shape-from-shading problem
evaluated in Opt [Devito et al. 2017] to solve not only for refined
depth from the output of an RGB-D sensor, but also jointly for the
spherical harmonic (SH) lighting conditions, which were fixed in
a preprocessing step in the original work by Wu et al. [2014]. We
add an explicit lighting residual fitting term as well as modifying
the gradient shading terms. This results in a significantly different
Jacobian structure, as the 9 SH terms are in every pixel’s lighting
and shading residuals.

Face Template Fitting. Non-rigid model-based registration is a
fundamental building block for a large variety of tracking and re-
construction approaches [Loper et al. 2015; Romero et al. 2017; Thies
etal. 2016; Xu et al. 2018]. One prominent example is fitting an affine
parametric 3D mesh model # to 2D observations, e.g., as done in
Face2Face [Thies et al. 2016]. For face tracking, the affine parametric
model is then defined by a low-dimensional expression subspace of
M blendshapes spanned by a matrix B € R3N*M that models the
facial expressions relative to a neutral face template a € R3N

m=%P(c)=a+Bc .
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Each of the M blendshapes represents a different facial expression
as per-vertex offsets to the neutral face template and new faces
m € R3N are created by interpolation of these M displacement vec-
tors based on the M blendshape weights ¢ € RM. We fit the model
to 2D data by finding the best coefficients c*, such that ©(P(c*))
best matches a set of target correspondences t € R*N, where © is
a projective camera transformation (using the 9-dimensional para-
meterization from BAL [Agarwal et al. 2010b])

= argcmin ||t - G)(P(c))”i . (5)

Poisson Deconvolution. We developed a pipeline for using Thallo
on a general class of proximal optimization problems [Parikh and
Boyd 2013] for imaging applications, scheduling the sub-problems
of the ProxImalL optimization compiler [Heide et al. 2016]. As a
concrete example, we adopt the Poisson Deconvolution optimiza-
tion problem from [Heide et al. 2016] with identical regularization
weights on the total-variation term.

Spatially-Varying Deconvolution. While existing methods for effi-
cient spatially-varying deconvolution require the blur to be local
point-spread-functions (PSFs), i.e., stencil-operations that are at
least spatially-invariant in a local neighborhood, Thallo lets us for-
mulate per-pixel PSFs with arbitrary support over the image plane.
We evaluate this more complicated example as well.

6.2 Run-time Performance Evaluation

For all the examples mentioned in Sec. 6.1, we compare Thallo
against state-of-the-art implementations and high-level languages.
Our first comparison is against the flexible and mature CPU-based
Ceres library [Agarwal et al. 2010a]. Since Ceres is a CPU library,
and the other comparisons use (far more parallel) GPUs, this is not
an apples-to-apples comparison, and it is not surprising that the
GPU-based solvers converge faster in wall-clock time.

Our second point of comparison is the state-of-the-art GPU op-
timization DSL Opt [Devito et al. 2017], which has a similar pro-
gramming model to ours sans the scheduling constructs that allow
Thallo to generate efficient solvers on non-local problems.

Where available, we also compare against existing handwritten
GPU-based solvers, such as the original open-sourced BundleFusion
solver [Dai et al. 2017].

We run all our experiments on a Linux machine with an NVIDIA
TITAN X (Pascal) and an Intel Core i7-6700K Processor, which has 4
physical and 8 virtual cores. For the autoscheduler evaluation across
architectures we also use NVIDIA Jetson Nano Devkit and a Google
Compute Engine instance with a NVIDIA Tesla K80 GPU a 2 vCPUs
on an Intel Broadwell processor.

6.2.1 Performance Comparisons on Non-Local Problems. Table 1
shows the summary of the run-time results; comparing solvers gen-
erated by our system both with no scheduling transforms and with
autoscheduling to solvers generated with the Opt DSL. All of these
solvers use single-precision arithmetic for highest performance. We
additionally compare to Google’s Ceres Solver, which, unlike the
other solvers, does not use the GPU. It is a mature library that can use
a variety of optimization methods, including solving unconstrained
optimization. We use Ceres’ Levenberg-Marquardt implementation,
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and use the same hyperparameters for Thallo, Opt, and Ceres. Ceres
has multiple choices for inner linear solver (in contrast to Thallo
and Opt, which are currently limited to preconditioned conjugate
gradient), and so we must choose among the options for a compar-
ison. We chose the inner linear solver for Ceres based on published
performance advice* and manual search per-problem in order to
minimize convergence time, always including the PCG solver in
the search. Since Ceres operates in double precision, it often com-
pletes in fewer iterations than the other solvers (while requiring
more memory traffic for each iteration). We report convergence
time in this section, and provide iteration count breakdowns in the
supplement.

Comparing the bottom two rows, it becomes clear that being able
to make structural changes via the schedule allows for significant
performance improvements. Our autoscheduled solvers consistently
outperform solvers with no scheduling transformations.

Our autoscheduled solvers unsurprisingly outperform the CPU-
based Ceres across the board, due to a combination of taking ad-
vantage of the massive parallelism of the GPU hardware and our
improved scheduling. Similarly, we outperform every solver gen-
erated by Opt on these problems, as we are able to schedule the
problems to take greater advantage of the underlying hardware. We
perform on par or better than every handwritten solver, by virtue
of being able to express the same schedules or explore better ones.

6.2.2  Performance Comparison on Problems with Small Stencil Struc-
ture. In addition to the non-local problems above, we use Thallo to
solve ten energy formulations with small stencil structure, where
each residual is computed from a small local neighborhood of un-
knowns, which results in a predictable and very sparse Jacobian.
Since these problems have schedules which can be realized by
matrix-free stencil constructs, they are efficiently addressed by pre-
vious work.

In Table 2, we show comparisons against state-of-the-art baselines
realizing the same problems. Although the Opt DSL by DeVito et
al. [2017] was centered around these specific problems, we achieve
comparable or better run-time performance. This is an expected res-
ult: our schedules subsume the limited scheduling choices available
in Opt.

6.2.3  Performance Scaling with Problem Size. In Fig. 11, we evaluate
the performance of solvers generated with Thallo versus other sys-
tems for Sparse BundleFusion as we increase the problem size. Our
scheduling gives us a slight edge over the handcrafted CUDA solver
of [Dai et al. 2017], despite the latter benefiting from the drastically
simplified matrix exponential derivatives.

Our solvers are roughly twice as fast as those generated by Opt
throughout the range, and are an order of magnitude faster than
solvers built with Ceres at the highest unknown counts, with the
performance gap widening rapidly as we saturate the more parallel
hardware.

Also note that our autoscheduler changes the schedule based
on problem size, which gives it the performance edge against our
(single) manual schedule at low unknown counts, where materializ-
ing J7J is advantageous. An added benefit of a high-level system

*http://ceres-solver.org/solving_fags.html
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Optimization Problem

BundleFusion Face Fit Bundle Adjust Deconv. Deconv. Y%
Solver [2017] [2016] Shape/Shading [2000] (11 x 11) (15 x 15) Deconv.
Ceres [2010a] 5394.10ms 25612.1ms 21982.3ms 11954.56ms 25304.85ms 55158.87ms 81344.37ms
Opt DSL [2017] 110.39ms 1057.8ms 2259.6ms 114.78ms 195.93ms ) [eS)
Hand-written CUDA 5.57ms  1946.5ms N/A N/A N/A N/A N/A
Ours (Unscheduled) 106.3ms  1013.1ms 2235.6ms 105.81ms 187.73ms 253.39ms 452.16ms
Ours (Auto) 2.96ms 46.3ms 171.86ms 89.47ms 46.58ms 93.11ms  137.92ms

Table 1. Runtimes of different solvers on various benchmarks. We report time-to-convergence for the problems described in Section 6.1. From top to bottom,
we have solvers generated by the Ceres library [Agarwal et al. 2010a], solvers generated by Opt [Devito et al. 2017], handwritten expert CUDA solvers (using
hand-coded derivatives) if existent, solvers generated by Thallo with no scheduling annotations (and no autoscheduling), and solvers generated by Thallo with
autoscheduling. The fastest implementation for each problem is bolded. Note that Ceres is a flexible high-level library that executes on the CPU, while the
other systems use the GPU. Also, Opt fails to compile for 15 x 15 Deconvolution and Spatially-Varying Deconvolution.

Optimization Problem

Solvers ARAP COoT EMD 1A% 1D OF PIE RNA SFS VMD
Ceres [2010a] 74339.97ms N/A N/A  132.58ms N/A N/A  75404.39ms N/A  75404.39ms 187.96ms
Opt DSL [2017] 5201.91ms 118.21ms  35.40ms  138.09ms  19.59ms  7.14ms 29.98ms  36.34ms 88.99ms  62.65ms
Hand-written 5355.39ms N/A N/A  260.18ms N/A N/A 32.43ms N/A 106.64ms  65.70ms
Ours (Unscheduled) 5122.35ms  83.16ms 29.13ms  317.76ms 31.58ms 6.77ms 28.49ms 34.61ms 456.74ms  37.51ms
Ours (Auto) 5122.35ms 42.11ms 29.13ms 128.65ms 19.11lms 6.77ms 28.49ms 34.61ms 84.13ms 38.01ms

Table 2. Performance comparison on problems with small stencil structure that were the focus of current state-of-the-art DSLs [Devito et al. 2017]. From left
to right: as-rigid-as-possible mesh deformation [Sorkine and Alexa 2007] (ARAP), cotangent mesh smoothing [Desbrun et al. 1999] (COT), embedded mesh
deformation [Sumner et al. 2007] (EMD), image warping [Dvoroznak 2014] (IW), intrinsic image decomposition [Meka et al. 2016] (11D), optical flow [Horn
and Schunck 1981] (OF), Poisson image editing [Pérez et al. 2003] (PIE), robust non-rigid alignment [Zollhofer et al. 2014] (RNA), shape-from-shading [Wu
et al. 2014] (SFS), volumetric mesh deformation [Innmann et al. 2016] (VMD). As expected Thallo is able to match or outperform Opt, despite the latter being
designed specifically for these stencil applications, since the scheduling choices in Thallo subsume Opt’s limited scheduling choices.

S BundleEusion Scali 6.3 Schedule Space Exploration
parse Biindierusion Scaling Our scheduling primitives define a rich space of schedules for any

o ~=— Qurs (Manual) given problem.
s —+— QOurs (Auto)
gﬂ —— Opt 6.3.1 Scheduling Case Study. We use Dense+Sparse BundleFusion
5 10% 7 —+— Handwritten L30x as a case study of the power of Thallo scheduling constructs, in
% Ceres Table 3. We start with a default schedule and transform the sched-
g ule step-by-step into a high-performance schedule, in the process
:E" making the resulting schedule significantly faster.
‘Lg) 10! -
43 Schedule Time (in ms)
E <no scheduling annotations> 106.34ms
1o T r.dense:reorder{w,h,t} 41.32ms
# Unknowns (log scale) xformT:materialize(true) 16.23ms
r.dense.JtJ:materialize(true) 4.35ms
Fig. 11. Time to convergence of various solvers on Sparse BundleFusion r.sparse.JtJ:materialize(true) 2.96ms

as we increase vary the number of unknowns, charted on a log-log plot.
We configure Thallo and Opt to generate Gauss-Newton solvers to match
the published handwritten solver [Dai et al. 2017] with its preconfigured
iteration counts; and configure the Ceres solver to stop once it lowers the
cost to within 1% of the converged handwritten solution. Our autoscheduler
changes the schedule based on problem size, which gives it the perform-
ance edge against our manual schedule at low unknown counts, where

Table 3. A breakdown of the BundleFusion problem as we add scheduling
constructs to the schedule. The final schedule is over 35x faster than the
original schedule.

6.3.2 Quantitative Schedule Space Search. In order to quantify the

materializing J7J before the linear solve is advantageous.

like Thallo is that it is trivial to generate different solvers tailored
to different data distributions.

performance space our scheduling primitives allow users to explore,
we exhaustively explored the combinatorial scheduling choices on
two problems of different complexities and generated performance
distributions, seen in Figure 12. This exhaustive search is effectively

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Fig. 12. Distribution of the performance of schedules expressible in our
system. The orange line marks the schedule selected by our autoscheduler,
the grey line marks the schedule corresponding to Opt [Devito et al. 2017],
and the blue ticks represent individual data points. This data is summarized
by both a histogram and kernel-density estimated distribution. The top
graph shows that on the relatively simple Procrustes Alignment problem,
our autoscheduler chooses a decent schedule, only 15% off the optimum,
outperforming the Opt schedule slightly and outperforming the median
schedule by about a factor of 2. For BundleFusion, our autoscheduler actually
chooses the best schedule available, outperforming most other schedules by
an order of magnitude, outperforming the Opt schedule by a factor of 35,
and almost doubling the performance of the published handwritten solver.
The performance distribution spans a very large range.

an autotuning process, however it is impractical for algorithm de-
velopment that requires rapid prototyping. For example, due to the
several second overhead of CUDA compilation, it took more than
48 hours to generate the distribution for BundleFusion.

These results suggest both that our scheduling primitives define
a rich scheduling space, and that our heuristic autoscheduler effect-
ively finds good schedules within that space.

6.4 Autoscheduler Evaluation

Using the exhaustive search method from Section 6.3.2, we evaluated
our autoscheduler’s performance versus the best schedule possible.
The results can be seen in Table 4. Across the suite of problems,
our autoscheduler picks a schedule within 30% of optimal, with the
majority of schedules within 10% of optimal.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Best Autoscheduled % Off
Example Time (ms) Time (ms) Optimum
BundleFusion 2.96 2.96 0.00%
Projective Face Fit 46.26 47.03 1.67%
Shape and Shading® 171.16 171.86 0.41%
Bundle Adjust 83.47 89.47 7.19%
Deconv. (11 x 11) 44.39 46.58 4.93%
Deconv. (15 X 15) 88.63 93.11 5.05%
SV Deconv. 137.92 137.92 0.00%
ARAP 5041.4 5122.35 1.61%
COT 32.44 42.11 29.81%
EMD* 26.83 29.13 8.57%
wr 128.65 128.65 0.00%
D™ 19.11 19.11 0.00%
OF* 6.36 6.77 6.45%
PIE 27.81 28.49 2.45%
RNA 33.65 34.61 2.85%
SFS* 79.22 84.13 6.20%
VMD* 30.1 38.01 26.28%

Table 4. Comparison between solver convergence time of the best possible
schedule, and the schedule selected by our autoscheduler. The rightmost
column is the relative increase in solver time from using the autoscheduled
solver versus the best possible one. Examples for which the exhaustive search
did not complete within a day are marked with *; for these we modified
the exhaustive schedule search to exclude the split() scheduling primitive,
which shrunk the space enough to be tractable.

We provide a more thorough evaluation of the cost model used
by our autoscheduler in the supplemental material.

6.4.1  Autoscheduler on Different GPU Architectures. We repeated
the autoscheduler evaluation on two other GPU platforms of varying
performance: an NVIDIA Jetson Nano Devkit which has a low-power
Maxwell GPU and a NVIDIA Tesla K80 GPU used in data centers,
which has about 40X more compute cores. The results from all
3 platforms can be seen in Table 5. Though absolute performance
drastically differs between platforms, the autoscheduler still picked a
schedule within 40% of optimal in all cases. This experiment validate
the efficacy of the proposed scheduling scheme across platforms
and for a wide set of problem instances in visual computing.

7 FUTURE WORK

It is easy to use Thallo in a larger system thanks to its thin shading-
language-like API; however, the interoperation between other DSLs
such as Ebb, Simit, Halide, or deep learning frameworks is at the
coarse granularity of passing data between them. It would be be-
neficial to jointly compile constructs between high-level languages
and thus allow for global scheduling options; this remains an open
problem.

Thallo is currently limited to generating Levenberg-Marquardt
and Gauss-Newton solvers for unconstrained nonlinear least squares
optimization. It is also currently limited to Jacobi preconditioning
for compatibility with matrix-free scheduling. Future work could
extend the solver types or add support for constraints. Ideally, there
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Jetson Nano

Datacenter GPU Desktop GPU Edge-Compute GPU
% Off Optimum
Example TITANX K80  Nano
BundleFusion 0.00% 1.93% 1.19%
Projective Face Fit 1.67% 0.75% 4.04%
Shape and Shading  15.38% 4.46% 20.72%
Bundle Adjust 7.19% 8.30% 10.19%
Deconv. (11 X 11)  4.93% 574% 1.52%
Deconv. (15 X 15) 3.93% 6.95% 1.73%
SV Deconv. 0.00% 0.45% 1.81%
COT 29.81% 1.09% 2.99%

Table 5. Relative increase in solver time from using the autoscheduled solver
versus the best possible one on three different platforms. All examples from
Table 1 are included, along with the worst performing example from Table 4.

could be a Matlab-like language for writing general solvers where
the resulting solvers could perform on par with Thallo’s. Thallo
could also be extended to work on other backends, such as multicore
CPUs or FPGAs.

Promising areas for immediate follow-up work include extending
the range of scheduling options by integrating sparsity encoding
such as in [Kjolstad et al. 2017] or using more alternative approaches
to the autoscheduler, such as the learned cost model in [Adams et al.
2019].

8 CONCLUSIONS

We introduced a scheduling space that encompasses code reor-
ganization choices that span the literature for fast GPU nonlinear
least squares solvers in graphics and vision. We proposed Thallo,
a domain-specific language that enables rapid exploration of this
scheduling space using an energy specification and scheduling spe-
cification language design. We introduce a compiler that takes a
user’s problem description and automatically generates a highly-
efficient solver by exploiting problem structure. By default, our new
autoscheduler generates tailored schedules based on this structure.
In a series of experiments, we have validated the proposed frame-
work on a variety of local and non-local optimization problems in
graphics, vision and imaging. Thallo achieves state-of-the-art results
on these problems: our run-time is comparable or even outperform
hand-written implementations — in a few seconds of automatic
code generation in contrast to hours of tedious hand-written imple-
mentation. Overall, we believe that Thallo will help to make high
performance rapid prototyping much more accessible for practi-
tioners in graphics and vision who want to develop new energy
formulations.
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