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In this supplement, we present additional details and re-
sults. Specifically, we provide

• Description and results on the live capture system.

• Prototype DOE details.

• Optimization details on the DOE phase design.

• Radiometric calibration between DOE patterns.

• Results on the environment-specific training.

• Examples of the stereo NIR dataset.

• Additional analysis on the image formation model.

• Comparison between illumination patterns.

• Details on the self-supervised learning for finetuning.

1. Live Capture
We develop a live-capture system that acquires stereo

images and estimates a disparity map at 10 frames per sec-
ond (FPS) as shown in Figure 1. We refer to the Supple-
mental Video for the full results. We use a desktop com-
puter with a NVIDIA GeForce RTX 3080 and the input
12-bit images are fed to our reconstruction network. We
write our capture program in Python with multi threading to
simultaneously perform capture and reconstruction, where
Pytorch [4] is used for the reconstruction. The script con-
sists of capturing the stereo images using the camera APIs,
rectifying the images with the calibration data, and estimat-
ing a disparity map using our reconstruction network. For
the reconstruction thread, we measure the elapsed time for
each stage by averaging over 50 frames. It consists of four
different stages: rectify, cpu-to-gpu transfer, depth recon-
struction, and gpu-to-cpu transfer. Figure 3 shows the time
took for each stage in the live-capture script.

Note that the current capture software is not fully opti-
mized in terms of speed. Significant improvement could be
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Figure 1. We demonstrate a live capture system from our polka-
line prototype, reconstructing depth for several challenging objects
in motion. Refer to the Supplemental Video.

obtained by using C++ implementation instead of the high-
level Python API calls. Also, we expect employing the re-
cent inference-dedicated network libraries such as NVIDIA
TensorRT to reduce the processing time of the neural net-
work. Another potential method is to downscale the input
images while maintaining the depth reconstruction accu-
racy.

2. Prototype DOEs

We use a conventional photolithography process to pro-
totype the three learned DOEs for indoor, outdoor, and
general illumination conditions presented in the main pa-
per. As we use the four-step lithography that produces 16
discrete height levels, we discretize the continuous height
maps of the learned DOEs into the discrete forms. Figure 2
shows the simulated illumination patterns before and af-
ter the discretization process, demonstrating that the overall
structured in the pattern remains same after the discretiza-
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Figure 2. We discretize the optimized DOE height into 16 levels
for photolithography fabrication. In simulation, the structure of the
illumination image is maintained after the discretization process,
except the amplified zero-mode diffraction.
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Figure 3. We measure the per-frame processing time and in their
respective stage.

tion except the amplified zero-mode diffraction. This the
zero-mode diffraction pattern is also observed in the illu-
mination image of the fabricated DOEs shown in the main
paper. These fabrication inaccuries can be mitigated in a
commercial photolithography process where high-quality
results from existing DOE-based structured-light systems
have been presented as for the Intel D415 pattern that does
not exhibit a zero order inaccuracy. We note that directly in-
corporating this discretization operator into our end-to-end
learning framework induces training instability.

3. DOE Phase Design

Repurposing the proposed differentiable image forma-
tion model, we can design a DOE that produces a desired
illumination pattern. We formulate this as an optimization
problem of minimizing the difference between the target
pattern image Itarget and the simulated illumination image
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Figure 4. Our differentiable image formation can be used for
designing a DOE that produces a desired illumination pattern.
Our method performs outperforms the iterative Fourier transform
method [1] with an advantage of design flexibility on the image
formation and the loss function.

Iillum for a given phase map of the DOE φ as

minimize
φ

MSE(Iillum (φ) , Itarget), (1)

where MSE is the mean squared error. As computing the
illumination image Iillum (φ) consists of differentiable oper-
ations based on our image formation model, we can solve
this problem relying on automatic differentiation using the
Adam optimizer. Figure 4 shows target images and our
reconstructions. We compare our method to the state-of-
the-art iterative Fourier transform method [1] that indirectly
solves the optimization problem. Our method not only out-
performs this baseline in terms of reconstruction accuracy
but also provides design flexibility by changing the image
formation model and the loss function on demand.

4. Radiometric Calibration
In order to ensure fair comparison between different il-

lumination patterns, we use the same illumination power
across different patterns. In synthetic experiments, this is
achieved by using the same parameter value of the laser
power β. For the Intel D415 pattern, we obtain the power-
normalized illumination pattern to apply the laser power β.
To this end, we estimate the optimal illumination power β
that reconstructs the captured Intel D415 pattern,

minimize
β,φ

MSE(Iillum (φ, β) , Itarget), (2)

We use an integrating sphere of Thorlabs S142C and a
power-controllable laser driver Thorlabs KLD101 to match
the illumination power in for the prototype system.
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Figure 5. Our NIR-stereo datasets for the synthetic training and
the finetuning.

5. NIR-stereo Dataset

Our method use two different NIR-stereo datasets, each
for training in simulation and finetuning for the experimen-
tal prototype. For the synthetic training, we modify the
RGB-stereo dataset [3] as described in the main paper, re-
sulting in 21718 training images and 110 testing images.
For finetuning, we capture 76 real-world stereo images of
indoor scenes. Figure 5 shows a sample in each dataset with
varying reflectance and geometric complexity.

6. Prototype Calibration

We calibrate our experimental prototype for efficient
stereo matching on the rectified domain. We capture a
checkerboard at different positions and obtain the camera
intrinsics, the distortion coefficients, and the extrinsic be-
tween the stereo cameras. The average reprojection error
was 0.6 pixels. For each input stereo frame, we rectify the
stereo images using the calibration data and feed them to
the reconstruction network.

Then, we obtain the illumination images of the fabricated
DOEs. For each DOE, we illuminate a white wall at a dis-
tance of 50 cm from the camera, while ensuring the inten-
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Figure 6. Optimized illumination and depth reconstruction for dif-
ferent noise levels. When the noise is moderate, the illumination
pattern becomes dense with varying-intensity polka lines to pro-
vide dense correspondence cue. In contrast, severe noise makes
the illumination pattern sparse with high intensities to stand out of
the noise floor.

sity of the illumination pattern is in the observable dynamic
range of the stereo cameras. We take the stereo images
of the wall with and without the structured-light illumina-
tion. Using the no-illumination images as background, we
compute the illumination images at the stereo viewpoints.
Undistortion and rectification are applied to the illumina-
tion images in addition to the translational alignment with
a manually-measured disparity of the wall. This procedure
provides a high-quality illumination image at the rectified
illumination viewpoint which can be used for the recon-
struction network.

7. Environment-specific Illumination Design
Our method facilitates incorporating system and envi-

ronment parameters in the image formation model, enabling
us to design illumination patterns tailored to the given envi-
ronments. Specifically, we evaluate the learned patterns in
terms of ambient light and noise level.

Figure 6 shows the optimized illumination images and
corresponding depth reconstructions for the moderate and
the extreme noise levels. The standard deviations of the
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Figure 7. Our method enables us to design illumination patterns tailored for indoor, outdoor, or general environments.

Gaussian noise are 0.02 and 0.6 respectively. The ex-
treme noise makes the illumination pattern sparse with
high-intensity dots. This could be helpful to engrave the
illumination features into the scene helping it stand out of
the high-noise level. In the moderate noise case, we obtain
dense varying-intensity polka lines in the illumination im-
age, providing high-quality depth reconstructions.

We also test varying ambient-light power and laser
power to simulate indoor and outdoor conditions by set-
ting the parameter values of the ambient-light power and
the laser power as follows: indoor (α = 0.0, β = 1.5),
outdoor (α = 0.5, β = 0.2), and general (α ∈ [0, 0.5], β ∈
[0.2, 1.5]). We train a DOE and a reconstruction network for
each of the configurations. Figure 7 shows the optimized il-
lumination patterns and their performance tested on both in-
door and outdoor environments. We learn dense polka lines
in the indoor scenes to provide many features for correspon-
dence matching. For the outdoor scenes, we obtain sparse
high-intensity polka lines, providing robustness against the
strong ambient light and relatively weak laser power. Train-
ing on the general environment learns the polka lines with
varying intensities with moderate density.

8. Illumination Patterns of Conventional DOEs

Our image formation model for an active stereo system
includes computing the illumination image for a given DOE
profile. As a sanity check on our image formation model,
we compute the illumination patterns for two conventional
DOE designs: random-height DOE and 2D diffraction grat-
ing. In theory, their illumination patterns are random dots

random di�raction grating ours

si
m

u
la

te
d

 i
ll

u
m

in
at

io
n

 i
m

ag
e

D
O

E
 h

ei
gh

t 
m

ap

0.0

3.5

[u
m

]
0

1

n
o

rm
al

iz
ed

 i
n

te
n

si
ty

Figure 8. Our differentiable image formation can be applied to
arbitrary DOE height maps, including random DOE height on the
left, 2D diffraction grating on the middle, enabling the end-to-end
design of illumination pattern for active-stereo systems.

and regular grid patterns with decaying intensity profile as
the diffraction order increases. Figure 8 shows that our sim-
ulated illumination images produce such characteristics of
the random dots and the regular grids.

9. Comparison with Illumination Patterns
We compare our learned polka-line pattern to the Intel

D415 pattern and the ideal random-dots pattern in simula-
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Figure 9. We compare the Intel D415 pattern, ideal random pattern, and our learned polka-line pattern in simulation. Our pattern
outperforms the two hand-crafted illumination in all tested metrics.

tion. Figure 9 shows that the Intel D415 pattern suffers from
sparse feature points, leading to reconstruction artifacts.
The ideal random-dot pattern provides high-quality depth
reconstruction on average, however degrades at the high
ambient-light condition due to the scattered light energy by
the random phase distribution. In contrast, our polka-line
pattern provides accurate reconstruction with dense features
and varying-intensity dots that we learn from the end-to-end
optimization with the goal of accurate depth reconstruction.

Figure 10 shows the real-world comparison of the pas-
sive stereo, the Intel D415 pattern, and our polka-line pat-
tern. Our polka-line design provides accurate reconstruc-
tion on feature-less objects with varying reflectance through
the dense varying-intensity dots.

10. Self-supervised Finetuning

To handle the domain gap between the simulation and
the real-world inputs, we finetune our reconstruction net-
work. To this end, we first change the network architecture.
Figure 11 shows the overview of the trinocular reconstruc-
tion network for finetuning. There are two major differ-
ences to the network used in simulation. First, we estimate
disparity maps for both left and right views. This is im-
plemented by computing the right-view disparity in a same
way of computing the left-view disparity which is described
in the main paper. Second, we introduce a validation net-
work that estimates validity maps of the estimated disparity.
Inspired by the left-right consistency [2], we warp the esti-
mated left/right disparity maps to the other view and com-
pute the difference with the original disparity maps. This
difference and the stereo images are fed to the validation
network as inputs. In summary, the changes of the network

architecture and the loss function enables effective handling
of challenging regions such as large occlusion and strong
specularity which are often observed in the real-world in-
puts. Our finetuning is specifically formulated as the fol-
lowing optimization problem,

minimize
θ,ϑ

Lu + τLv + κLd,

Lu = MSE
(
JL/R � V L/Rest (ϑ) , J

L/R
est (θ)� V L/Rest (ϑ)

)
,

Lv = CE
(
V
L/R
est (ϑ) ,1

)
,

Ld = l2

(
∇DL/R

est (θ)
)
,

(3)

where V L/Rest are the estimated left/right validity maps and
D
L/R
est are the corresponding disparity maps. Lu computes

the mean squared error between the input and the estimated
sensor images via validity-weighted warping: J

L/R
est =

warp
(
JR/L, D

L/R
est

)
. Lv is the cross-entropy loss on the

validity maps to avoid the trivial solution of making the va-
lidity as zero. Ld is the disparity smoothness loss to cope
with real-world challenges in correspondence matching. τ
and κ are the balancing weights set as 0.01 and 0.0001. The
parameters of the reconstruction network θ are finetuned
from the supervised training on the synthetic dataset, while
the validation network parameters ϑ is trained from scratch.
We train over 5 epochs for the finetuning.



scanline

column [px]
0 100 200 300 400

34

36

38

40

42

44

es
ti

m
at

ed
 d

ep
th

 [
cm

]

passive stereo
Intel pattern
our pattern

50

100

150

200

250

300

p
as

si
ve

 s
te

re
o

 
In

te
l p

at
te

rn
o

u
r 

p
at

te
rn

captured image estimated disparity captured image estimated disparity

d
is

p
ar

it
y 

[p
x]

Figure 10. Our learned illumination pattern with varying-intensity dots outperforms passive stereo and the conventional fixed-intensity
pattern (Intel D415 sensor) for high dynamic range of incident light. Blue arrows indicate estimation artifacts. We capture a v-shaped
reflectance target (x-rite ColorChecker Pro Photo Kit) of which scanline analysis reveals the accurate reconstruction of the shape only by
our polka-line pattern.
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Figure 11. For finetuning, we extend the network architecture. We extract features for the left/right stereo images and the illumination
image using the convolutional feature encoders. For each view, two cost volumes are constructed in narrow and wide baselines, fused
into a multi-baseline cost volume. We estimate a disparity map for this cost-volume at a low spatial resolution which is upsampled to a
original-resolution disparity using an edge-aware convolutional upsampler. The estimates disparity maps of the left and right views are
then used for estimating validity maps that account for occlusion using a convolutional validator. The final disparity maps are obtained by
making out the invalid region from the disparity estimates.


