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Fig. 1. We propose a computational light transport probingmethod that decomposes transport into full polarization, spatial and temporal dimensions.Wemodel
this multi-dimensional light transport as a tensor and analyze low-rank structure in the polarization domain which is exploited by our polarimetric probing
method. We instantiate our approach with two imaging systems for spatio-polarimetric and coaxial temporal-polarimetric capture. (a)&(d) Conventional
intensity imagers integrate incident light intensity over space and time independently of the polarization states of light, losing geometric and material
information encoded in the polarimetric transport. Capturing polarization-resolved spatial transport components of (b) epipolar and (c) non-epipolar dimensions
enable fine-grained decomposition of light transport. Combining temporal and polarimetric dimensions, we separate (e) geometry-dependent reflections and
(f) direct/indirect reflections that cannot be resolved in the temporal-only measurements.

Light emitted from a source into a scene can undergo complex interactions
with multiple scene surfaces of different material types before being reflected
towards a detector. During this transport, every surface reflection and prop-
agation is encoded in the properties of the photons that ultimately reach the
detector, including travel time, direction, intensity, wavelength and polariza-
tion. Conventional imaging systems capture intensity by integrating over all
other dimensions of the incident light into a single quantity, hiding this rich
scene information in these aggregate measurements. Existing methods are
capable of untangling these measurements into their spatial and temporal di-
mensions, fueling geometric scene understanding tasks. However, examining
polarimetric material properties jointly with geometric properties is an open
challenge that could enable unprecedented capabilities beyond geometric
scene understanding, allowing for material-dependent scene understanding
and imaging through complex transport, such as macroscopic scattering.

In this work, we close this gap, and propose a computational light trans-
port imaging method that captures the spatially- and temporally-resolved
complete polarimetric response of a scene, which encodes rich material
properties. Our method hinges on a novel 7D tensor theory of light trans-
port. We discover low-rank structure in the polarimetric tensor dimension
and propose a data-driven rotating ellipsometry method that learns to ex-
ploit redundancy of polarimetric structure. We instantiate our theory with
two imaging prototypes: spatio-polarimetric imaging and coaxial temporal-
polarimetric imaging. This allows us, for the first time, to decompose scene
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light transport into temporal, spatial, and complete polarimetric dimensions
that unveil scene properties hidden to conventional methods. We validate
the applicability of our method on diverse tasks, including shape reconstruc-
tion with subsurface scattering, seeing through scattering media, untangling
multi-bounce light transport, breaking metamerism with polarization, and
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1 INTRODUCTION
Light transport theory has proven itself to be a powerful tool across
fields that rely on how light flows from a source through a scene
to a detector. As photons travel through the scene, they interact
with matter on surfaces or subsurfaces. This interaction modifies
the photon properties (light direction, travel time, intensity, wave-
length, and polarization) and, as such, encodes information about
the scene. These properties have been formalized as plenoptic light
dimensions augmented with wave properties [Adelson et al. 1991;
Wetzstein et al. 2011]. Conventional detectors integrate over all
dimensions of this high-dimensional plenoptic function. While this
integration is beneficial in terms of photon efficiency, the individual
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plenoptic dimensions that encode scene information are lost during
the conventional measurement process.
To recover this hidden scene information, a large body of work

in computer graphics and vision has explored light transport ap-
proaches that aim to decompose the integral into a subset of the
plenoptic dimensions. Specifically, considerable progress has been
made in untangling spatial and temporal dimensions of light trans-
port. Spatially controlling emitted and detected light allows for path-
dependent geometric scene understanding [O’Toole et al. 2014b,
2012]. Similarly, advances in fast illumination and detection de-
vices have allowed for temporal light transport capture [Heide
et al. 2013; O’Toole et al. 2014a; Velten et al. 2013]. Joint spatio-
temporal decomposition has also been explored recently [Kotwal
et al. 2020; O’Toole et al. 2014a]. While these existing light transport
decomposition methods have been successful for geometric scene
understanding, analyzing material properties has been an open
challenge. Real-world materials are complex and shape transport
in the light-matter interaction. Specifically, we observer complex
material-dependent scattering effects such as complex reflection,
subsurface scattering, backscattering, multiple reflection between
surfaces, and refractive-index-dependent reflection. Decomposing
material-dependent light transport effects could allow for scene
understanding and reconstruction tasks that exploit material prop-
erties, potentially fuelling broad applications across disciplines, in-
cluding localization in VR/AR, object digitization, seeing through
scattering media, and material analysis.
Polarization is an often overlooked dimension that may allow

for analysis of material-dependent scattering across application
domains. Polarization is a wave property of light describing how
the electric field of light oscillates along the propagation direction
in time. Previous polarization imaging methods in graphics focus
on cross-polarization configurations that use either linear or cir-
cular polarization filters in front of a camera and a light source
with perpendicular orientation [Ghosh et al. 2010, 2011; Gupta et al.
2008; Ma et al. 2007; Treibitz and Schechner 2008]. This approach,
however, fundamentally prevents measurement of the full polari-
metric response of the light transport, excluding polarization states
of light such as elliptically polarized light and partially polarized
light. Using linear polarizers at multiple angles as in polarization
cameras has been also extensively used in computer vision [Atkin-
son and Hancock 2006; Ba et al. 2020; Kadambi et al. 2015; Tanaka
et al. 2020], however, this configuration cannot acquire circular and
elliptical polarization, and does not utilize the polarization of the
emitted light. While Baek et al. [2018] proposed using a pair of
rotating linear polarizers for reflectance acquisition, their approach
also cannot model elliptically and circularly polarized light. More
recently, goniometry systems have allowed researchers to acquire
isotropic polarimetric BRDFs with full polarimetric resolution [Baek
et al. 2020]. Orthogonal to the proposed light transport acquisition
method, this method captures spherical homogenous objects and
hence is not applicable to light transport analysis in a complex scene.
In addition, it cannot capture the space and time dimensions.

In this work, we analyze material- and geometry-dependent scene
transport effects by proposing the first spatio-temporal light trans-
port imaging methods with full polarimetric resolution. The pro-
posed acquisition method allows us to decompose light into com-
ponents that have a specific travel time, path geometry and po-
larization state – allowing for a 7-dimensional representation of
light transport covering 2D camera space, 2D illumination space, 1D
travel time, and 2D polarization change. To this end, we propose an
imaging method that combines ellipsometry, a technique in optics
for characterizing polarimetric response, and spatial and temporal
light transport acquisition from graphics and vision. We also in-
troduce a novel tensor-based light transport theory that maintains
natural backward compatibility to existing matrix-based light trans-
port models in order to analyze and decompose multi-dimensional
light transport. Given the high dimensionality of the full 7D light
transport, directly acquiring the tensor is impractical with exist-
ing time-resolved sensors, and for the experimental setup shown
in this work would require 6 years per scene. Instead, we analyze
the formalized 7D light transport and identify low-dimensional em-
beddings of the polarimetric light transport that we exploit in our
acquisition method. However, in contrast to existing methods for
space and wavelength [O’Toole and Kutulakos 2010; Saragadam
and Sankaranarayanan 2019] that directly acquire low-rank trans-
port, it is infeasible to directly acquire low-rank polarimetric light
transport as we have to solve an additional reconstruction prob-
lem, converting the intensity measurements to the Stokes-Mueller
domain [Azzam 1978]. To overcome this challenge, we propose a
novel data-driven rotating ellipsometry method that learns to rely
on the discovered low-dimensional structure in the polarimetric di-
mension. We then instantiate our approach with a projector-camera
ellipsometric imager and a coaxial SPAD-laser ellipsometric imager,
that allow for spatio-polarimetric and coaxial temporal-polarimetric
light transport imaging, respectively. We validate our method in
simulation and experimentally using these prototype systems. We
demonstrate novel applications of the recovered spatio-polarimetric
and temporal-polarimetric light transport decompositions, includ-
ing shape reconstruction with subsurface scattering, seeing through
scattering media, untangling multi-bounce light transport, spatio-
polarimetric decomposition of crystals, and breaking metamerism
with polarization.

Specifically, we make the following contributions in this work

• We propose a computational light transport imaging method
for shape and material analysis that jointly captures full po-
larimetric information along with spatial and temporal trans-
port dimensions, spanning 7-dimensional light transport.

• We introduce a novel tensor-based light transport theory
that is naturally backward-compatible with existing matrix
models.

• We analyze the low-rank structure of polarimetric light trans-
port and propose a learned ellipsometrymethodwhich implic-
itly exploits this low-dimensional polarimetric embedding.

• We instantiate two experimental prototypes of the proposed
method for spatio-polarimetric imaging and coaxial temporal-
polarimetric imaging.
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• We validate the method with five applications, including
shape reconstructionwith subsurface scattering, seeing through
scattering media, multi-bounce light transport decomposi-
tion, breaking metamerism with polarization, and spatio-
polarimetric decomposition of crystals, where the proposed
method outperforms existing approaches in all experiments.

Overview of Limitations. While the proposed imaging method
makes it possible, for the first time, to acquire the complete polariza-
tion information together with the spatial and temporal dimensions,
each of the two prototype systems only captures partial dimen-
sions of the 7D spatio-temporal polarimetric tensor we analyze in
this work. Although both systems could be combined with a high-
resolution SPAD array, as proposed in Morimoto et al. [2020], pixel
counts of existing commodity sensors are limited to a few kilop-
ixels. We leave the substantial engineering efforts of such a joint
high-resolution temporal acquisition approach for future research.
Also, the capture time of the proposed experimental prototypes is
currently restricted to sequential acquisition on the order of hours
per scene, limiting the proposed method to static scenes.
2 RELATED WORK

Computational Light Transport. Acquiring and decomposing light
transport has been extensively studied in computer graphics and
vision. Early approaches exploit statistics of global and direct reflec-
tions to decompose light transport based on the number of light-
matter bounces [Gupta et al. 2011; Nayar et al. 2006]. Geometric
constraints such as stereoscopic epipolar geometry have been also
exploited to selectively capture light paths that satisfy the certain
geometric constraints [Kubo et al. 2018; O’Toole et al. 2015; O’Toole
and Kutulakos 2010; O’Toole et al. 2014b, 2012]. These spatial de-
composition methods are typically implemented with a camera and
a projector where the projection is masked during the acquisition
process. Another line of research untangles the temporal dimension
of light transport [Jarabo et al. 2017; O’Toole et al. 2017, 2014a; Vel-
ten et al. 2013; Wu et al. 2014]. Combined with a fast pulsed laser,
direct temporal sampling approaches rely on a streak camera [Vel-
ten et al. 2013] or a single-photon avalanche diode (SPAD) [O’Toole
et al. 2017] to directly measure such temporal scene responses. An
alternative line of work relies on a correlation sensor and amplitude-
synchronized continuous illumination to acquire temporal light
transport [Gupta et al. 2015; Heide et al. 2013; Kadambi et al. 2013;
Peters et al. 2015]. Interferometric approaches have demonstrated
micron-scale temporal light transport [Gkioulekas et al. 2015]. Com-
bining these two threads of spatial and temporal dimensions makes
it possible to reason over rich decompositions that encode how light
travels at a given time and position. Such joint spatio-temporal anal-
ysis has been implemented using frequency-aware probing methods
with a correlation sensor-illumination pair [O’Toole et al. 2014a] or,
recently, using an interferometric setup with programmable ampli-
tude and phase modulators [Kotwal et al. 2020]. The spatio-temporal
transport structure enables direct-indirect separation for multipath
interference removal [Agresti and Zanuttigh 2018; Naik et al. 2015;
Whyte et al. 2015]. Also, existing works have explored joint analysis
of temporal and partial polarimetric dimensions for light field imag-
ing [Manakov et al. 2013], surface reconstruction [Dashpute et al.

2018; Maeda et al. 2018] and imaging through scattering media [Wu
et al. 2018, 2016].

None of these existing methods are capable of capturing full po-
larization states (linear, circular, ellipsoidal with varying degrees)
jointly with spatial and temporal dimensions. The only polarimet-
ric sampling demonstrated before captures partial linear polariza-
tion [Gkioulekas et al. 2015]. In this work, we propose a novel
spatially- and temporally-resolved ellipsometry methods that al-
low us to capture a complete polarimetric light transport of any
polarization state. As such, for the first time, we demonstrate full
spatio-polarimetric and temporal-polarimetric captures of the 7-
dimensional light transport (2D spatial, 2D detector, 2D polarimetric,
1D temporal dimension).

Polarimetric Imaging in Graphics and Vision. The polarization
state of light has been exploited by a broad range of methods in
computer graphics and vision to encode material-dependent scene
properties or source-dependent transport. Cross-polarization imag-
ing, one of the most common polarimetric acquisition approaches,
uses either linear or circular polarization filters in front of a camera
and a light source with perpendicular orientation which separates
captured light into two components depending on whether light
maintains the polarization of the light source or not. This approach
to source separation has been adopted in various applications, most
notably seeing through scattering media [Gupta et al. 2008; Tanaka
et al. 2013; Treibitz and Schechner 2008] and its application for
shape estimation [Chen et al. 2007], also diffuse-specular separa-
tion [Ghosh et al. 2010, 2008; Ma et al. 2007; Nagano et al. 2015; Riv-
iere et al. 2017] for facial capture and geometric scene understanding.
This relies on unique polarization encoding of material-dependent
reflectance properties. Polarimetric imaging also has been used
for estimating depth using birefringent materials [Baek et al. 2016;
Meuleman et al. 2020] and surface normals [Atkinson and Hancock
2006; Baek et al. 2018; Deschaintre et al. 2021; Ichikawa et al. 2021;
Kadambi et al. 2015] in addition to metallic surface characteriza-
tion [Berger et al. 2011]. While substantial progress has been made
in exploiting polarization for these diverse applications, the informa-
tion of all polarization states jointly, along with spatial and temporal
resolutions, has not been exploited in graphics and vision. Indeed,
only very recently researchers proposed data-driven polarimetric
BRDF models [Baek et al. 2020], however, without considering the
spatial and temporal dimensions. In this work, we exploit rich struc-
ture in light polarization along with space and time dimensions, and
propose a complete spatio- and temporal-polarimetric imaging and
decomposition method that allows us to analyze scene properties
hidden to existing light transport imaging methods.

Optical Ellipsometry. Consider a material sample observed by a
sensor and illuminated by a light source. The polarimetric response
of the sample encodes material information including its refractive
index, roughness, composition, crystalline structure, and electrical
conductivity. Ellipsometry describes a method of obtaining such
material properties by capturing the complete polarimetric trans-
port that the material sample is subject to, often by synchronously
modulating the polarization states of emitted and captured light. El-
lipsometric methods have been studied during the past few decades
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Fig. 2. Previous light transport models for (a) space [O’Toole et al. 2012], (b) time [Velten et al. 2013], and (c) polarization [Collett 2005] are based on linear
modeling as a matrix-vector multiplication. (d) We propose a tensor-based light transport model which simultaneously comprises space, time, and polarization.
We model light transport as a 7D tensor T covering 2D camera space, 2D illumination space, 1D travel time, and 2D polarization change. This 7D transport is
then multiplied with a 3D illumination tensor P covering 2D illumination space and 1D polarization, resulting in a captured 4D tensor I covering the 2D
camera space, 1D polarization, and 1D travel time.

in optics [Azzam 2016], material science [Jellison Jr et al. 2018; Ram-
sey and Ludema 1994], and biology [Arwin 2011; Ghosh and Vitkin
2011]. In this work, we go beyond conventional ellipsometry by
jointly capturing spatial, temporal, and polarimetric dimensions.
As a result, the proposed spatio- and temporal-polarimetric imag-
ing allows us to decompose light transport into unprecedented
detail, revealing joint polarimetric spatial and temporal information
that appears “hidden” to existing methods. In addition, we analyze
low-rank structure of real-world polarimetric light transport and
develop novel data-driven ellispometry methods which rotate po-
larizing optics at optimal angles to achieve high-fidelity acquisition
of polarimetric light transport with a reduced number of captures.

3 BACKGROUND
Before introducing the proposed spatio- and temporal-polarimetric
light transport imaging method, we review existing models for
spatial and temporal light transport in graphics and vision, and
polarimetric light transport in optics.

Spatial Light Transport. Given a 2D projector and a 2D camera,
the spatial light transport between them can be modeled as a matrix-
vector multiplication [Ngan et al. 2005; Sen et al. 2005]

i𝑠 = T𝑠p𝑠 , (1)

where i𝑠 , p𝑠 ∈ R𝑆×1 are the vectorized 2D images captured and
emitted by the camera and the projector, respectively, and 𝑆 being
the number of pixels. The matrix T𝑠 ∈ R𝑆×𝑆 is the spatial light
transport matrix that describes how light intensity, emitted at a
specific angle from a projector pixel, changes as it travels through a
scene and is captured at a specific pixel on the camera. The matrix
T𝑠 , therefore, decomposes the spatial dimension of light transport
indexed as pixels on the projector and camera, respectively, see
Figure 2(a).

Temporal Light Transport. Spatial light transport assumes a steady-
state equilibrium of global light transport. However, in reality, emit-
ted light reaches the detector along potentially complex paths with
varying lengths, and hence may arrive at the sensor at different
travel times. This temporal light transport, before reaching a steady
state, can be modeled for a single detector pixel as

i𝑡 = T𝑡𝑝𝑡 , (2)

where i𝑡 ∈ RΓ×1 is the vector of detected intensities of travel time 𝑡
discretized in Γ different temporal bins. The scalar 𝑝𝑡 describes the
emitted light intensity at the time index zero. The matrix T𝑡 ∈ RΓ×1
is temporal light transport matrix for a given detector pixel, see
Figure 2(b). This can be further generalized to shift-invariant light
transport with the convolutional model

i𝑡 = T𝑡 ∗ p𝑡 , (3)

where ∗ is a matrix-vector convolution [O’Toole et al. 2014a] across
the temporal dimension 𝑡 and p𝑡 ∈ RΓ×1 are the intensities vector-
ized in time bins.

right circular

horizontal
linear

le� circular

s1
s2

s3

vertical
linear

unpolarized

Fig. 3. Poincaré sphere.

Polarimetric Light Transport.
Polarization is an intrinsic wave
property of light describing the
geometric oscillation pattern of
the electromagnetic field, i.e.,
light, in time. The Stokes-Mueller
formalism provides a representa-
tion for polarization, describing
any polarization state of light and
its change [Collett 2005]. Specifi-
cally, the Stokes vector is a four-
dimensional vector describing the
polarization state of light: s =

[𝑠0, 𝑠1, 𝑠2, 𝑠3], where each element
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describes the radiance of light, the linear-polarization components
at 0◦ and 45◦, and left-right circular-polarization component.
To provide intuition for the Stokes vector formalism, Poincaré

spheres offer an illustrative visualization of the complete polariza-
tion state of light based on the Stokes vector by plotting the last three
Stokes elements normalized by the total power 𝑠0: [𝑠1/𝑠0, 𝑠2/𝑠0, 𝑠3/𝑠0],
see Figure 3. A Stokes vector is then represented as a vector inside
the Poincaré sphere. The sphere’s center represents unpolarized
light and light becomes more polarized as we are approaching the
surface of the Poincaré sphere. The direction of the Stokes vector
in the Poincaré sphere describes the type of polarization such as
horizontal linear or right circular polarization.

To characterize polarimetric transport, we use the Mueller matrix
which describes the polarimetric response of a scene as the change
of a Stokes vector

i𝑝 = T𝑝p𝑝 , (4)

where i𝑝 , p𝑝 are the Stokes vectors of the detected and emitted light,
and T𝑝 is the polarimetric light transport matrix in the form of a
Mueller matrix for a single detector pixel, see Figure 2(c).

4 TENSOR LIGHT TRANSPORT
Existing spatial [O’Toole et al. 2012], temporal [Velten et al. 2013],
and polarimetric [Collett 2005] light transport models rely onmatrix-
vector representations. While these linear models offer convenient
links to linear algebra for each plenoptic dimension, they do not
treat light transport jointly across space, time, and polarization. As
a generalization to these existing models, we propose a tensor-based
model of light transport. For a primer on tensor algebra, we refer the
reader to Itskov [2007].

We start by modeling the polarization state and intensity of emit-
ted pulsed light as a 3D tensor P(𝑠, 𝑝), parameterized by the 2D
spatial direction 𝑠 and the 1D Stokes vector dimension 𝑝 . Light mod-
eled by the tensor P then travels through a scene, e.g., undergoing
potentially complex scattering effects, and encodes material and
geometric properties of the scene. When light returns to the detec-
tor, we model it as a 4D tensor I(𝑠, 𝑝, 𝑡). The temporal dimension
𝑡 (1D) denotes the travel time, 𝑠 is the camera pixel location (2D)
and 𝑝 is the Stokes vector dimension (1D). With the two tensors
P and I in hand, we model the spatio-temporal polarimetric light
transport as a 7D tensor T (𝑠, 𝑠 ′, 𝑝, 𝑝 ′, 𝑡), where 𝑠 and 𝑠 ′ are the 2D
spatial sample locations at the detector and the light source, 𝑝 and
𝑝 ′ are the 1D Stokes vectors of the detected and the emitted light,
and 𝑡 is the 1D travel time. Refer to Figure 2(d). We write the light
transport equation using tensor contraction [Itskov 2007] as

I (𝑠, 𝑝, 𝑡) =
∑
𝑠′,𝑝′

T
(
𝑠, 𝑠 ′, 𝑝, 𝑝 ′, 𝑡

)
P

(
𝑠 ′, 𝑝 ′

)
. (5)

For shift-invariant light transport, this can be formulated as a con-
volutional integral

I (𝑠, 𝑝, 𝑡) =
∑
𝑠′,𝑝′

∫ ∞

−∞
T

(
𝑠, 𝑠 ′, 𝑝, 𝑝 ′, 𝑡 − 𝑡 ′

)
P

(
𝑠 ′, 𝑝 ′, 𝑡 ′

)
𝑑𝑡 ′, (6)

where 𝑡 ′ is the time dimension of the time-resolved illumination
tensor P.

(a) scene

(c) spatio-polarimetric light transport

(b) polarimetric light transport

(d) temporal-polarimetric light transport

sx

s'x

sx

t

Fig. 4. Rendered simulation of a complete 7D light transport T tensor using
a multi-dimensional path tracer. (a) A conventional camera integrates light
intensity emitted from all projector pixels 𝑠′ at temporal steady-state 𝑡 ,
capturing

∑
𝑠′,𝑡 T(:, 𝑠′, 0, 0, 𝑡 ) . We analyze the tensor T by slicing differ-

ent dimensions of space, time, and polarization. (b) The polarimetric light
transport

∑
𝑠′,𝑡 T(:, 𝑠′, :, :, 𝑡 ) reveals material-dependent scene responses,

for instance, untangling reflections from diffuse surface points (red circles)
andmirrors (yellow circles), and allows us to separate single-bounce specular
reflection from scattered specular reflection (cyan arrows). (c) An additional
spatial dimension, spatio-polarimetric light transport

∑
𝑡 T(𝑠, 𝑠′, :, :, 𝑡 ) sep-

arates single-bounce specular reflection from multi-bounce specular reflec-
tion (green circles) visualized for the orange scanline shown in (a). (d) Cap-
turing the temporal-polarimetric light transport

∑
𝑠′ T(𝑠, 𝑠′, :, :, 𝑡 ) makes

it possible to decompose time-varying global illumination into diffuse and
specular components (magenta circles) visualized for the purple scanline
shown in (a).

This 7D spatio-temporal polarimetric light transport tensor T
describes the complete polarimetric change of light for every combi-
nation of camera and projector pixels with high temporal resolution
of the travel time. Probing operations can be performed by slicing
the tensor along one or two indices, reducing the tensor into a vector
or a matrix. This means that our tensor-based transport model is
backward-compatible to the existing matrix representations of light
transport in Equations (1), (2), (4) as follows
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Fig. 5. PCA analysis of polarimetric light transport via real-world materials.
(a) Polarimetric BRDFs with intensity normalization exhibit low-rank struc-
ture. (b) To perform PCA analysis, we propose the arctangent mapping that
handles both negative and positive values of polarimetric light transport, in
contrast to conventional positive-only log mappings.

T𝑠 =
∑
𝑡

T (:, :, 0, 0, 𝑡),

T𝑡 =
∑
𝑠,𝑠′

T (𝑠, 𝑠 ′, 0, 0, :),

T𝑝 =
∑
𝑠,𝑠′,𝑡

T (𝑠, 𝑠 ′, :, :, 𝑡). (7)

4.1 Path Tracer for 7D Light Transport Simulation
To provide further intuition on the properties of the high-dimensional
7D light transport tensor T , we developed a path tracer and we
simulate a synthetic capture system consisting of a high-speed 2D
projector, a high-speed 2D camera with picosecond temporal resolu-
tion, and polarizing optics. We note, that although such high fidelity
transient projectors and sensors do not exist today. We validate
the proposed method using two practical imaging methods in the
remainder of this work. We implement our renderer on top of the
Mitsuba2 renderer [Nimier-David et al. 2019]. Specifically, we set
up spatial acquisition through masking operations for a projector-
camera pair. For the temporal dimension, we keep track of the time-
of-flight for each light ray throughout the rendering process [Jarabo
et al. 2014; Pediredla et al. 2019]. For polarization, we use a real-
world polarimetric BRDF dataset [Baek et al. 2020] and implement a
dual-rotating-retarder setup [Azzam 1978]. We render trichromatic
imagery at wavelengths of 450, 550, and 660 nm. Figure 4 shows
the rendered 7D light transport, revealing geometry- and material-
dependent reflections. We observe that by separating polarization,
space, and time dimensions, it is possible to distinguish mirror and
scene reflections, acquire mirror-like components isolated from clut-
tered specular reflection, decompose specular reflections into single
and multi-bounces, and analyze global illumination as mixed diffuse
and specular transport.

4.2 Low-dimensional Polarimetric Transport Embeddings
We further analyze the light transport tensor, in particular its po-
larization slice, which has been overlooked in graphics and vision
compared to the other well-understood dimensions, such as space
and time. Specifically, we analyze low-dimensional polarimetric
embeddings of the high-dimensional light transport tensor T . Such
lower-dimensional embeddings offer statistical priors that may al-
low for efficient acquisition and provide insight into the transport
properties. Low-dimensional transport structure has also been used

in the spatial dimension [O’Toole and Kutulakos 2010], spectral
dimension [Saragadam and Sankaranarayanan 2019], and temporal
dimension [Heide et al. 2019; O’Toole et al. 2018].

To this end, we perform principal component analysis (PCA) on 25
real-world polarimetric BRDFs [Baek et al. 2020]. This facilitates ef-
ficient polarimetric analysis, in contrast to naïvely analyzing a large
collection of rendered polarimetric images using costly polarization-
aware path tracing. Furthermore, polarimetric light transport can be
represented as an intensity-scaled polarimetric BRDF by integrating
over indirect transport components.

Inspired by PCA analysis on intensity BRDFs [Nielsen et al. 2015],
we develop our analysis method with two major distinctions. First,
we normalize the polarimetric BRDF in order to decouple polar-
ization from intensity via division by the intensity component:
T𝑝 ↦→ T𝑝/T𝑝 (0, 0). This allows us to separately investigate the
polarimetric variation independently of intensity scale. Second, to
distribute the polarimetric energy across a high dynamic range
of inputs, we propose to apply the arctangent mapping: T𝑝 ↦→
arctan(𝑐T𝑝 ), where 𝑐 is a scalar which is set to 8 in our experiment.
This handles positive and negative inputs in contrast to the positive-
only log mapping [Nielsen et al. 2015]. We arrange the normalized
and compressed polarimetric BRDFs to form an observation matrix
X ∈ R𝑁×16, where 𝑁 is the number of valid angular bins for all
dataset materials. We extract the principal components of X using
singular value decomposition (SVD)

X − 𝜇 = UΣVᵀ, (8)

where 𝜇 is the mean matrix of X over the valid angular bins of
different materials. U and V contain the eigenvectors and Σ has
the eigenvalues. Then, we obtain the scaled principal components
VΣ shown in Figure 5. These visualizations reveal the low-rank
structure in the captured light transport. We refer to the Supplemen-
tal Document for a low-rank analysis of the angular-polarimetric
dimensions.

5 LEARNING ROTATING ELLIPSOMETRY
To acquire the complete polarimetric light transport, conventional
optical ellipsometry rotates polarizing optics in front of a light
source and a sensor while acquiring polarization-modulated inten-
sities from which polarimetric light transport is reconstructed. For
instance, dual-rotating-retarders (DRR) [Azzam 1978] uses two fixed
linear polarizers and two rotating retarders at hand-crafted angles,
resulting in many captures, typically 36. The previous section illus-
trates low-dimensional polarimetric embeddings in the transport
tensor which opens a potential avenue to a more efficient capture
procedure. A similar principle has been applied to the plenoptic
dimensions defined on intensity by iteratively acquiring low-rank
approximations of respective light transport slices [O’Toole and
Kutulakos 2010; Saragadam and Sankaranarayanan 2019]. However,
directly capturing low-dimensional polarimetric structure is infeasible
as polarimetric light transport is based on Stokes-Mueller formalism,
not intensity measurements, therefore an additional ellipsometric
reconstruction step is required. To overcome this challenge, we pro-
pose a data-driven ellipsometry method that implicitly exploits this
polarimetric low-rank structure for efficient capture. We dub our
method learned quad-rotating polarizer retarder (L-QRPR). It uses
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Fig. 6. (a) Conventional DRR ellipsometry rotates the two quarter-wave
plates at (c) manually-chosen angle sets. (b) In contrast, we propose to rotate
the two linear polarizers and the two retarders (d) using a smaller set of
angles that learns to exploit the low-rank structure of natural polarimetric
light transport. (f) We also show how the proposed method can be extended
to an emerging polarizer-array sensor. To evaluate the proposed learned
ellipsometry method, we conduct 5-fold cross-validation. (g) Our learned
ellipsometry consistently outperforms the conventional DRR method both
for the intensity sensor and the polarizer-array sensor. (h) Our method
substantially reduces the number of required captures by more than 3×
without scarifying reconstruction accuracy.
rotating linear polarizers and retarders at learned angles to provide
accurate reconstructions for real-world polarimetric light transport
tensors.

To learn the set of optimal angles, we first propose a differentiable
image formation model of a rotating ellipsometry

𝐼𝜃
4
𝑘
,𝜃 3
𝑘
,𝜃 2
𝑘
,𝜃 1
𝑘 =

[
L𝜃

4
𝑘 Q𝜃

3
𝑘 T𝑝Q𝜃

2
𝑘 L𝜃

1
𝑘 p

]
0
+ 𝜂, (9)

where 𝑘 is the rotation index out of the total number of captures 𝐾 .
p = [1, 0, 0, 0]ᵀ is the unit Stokes vector and [·]0 is the first element
of the vector. Q𝜃 and L𝜃 are the Mueller matrices of a quarter-
wave plate (QWP) and a linear polarizer (LP) at an angle 𝜃 . For the
definitions of the Mueller matrices, we refer to the Supplemental
Document. 𝐼𝜃

4
𝑘
,𝜃 3
𝑘
,𝜃 2
𝑘
,𝜃 1
𝑘 is the simulated intensity and 𝜂 is Gaussian

noise with standard deviation 5 × 10−4. Note that the matrix-vector
multiplications based on Stokes-Muller formalism make this image
formation naturally differentiable with respect to the angles of the
polarizing optics, 𝜃𝑖∈{1,2,3,4}

𝑘∈{1, · · · ,𝐾 } .

Given the simulated intensities, we reconstruct the polarimetric
light transport by solving an optimization problem

minimize
T̂𝑝

𝐾∑
𝑘=1

(
𝐼𝜃

4
𝑘
,𝜃 3
𝑘
,𝜃 2
𝑘
,𝜃 1
𝑘 −

[
L𝜃

4
𝑘 Q𝜃

3
𝑘 T̂𝑝Q𝜃

2
𝑘 L𝜃

1
𝑘 p

]
0

)2
, (10)

where T̂𝑝 is the estimate of the polarimetric light transport. Note that
the solution to Equation (10) can be analytically obtained as the least-
square solution [Baek et al. 2020], and is therefore differentiable.

Last, we compute the loss with the ground truth T𝑝 , and optimize
the angle set to minimize this loss

minimize
Θ4
𝑘
,Θ3

𝑘
,Θ2

𝑘
,Θ1

𝑘

L(T̂𝑝 ,T𝑝 ), (11)

whereL is themean-squared-error loss function andΘ𝑖
𝑘
= {𝜃𝑖1, ..., 𝜃

𝑖
𝐾
}

is an angle set for each optical element. We use the Adam opti-
mizer [Paszke et al. 2017] and initialize the angles of polarizing
optics following the conventional DRR setting [Azzam 1978] as 𝜃1

𝑘
=

0◦, 𝜃2
𝑘
= 5(𝑘−1)◦, 𝜃3

𝑘
= 25(𝑘−1)◦, 𝜃4

𝑘
= 0◦ with𝑘 ∈ {1, 2, · · · , 𝐾}. As

ground truth data, we use the real-world polarimetric BRDF dataset
from Baek et al. [2020]. Note that data-driven optimal capture has
also been studied for reflectance acquisition [Nielsen et al. 2015; Xu
et al. 2016].

Learning Rotation Angles with a Polarizer-array Sensor. The pro-
posed method allows for learning optimal angles not only for the
conventional CMOS intensity sensors, but also for emerging polarizer-
array CMOS sensors, e.g., Sony IEDM2016. These emerging sensors
increase the sampling rate by four times by using on-sensor lin-
ear polarizers with four different orientations (0◦, 45◦, 90◦, 135◦).
We incorporate these hardcoded polarization directions into the
differentiable image formation as

𝐼
𝜃 4
𝑘
,𝜃 3
𝑘
,𝜃 2
𝑘
,𝜃 1
𝑘

𝑞∈{1,2,3,4} =

[
L𝑞∈{1,2,3,4}Q

𝜃 3
𝑘 T𝑝Q𝜃

2
𝑘 L𝜃

1
𝑘 p

]
0
+ 𝜂, (12)

where 𝑞 is the index of the sensor linear polarizers. Inserting this
into Equation (10) and Equation (11) allows us to optimize for the
angle sets of 𝜃3

𝑘
, 𝜃2
𝑘
, 𝜃1
𝑘
while the polarizer angles for the sensor are

fixed.
Figure 6 shows that our ellipsometry methods, learned quad-

rotating polarizer and retarder (L-QRPR) and its variant with a
polarization camera (L-QRPR-P), outperform the conventional dual
rotating retarder (DRR) method in terms of capture efficiency. For
synthetic validation, we conduct a 5-fold cross-validation experi-
ment. L-QRPR and L-QRPR-P both achieve the same accuracy as
conventional DRR using 25 captures while using 20% and 72% fewer
captures respectively. As such, we validate that the proposed data-
driven rotating ellipsometry effectively exploits the low-rank struc-
ture in natural polarimetric light transport. For experimental valida-
tion, we use the angles learned from the pBRDF dataset [Baek et al.
2020] and show that our method generalizes to unseen materials,
see Figures 10 and 11. We refer to the Supplemental Document for
additional assessment.

6 SPATIO-TEMPORAL POLARIMETRIC IMAGING
The full 7D light transport tensor T is challenging to acquire due
to its high dimensionality of space, time, and polarization, even
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Fig. 7. We propose two novel imaging systems that capture spatio-
polarimetric light transport T𝑠𝑝 and coaxial temporal-polarimetric light
transport T𝑝𝑡 . The spatio-polarimetric system acquires the complete polari-
metric scene response for every combination of camera and projector pixels
over trichromatic spectral bands, using camera-projector masks with rotat-
ing polarization optics. The temporal-polarimetric setup captures the coaxial
spatial dimension at picosecond temporal resolution for a narrow spectral
band, also with the full polarimetric resolution. We scan the transport using
a 2-axis galvo mirror and rotating QWPs.

with our learned ellipsometry. While methods have been proposed
before that acquire transport for each individual dimension, the
joint acquisition and analysis of the full 7D light transport has
been a challenge, especially for the polarization dimension. We
propose polarimetric acquisition approaches that allow us to capture
space, time and polarization dimensions of light transport jointly,
while being realizable as practical imaging systems. The absence of
high-resolution, time-tagged sensors and pulsed projectors poses
a practical restriction on capture time. To address this challenge,
we propose two novel computational imaging systems that capture
spatio-polarimetric light transport T𝑠𝑝 (6D) and coaxial temporal-
polarimetric light transport T𝑝𝑡 (5D) respectively

T𝑠𝑝 =
∑
𝑡

T (:, :, :, :, 𝑡),

T𝑝𝑡 = T (𝑠, 𝑠, :, :, :),∀𝑠 . (13)

In the following, we describe these two instantiations of our
generalized polarimetric transport acquisition. We refer the reader
to the Supplemental Document for comparison with other systems
and calibration details.

6.1 Spatio-Polarimetric Imaging
We present a computational imaging method that captures the 6D
spatio-polarimetric light transport T𝑠𝑝 using a high-resolution inten-
sity sensor. The 2D intensity sensor allows us to efficiently resolve
spatial dimensions of the 2D illumination 𝑠 ′ and camera 𝑠 . Figure 7(a)
illustrates this spatially-multiplexed acquisition system.

Illumination. To spatially multiplex illumination patterns, we
employ a DMD projector that emits unpolarized light with a pro-
grammable intensity from a certain projector pixel 𝑠 ′. Light polar-
ization is then modulated by passing through a LP and a QWP. The

LP and the QWP are mounted on rotation stages at angles 𝜃1
𝑘
and

𝜃2
𝑘
, respectively at the 𝑘-th capture index. This provides the emitted

light tensor P𝜃
2
𝑘
,𝜃 1
𝑘 (𝑠 ′, :) from a projector pixel 𝑠 ′

P𝜃
2
𝑘
,𝜃 1
𝑘 (𝑠 ′, :) = Q𝜃

2
𝑘 L𝜃

1
𝑘 p𝑠

′
, (14)

where p𝑠
′
= [𝑝𝑠′, 0, 0, 0]ᵀ is the Stokes vector of the unpolarized

DMD light and 𝑝𝑠
′
is the intensity for that spatial direction 𝑠 ′.

Spatio-Polarimetric Light Transport. The emitted light interacts
with a scene described by the spatio-polarimetric light transport T𝑠𝑝
that is R𝜃

2
𝑘
,𝜃 1
𝑘 (𝑠, :) = T𝑠𝑝 (𝑠, 𝑠 ′, :, :)P𝜃

2
𝑘
,𝜃 1
𝑘 (𝑠 ′, :), where 𝑠 is the spatial

position on the detection module. The spatio-polarimetric light
transport T𝑠𝑝 assumes steady-state equilibrium of light transport,
integrating the full tensor T over the temporal dimension 𝑡 .

Detection. We capture the light that returns to the camera using
an intensity array sensor (CMOS sensor) equipped with a QWP
and a LP in front of the camera. The QWP and the LP are mounted
on rotation stages at angles 𝜃3

𝑘
and 𝜃4

𝑘
, resulting in the light tensor

arriving at the pixel 𝑠 on the CMOS sensor

I𝑠
′,𝜃 4

𝑘
,𝜃 3
𝑘
,𝜃 2
𝑘
,𝜃 1
𝑘 (𝑠, :) = L𝜃

4
𝑘 Q𝜃

3
𝑘R𝜃

2
𝑘
,𝜃 1
𝑘 (𝑠, :). (15)

For a 2D CMOS sensor pixel 𝑠 , our spatio-polarimetric measurement
𝑓𝑠𝑝 is then formed as the total recorded radiance of incident light,
that is

𝑓𝑠𝑝 (𝜃4𝑘 , 𝜃
3
𝑘
, 𝜃2
𝑘
, 𝜃1
𝑘
, 𝑠, 𝑠 ′) = I𝑠

′,𝜃 4
𝑘
,𝜃 3
𝑘
,𝜃 2
𝑘
,𝜃 1
𝑘 (𝑠, 0) . (16)

Rotating Polarimetric Modulation. The rotation angles of the two
LPs and the two QWPs are crucial for diverse polarimetric sam-
pling. We evaluate two configurations including the established
DRR scheme implemented with the fixed LPs and rotating QWPs
at manually-chosen angles [Azzam 1978] and our learned QRPR
method with rotating LPs and QWPs at learned angles, see Figure 6
for the specific angles we used.

Polarizer-array Sensor. By replacing the CMOS intensity camera
with a polarizer-array camera, we can sample multiple linear po-
larization states simultaneously, further reducing the number of
captures as described in Section 5. We experimentally implemented
this polarizer-array configuration shown in Figure 7.

6.2 Coaxial Temporal-Polarimetric Imaging
Next, we describe the second instance of the proposed light transport
theory. Specifically, to acquire temporal-polarimetric light transport
T𝑝𝑡 , we present a novel coaxial ellipsometric SPAD-laser imaging
method. The proposed system consists of an illumination module
and a detection module; a pulse of light is emitted to a scene and
detected by a high-speed detector SPADwhere both emission and de-
tection paths involve polarization-modulating optics. See Figure 7(b)
for the schematic diagram and prototype photograph.

Illumination. We use a picosecond pulsed laser to emit a linearly-
polarized pulse of light at time zero at the linear polarization angle
of zero 𝜃1

𝑘
= 0◦. The polarization state of the emitted pulsed light

is then modulated by a QWP mounted on a rotation stage at an
angle 𝜃2

𝑘
. Light passes through a non-polarizing beam splitter in

transmission mode and is reflected by a 2D galvo mirror specified by
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Fig. 8. A conventional photo integrates light intensity reflected from a scene over temporal and spatial dimensions. Specifically, conventional photography
captures

∑
𝑡,𝑠′ T(𝑠, 𝑠′, 0, 0, 𝑡 ) , while losing geometric and material information encoded in the scene transport. Spatially resolving the light transport allows

for (a) epipolar and (f) non-epipolar imaging that approximates direct and indirect light transport components respectively as
∑

𝑡 T(𝑠, 𝑠′𝑒 , 0, 0, 𝑡 ) and∑
𝑡 T(𝑠, 𝑠′𝑛, 0, 0, 𝑡 ) . Our spatio-polarimetric imaging approach acquires the complete polarimetric scene response which reveals strongly material-dependent

structure in the transport. We observe the specular components that maintain horizontal linear polarization in (b) the approximated direct and (g) indirect
reflection by epipolar and non-epipolar imaging. Note that the scattering inside of the crystal can be observed in the non-epipolar polarimetric component (g). (c)
Analyzing the epipolar circular-polarization component, we can examine the surface of the transparent crystal. We further decompose the spatio-polarimetric
light transport to analyze (d) & (i) polarizance and (e) & (j) retardance of the crystal. This reveals the birefringence properties of crystals indicated by red
arrows. The two indicated crystal objects are made of calcite (left) and quartz (right) respectively.

a spatial orientation 𝑠 , exiting the imaging system towards a scene.
Then, for each QWP angle 𝜃2

𝑘
and spatial orientation 𝑠 , the light

emitted to a scene is modeled as a tensor

P𝜃
2
𝑘
,𝜃 1
𝑘 (𝑠, :) = G𝑠B𝑡Q𝜃𝑘 p, (17)

where p is the Stokes vector of the linearly polarized laser pulse
at the polarization angle of 𝜃1

𝑘
= 0◦, B𝑡 is the beamsplitter Mueller

matrix in transmission mode, G𝑠 is the galvo mirror Mueller matrix
oriented to the spatial direction 𝑠 .

Temporal-Polarimetric Light Transport. The emitted light travels
through a scene and arrives at a detection module after potentially
complex light-matter interactions. This temporal-polarimetric light
transport is modeled as a tensorT𝑝𝑡 and is applied to the illumination
tensor P𝜃𝑘 , resulting in the reflected tensor R𝜃𝑘 as

R𝜃
2
𝑘
,𝜃 1
𝑘 (𝑠, :, 𝑡) = T𝑝𝑡 (𝑠, 𝑠, :, :, 𝑡)P𝜃

2
𝑘
,𝜃 1
𝑘 (𝑠, :) . (18)

To improve signal-to-noise ratio (SNR), we design our imaging
system to be coaxial with the non-polarizing beamsplitter, sharing
the same optical path for detection and emission. Therefore, we use
the same spatial sample 𝑠 for the illumination and the detection.

Detection. The light returning from the scene first passes through
the 2D galvo mirror. It then enters the non-polarizing beamsplitter
with reflection mode followed by two polarizing optics, a QWP and
a LP. The QWP and the LP are mounted on rotation stages at angles
𝜃3
𝑘
and 𝜃4

𝑘
. The SPAD detector captures the temporal response of

the scene at a specific spatial orientation 𝑠 as

I𝜃
4
𝑘
,𝜃 3
𝑘
,𝜃 2
𝑘
,𝜃 1
𝑘 (𝑠, :, 𝑡) = L𝜃

4
𝑘 Q𝜃

3
𝑘 B𝑟G𝑠R𝜃

2
𝑘
,𝜃 1
𝑘 (𝑠, :, 𝑡), (19)

where B𝑟 is the Mueller matrix of the beamsplitter in reflection
mode. Then, the SPAD sensor measures the total radiance and we

write this temporal-polarimetric image formation 𝑓𝑝𝑡 as

𝑓𝑝𝑡 (𝜃4𝑘 , 𝜃
3
𝑘
, 𝜃2
𝑘
, 𝜃1
𝑘
, 𝑠, 𝑡) = I𝜃

4
𝑘
,𝜃 3
𝑘
,𝜃 2
𝑘
,𝜃 1
𝑘 (𝑠, 0, 𝑡) . (20)

For our temporal-polarimetric experiments, we fix the LP angles as
zero. We refer to the Supplemental Document for discussions on
extending our quad-rotating ellipsometry to this temporal setup.

7 POLARIMETRIC RECONSTRUCTION
We record spatial and temporal information as intensity observa-
tions using a 2D CMOS camera and a SPAD sensor combined with
a time-correlated single photon counting (TCSPC) device. As these
conventional sensors cannot directly measure the polarization state
of light, we computationally recover polarimetric light transport in
the form of Mueller matrix reconstruction from intensities observed
with varying angles of polarizing optics. Note that the Mueller ma-
trix corresponds to the polarimetric slicing of the full light transport
tensor.

To recover polarimetric information, we record a set of intensities
𝐼Θ𝑘 (𝑠, 𝑡) and 𝐼𝑠′,Θ𝑘 (𝑠) with varying angle of the polarizing optics,
where Θ𝑘 describes the angle configuration as {𝜃4

𝑘
, 𝜃3
𝑘
, 𝜃2
𝑘
, 𝜃1
𝑘
}. From

the polarization-modulated observations, we reconstruct the polari-
metric light transport T𝑝 , a slice of the full light transport tensor
T , by solving a least-squares optimization problem. For spatio-
polarimetric imaging, this is

T𝑠𝑝 (𝑠, 𝑠 ′, :, :) = argmin
T𝑝

𝐾∑
𝑘=1

(
𝐼Θ𝑘 (𝑠, 𝑠 ′) − 𝑓𝑠𝑝 (Θ𝑘 , 𝑠, 𝑠 ′)

)2
, (21)
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and for temporal-polarimetric imaging we solve

T𝑝𝑡 (𝑠, 𝑠, :, :, 𝑡) = argmin
T𝑝

𝐾∑
𝑘=1

(
𝐼Θ𝑘 (𝑠, 𝑡) − 𝑓𝑝𝑡 (Θ𝑘 , 𝑠, 𝑡)

)2
. (22)

Specifically, we solve these problems per pixel with the least-squares
solver inspired by Baek et al. [2020] but with a different image forma-
tion model, see Supplemental Document. The polarimetric recovery
completes the proposed acquisition of the spatio-polarimetric trans-
port tensor T𝑠𝑝 and the temporal-polarimetric transport tensor T𝑝𝑡 .
See Figure 8 and Figure 9 for the reconstruction results.

7.1 Polarimetric Decomposition
We further analyze the polarimetric light transport for the basic
polarization properties of a material: depolarization, retardance, and
diattenuation. These three polarimetric properties have been tradi-
tionally studied in optics [Lu and Chipman 1996] and other applica-
tion domains, notably biology [Ghosh and Vitkin 2011]. We bring
these concepts to graphics and vision with an application to light
transport analysis. Depolarization describes how much light loses
its polarization state, turning into unpolarized light for both linear
polarization and circular polarization. As such, this quantity can be
used to characterize properties of scattering media such as density
and particle size. Retardance describes the phase delay between two
orthogonal polarization states including vertical/horizontal linear
polarization and right/left circular polarization, therefore reveal-
ing the difference of the polarization-dependent refractive index
of a material. Retardance has been used to examine plastic stretch,
defects on thin films, and birefringent materials. As a generalized
concept of dichroism, diattenuation describes the differential at-
tenuation of light’s orthogonal polarization states including linear
and circular polarization. Representing the three basic properties of
depolarization, retardance, and diattenuation as individual Mueller
matrices MΔ, M𝑅 , and M𝐷 , we decompose the polarimetric light
transport T𝑝 into a product of three Mueller matrices following the
optical Lu-Chipman decomposition [1996]

T𝑝 = MΔM𝑅M𝐷 . (23)

Once decomposed, we analyze the low-dimensional projections
of the Mueller matrices as three scalar quantities of polarizance,
retardance, and diattenuation for intuitive analysis [Ghosh and
Vitkin 2011]. Polarizance 𝑃 is the degree of polarization of exiting
light after light-matter interactions of an unpolarized incident light
in a scene as

𝑃 =
1

T𝑝 (0, 0)

√
T2
𝑝 (1, 0) + T2

𝑝 (2, 0) + T2
𝑝 (3, 0) . (24)

Retardance 𝑅 is the phase shift between the orthogonal polarization
states of light

𝑅 = cos−1 ( tr(M𝑅)
2

− 1), (25)

where tr(·) is the trace operator. Diattenuation 𝐷 characterizes how
incident light polarization affects the transmission of light

𝐷 =
1

T𝑝 (0, 0)

√
T2
𝑝 (0, 1) + T2

𝑝 (0, 2) + T2
𝑝 (0, 3) . (26)

See Figure 8 for decomposition.

8 EXPERIMENTAL PROTOTYPE
Wedescribe our two experimental prototypes for spatio-polarimetric
and coaxial temporal-polarimetric acquisition. See Figure 7 for
schematic diagrams and system photographs. For details, including
calibration procedures, we refer to the Supplemental Document.

8.1 Spatio-polarimetric Setup
Spatial Imaging. To acquire spatially-resolved light transport, we

use a DMD projector (Lightcraft LC3000-G2-Pro) and a machine-
vision camera (FLIR GS3-U3-51S5C) with an objective lens of focal
length 25mm (Fujinon HF25HA-1S 25mm f/1.4). The DMD projector
emits unpolarized light with a programmable projection pattern
𝑀𝑝 (𝑠 ′) and the camera has a programmable region-of-interest fea-
ture to implement the imaging pattern𝑀𝑐 (𝑠). While arbitrary projec-
tion and imaging patterns can be implemented, we demonstrate two
effective mask configurations for epipolar and non-epipolar imag-
ing proposed in O’Toole et al. [2012]. To this end, we geometrically
calibrate the projector and the camera by capturing checkerboard
images at different poses, obtaining the intrinsic and distortion pa-
rameters of the devices, and the fundamental matrix between them
in the undistorted coordinates. This allows us to compute epipo-
lar/non-epipolar patterns in the distorted coordinates that can be
used as𝑀𝑝 (𝑠 ′) and𝑀𝑐 (𝑠).

Polarimetric Imaging. We use a pair of achromatic QWPs (Thor-
labs AQWP10M-580) and LPs (Newport 10LP-VIS-B) in front of the
projector and the camera. Unpolarized light emitted from the DMD
projector passes through a LP mounted on a manual rotary stage
(Newport RM25A) along a vertical axis for the DRR ellipsometry.
For our learned rotating ellipsometry, the LP is mounted on a motor-
ized rotary stage (Thorlabs KPRM1E). The linearly polarized light
is then modulated by a QWP mounted on another motorized rotary
stage so that the fast axis is aligned with the polarization axis of
the LP at the zero base. The second module of a QWP and a LP is
installed in front of the camera, modulating the polarization state
of the returning light from a scene. For DRR ellipsometry, we ro-
tate the QWPs in front of the projector and the camera 36 times at
angles 𝜃𝑘 = 5𝑘 and 𝜃 ′

𝑘
= 25𝑘, where 𝑘 ∈ {0, ..., 35}. For our learned

ellipsometry, we use the optimized angles of the polarizing optics
as shown in Figure 6. We obtain all the results with the DRR setting
except for the evaluation experiments for the learned ellipsometry
(Figures 10 and 11). For each angle index 𝑘 , we obtain epipolar and
non-epipolar images with the precomputed spatial masks𝑀𝑝 and
𝑀𝑐 .

Acquisition Parameters. We set the acquisition parameters to ob-
tain accurate reconstructions of light transport tensors at acceptable
acquisition time. Our camera is set to have 600ms exposure and
captures 16bit raw images. The projector is configured to emit a 8bit
intensity image and we use zero or 255 depending on whether the
projector mask is turned off or on. For each polarizing-optics angle
set Θ𝑘 = {𝜃1

𝑘
, 𝜃2
𝑘
, 𝜃3
𝑘
, 𝜃4
𝑘
}, we project a sequence of the precomputed

masks for epipolar and non-epipolar imaging. To accelerate the
capture speed, we reconfigure the region of interest for the camera
depending on the camera mask. In addition, the capture script is
written in Python with multi-threading programming to reduce any
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Fig. 9. (a) Coaxial monochromatic imagers integrates temporal dimension without polarimetric resolution, capturing only intensity of light
∑

𝑡 T(𝑠, 𝑠, 0, 0, 𝑡 ) .
(b) Transient imaging disentangles the time integration enabling light-in-flight imaging T(𝑠, 𝑠, 0, 0, 𝑡 ) . (e) Our coaxial temporal-polarimetric imaging method
captures not only incoming intensity, but the complete polarization change at the picosecond temporal resolution as T(𝑠, 𝑠, :, :, 𝑡 ) . We visualize the 4 × 4
temporal-polarimetric light transport of the travel time 3.65 ns. This temporal-polarimetric decomposition enables us to see (c) strong specular reflection that
preserves the circular polarization state of incident light as T(𝑠, 𝑠, :, :, 𝑡 ) and (d) specular components that invert the circular polarization of light similar to
mirror as −T(𝑠, 𝑠, :, :, 𝑡 ) . This reveals the material difference of the hand-painted patterns on the doll as indicated by the red arrows.

capture-to-save delay. This results in an acquisition time of one
hour for the epipolar and non-epipolar polarimetric captures with
DRR ellipsometry.

8.2 Coaxial Temporal-polarimetric Setup
Temporal Dimension. To achieve high temporal resolution, we

use a picosecond pulsed laser unit (Edinburgh instruments EPL-635)
with an optical wavelength of 635 nm. The laser pulse is linearly po-
larized and passes through a non-polarizing beamsplitter (Thorlabs
BS013) and is directed to a scene by using a mirror galvanometer
(Thorlabs GVS012). As our system is coaxial, we detect light coming
from a scene using the same path by the non-polarizing beamsplitter.
A single-photon avalanche diode (MPD series SPAD) is used with a
time-correlated single photon counter (PicoQuant TimeHarp 260
PICO) for controlling the timings of the SPAD and the laser. Overall,
our system has a temporal resolution of 25 picoseconds.

Polarimetric Dimension. Similar to the spatio-polarimetric setup,
we employ two QWPs and a LP. Note that the laser light is linearly
polarized to the vertical orientation and passes through the QWP
mounted on a motorized rotation stage before entering the beam-
splitter. The same configuration of the QWP and the LP is installed
for the detection path after the beamsplitter reflection. We use the
DRR configuration for all temporal-polarimetric experiments.

Acquisition Parameters. We use an exposure time of 10ms for
each galvo mirror position, which we sample at 128×128 points. We
repeat this for every angle configuration of the polarizing optics
Θ𝑘∈{1, · · · ,36} . For a single scene, the total acquisition time is 7 hours.

9 ASSESSMENT
We experimentally validate the proposed method by acquiring and
analyzing spatio-temporal polarimetric transport tensors. For the
first time, we demonstrate complete polarimetric light transport
capture combined with temporal and spatial transport imaging. The
resulting transport tensors provide detailed information about a
scene both in terms of geometry and material composition, which
are challenging to acquire for existing temporal and spatial trans-
port methods. We also experimentally validate our learned rotating
ellipsometry and its polarizer-array variant.

9.1 Spatio-Polarimetric Light Transport Analysis
Spatial light transport methods are capable of isolating light paths
satisfying a certain transport geometry connecting a projector pixel
and a detector pixel. Existing methods untangle light transport into
different path geometries by masking transport components in the
illumination path, using a projector, and on the sensor path, with
per-pixel masks on a camera. Commonly used mask patterns include
high-frequency checkerboards for direct-global separation [Nayar
et al. 2006] and epipolar/non-epipolar imaging configurations [O’Toole
et al. 2012]. Although the proposed projector-camera ellipsometry
method allows for arbitrary mask patterns, we demonstrate epipolar
and non-epipolar imaging with complete polarimetric sampling. As
such, for the first time, we demonstrate the complete polarimetric
decomposition of epipolar and non-epipolar light transport. Fig-
ure 8 shows the decomposed spatio-polarimetric light transport of
crystals that reveal direct and indirect transport further resolved in
polarization state. This allows us to acquire specular reflections that
maintain the horizontal linear polarization of incident light for direct
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Fig. 10. We modify our spatio-polarimetric imager to demonstrate the
proposed learned ellipsometry method of (a) the quad-rotating ellipsometry
and (b) its extension with the polarizer-array sensor. (d) We capture the po-
larimetric light transport of an unprotected gold mirror. (c) & (e) Our method
outperforms the conventional DRR method, achieving same reconstruction
accuracy with fewer captures. We use acronyms L-QRPR for the learned
quad-rotating polarizer retarder, DRR-P for the dual-rotating retarder with
a polarizer sensor, and L-QRPR-P for the learned quad-rotating polarizer re-
tarder with a polarizer sensor. Note that compared to the conventional DRR
method, we reduce the number of captures from 36 to 15 for the L-QRPR-P
method.

and indirect reflections in
∑
𝑡 T (𝑠, 𝑠 ′𝑒 , 1, 1, 𝑡) and

∑
𝑡 T (𝑠, 𝑠 ′𝑛, 1, 1, 𝑡).

Direct surface reflection on the crystals are revealed in the circular-
polarization inverting component −∑

𝑡 T (𝑠, 𝑠 ′𝑒 , 3, 3, 𝑡) with epipolar
scanning that could allow for examining the surface profiles of
the transparent crystal. Further, we decomposed the epipolar/non-
epipolar polarimetric light transport to obtain diattenuation, po-
larizance, and retardance. This reveals the intrinsic properties of
various crystals, notably the birefringence of calcite and quartz in
the retardance estimates. Note that complete Mueller matrix acqui-
sition with spatial probing is essential for this spatio-polarimetric
decomposition and its application to estimating crystal properties.
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Fig. 11. The proposed learned ellipsometry method efficiently acquires
complex polarimetric light transport with fewer captures than existing
methods. For quantitative evaluation, we use pseudo ground-truth data from
50 DRR captures [Azzam 1978]. The proposed L-QRPR-P method provides
accurate reconstructions despite only using 15 captures. We visualize the
(2,3)-th component of the polarimetric transport −∑

𝑠′,𝑡 T(𝑠, 𝑠′, 2, 3, 𝑡 ) .
9.2 Temporal-Polarimetric Light Transport Analysis
Existing transient imagingmethods capture light propagating through
a scene at high temporal resolution on the order of picoseconds [Heide
et al. 2013; O’Toole et al. 2017; Velten et al. 2013]. This acquisition
approach reveals the scene geometry both in the direct sight [Heide
et al. 2018] and outside the direct line of sight [Velten et al. 2012].
However, material-dependent scene understanding has been chal-
lenging for transient imaging due to temporal blur and tempo-
ral metamerism that light rays undergo since different material-
dependent scattering events have similar travel distances [Wu et al.
2014]. For the first time, we demonstrate that polarimetric tran-
sient imaging improves the decomposition capability of material-
dependent light transport. Figure 9 shows the decomposed coax-
ial temporal-polarimetric light transport. For each time bin 𝑡 , we
obtain a complete polarimetric decomposition. This allows us to
separate specular reflections that maintaining circular polarization
of incident light. Furthermore, we distinguish the specular compo-
nents that invert or maintain the incident circular polarization with
T (𝑠, 𝑠, :, :, 𝑡) and −T (𝑠, 𝑠, :, :, 𝑡).

9.3 Learned Ellipsometry and Polarizer-array Sensor
In addition to the synthetic assessment in Figure 6, we experimen-
tally evaluate our proposed ellipsometry methods compared to the
conventional DRR method [Azzam 1978]. To this end, we modify
our spatio-polarimetric setup by mounting the linear polarizers on
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(c) regular SL , error: 29o (d) regular SfP, error: 36o (e) regular SL + SfP, error: 20o(a) regular photo

(g) non-epipolar photo (i) epipolar SL, error: 27o  (j) epipolar SfP, error: 35o (k) epipolar SL + SfP, error: 18o(h) epipolar photo

(b) graycode  photo (f) sprayed object 

(l) SL from the sprayed object

Fig. 12. (a) We reconstruct the shape of a dragon statue with strong subsurface scattering and interreflections. (g) & (h) Spatial light transport of non-epipolar
and epipolar imaging reveals the approximate indirect and direct components. (c) Conventional structured light (SL) methods, such as (b) graycode probing,
assume diffuse appearance and struggle with strong subsurface scattering. (d) Shape-from-polarization (SfP) methods estimate surface normals with ambiguity
in azimuthal angle and refractive index of the material [Atkinson and Hancock 2006]. (e) Combining structured light with the shape-from-polarization method
resolves the polarimetric-normal ambiguity but the interreflections and subsurface scattering corrupt estimated normals. See red arrows. (k) Exploiting
both geometric cues with epipolar capture eliminates the ambiguity in existing methods and allows us to reconstruct fine geometry detail. (f) We sprayed
anti-reflective diffuse particles to the dragon statue, obtaining (l) the pseudo ground-truth geometry by using structured light scanning. We compute the
reconstruction errors of surface normals with this registered ground truth, reported in the subfigure caption headings, revealing that our method also
quantitatively outperforms existing methods. We refer to the Supplemental Document for further results.

the motorized rotation stages to implement the quad-rotating ellip-
sometry. For the polarizer-array extension, we replace the CMOS
camera with the polarizer-array camera (FLIR Blackfly S BFS-U3-
51S5PC). For details on geometric and polarimetric calibrations, we
refer to the Supplemental Document. We capture an unprotected
gold mirror (Thorlabs PF10-03-M03) which has known polarimetric
light transport as shown in Figure 10. We confirm that our proposed
ellipsometry reduces the number of captures required for acquiring
polarimetric light transport compared to the conventional DRR tech-
nique [Azzam 1978]. We also evaluate the ellipsometric methods
(DRR, DRR-P, L-QRPR-P) on a scene with unseen materials, see
Figure 11. To this end, we use the polarizer-array setup and obtain
pseudo ground-truth data using 50 DRR captures [Azzam 1978].
Note that DRR inputs can be acquired by sampling the on-sensor
polarizers oriented at zero degree, resulting in pixel-aligned inputs
to the DRR-P and the L-QRPR-P methods. We again observe that L-
QRPR-P provides reliable reconstructions of polarimetric transport
with only 15 captures while DRR fails. We refer to the Supplemental
Document for qualitative evaluation of all ellipsometry methods
and details on the spatio-polarimetric acquisition with the proposed
ellipsometry method.

10 APPLICATIONS
We demonstrate applications of the proposed method for shape
reconstruction with subsurface scattering, seeing through scattering
media, multi-bounce reflection analysis, and resolving metamerism.

10.1 Shape Reconstruction with Subsurface Scattering
Reconstructing the geometry of an object with strong subsurface
scattering poses a challenge for existing 3D imaging systems. The
proposed spatio-polarimetric imaging method solves this problem

by jointly exploiting polarimetric and spatial information that en-
codes information about a scene geometry. Figure 12 shows the
reconstructed geometry for a dragon object with severe subsurface
scattering and object interreflections. We note that conventional
structured-light methods, such as graycode patterns, assume diffuse
surface properties, and, as such, suffer in presence of strong subsur-
face scattering and interreflections on the object, failing to resolve
fine surface structure. Epipolar structured light methods approxi-
mately capture direct reflections in order to mitigate such problems.
However, epipolar structured light approaches fail with strong sub-
surface scattering that does not fulfill the epipolar constraint. Shape
from polarization [Atkinson and Hancock 2006] provides geometric
cues of the surface with 𝜋 azimuthal ambiguity. Although these
cues allow for the recovery of surface normals for convex objects,
interreflections can still cause severe errors for normal estimation.
Even combining structured light and shape from polarization, which
resolves the polarization-normal ambiguity, suffers from such inter-
reflection artifacts [Baek et al. 2018]. In contrast, we obtain robust
geometry from structured-light normals and polarization normals
using epipolar-polarimetric captures. As such, the proposed method
is capable of exploiting the intertangled relationship between the
epipolar spatial domain and polarization domain. We observe im-
proved geometric reconstruction compared to [Baek et al. 2018] at
the neck and torso of the dragon indicated by the red arrows in
Figure 12. To quantitatively assess reconstruction quality, we have
acquired the pseudo ground-truth geometry using structured light
after spraying diffuse particles onto the object. In Figure 12, we
report the reconstruction errors of surface normals of each method
with this ground-truth measurement after registration. The pro-
posed epipolar structured polarimetric scanning qualitatively and
quantitatively outperforms existing methods as validated by the
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Fig. 13. Experimental seeing through scattering media. (a) Experimental
configuration where milky water in a glass pot is in between the target
objects and the imaging setup. (b) With severe backscatter, conventional
imaging methods that integrate backscattered light and ballistic photons
have limited visibility of (c) light interacting with the object. (d) Epipolar
confocal imaging [O’Toole et al. 2012] removes scattering outside of the
epipolar plane while epipolar scattering is ignored. (e) Cross-polarization
imaging [Treibitz and Schechner 2008] relies on the orthogonal polarization
states of linear/circular components for back-scattered and object-scattered
light. (f) Polarized light striping [Gupta et al. 2008] combines line scanning
and degree-of-polarization analysis on the linear polarization component,
further improving descattering results. (g) We take a step forward by captur-
ing the complete epipolar polarimetric light transport

∑
𝑡 T(𝑠, 𝑠𝑒 , :, :, 𝑡 ) . (h)

Our optimized weights and biases for polarimetric components reveal the
contributions of all spatio-polarimetric information for descattering, leading
to (i) the improved visibility of the hidden scene.

reported normal estimation error. For details on the reconstruc-
tion method and additional results, we refer to the Supplemental
Document.

10.2 Seeing through Scattering Media
Removing the effect of volumetric scattering is an open challenge
in imaging and computer vision. We demonstrate imaging through
scattering media to see objects of interest through scattering media
such as fog and milky water in macroscopic scenes. In the presence
of scattering in Figure 13(a), light transport T from a source to
a detector is modeled as a sum of the light T𝑏 back-scattered by
the scattering and the ballistic object-scattered light T𝑜 reflected
on the object surfaces: T = T𝑏 + T𝑜 . Descattering then refers to
the process of recovering the object-scattered component T𝑜 from
the integrated transport T . Existing methods have shown that the
structure in polarimetric light transport can aid the recovery in this

ill-posed problem. A key intuition of existing approaches is that
the back-scattered component T𝑏 tends to maintain the polariza-
tion of incident light, while the object-scattered component T𝑜 is
depolarized [Gupta et al. 2008; Treibitz and Schechner 2008]. As
such, capturing two images with parallel and orthogonal states of
the linear polarizers allows us to filter out linearly polarized light
which is assumed to be the backscattered light. While this approach
reduces some backscatter, it relies on incomplete polarization anal-
ysis; only one linearly-polarized angle is investigated. Other linear
polarization angles, circular, and elliptical polarization are ignored.
Existing methods also have explored spatial probing [Fuchs et al.
2008; Gupta et al. 2008; O’Toole et al. 2012] for descattering but
independently of the polarimetric analysis.
We overcome the limitations of existing approaches by imaging

through scattering media with a variant of the proposed spatio-
polarimetric imaging system. Our system allows us to capture the
complete polarimetric change in scattering media, in contrast to
the existing incomplete polarization-based descattering methods,
while simultaneously performing epipolar probing. To recover the
undisturbed latent image (without the scattering media present),
we solve an optimization problem to estimate the optimal weight
and bias of the spatio-polarimetric light transport for descattering,
that is

minimize
𝑊,𝑏



𝑆syn − 𝑆gt

2 ,
𝑆
𝑘∈{𝑅,𝐺,𝐵 }
syn =

3∑
𝑖=0

3∑
𝑗=0

{
𝑊𝑖 𝑗𝑘 ⊙

(∑
𝑡

T𝑘 (𝑠, 𝑠𝑒 , 𝑖, 𝑗, 𝑡) + 𝑏𝑖 𝑗𝑘

)}
, (27)

where𝑊 and 𝑏 are the 4×4 matrices for trichromatic channels glob-
ally applied to all pixels, T𝑘 is the transport tensor at 𝑘-th color
channel, and 𝑆gt is the ground-truth image without scattering. We
solve this optimization problem with a quasi-Newton L-BFGS op-
timizer [Liu and Nocedal 1989]. Figure 13 shows that our method
provides improved visibility of the doll and the ruler compared to ex-
isting approaches. It is interesting to note that the optimized weight
and bias perform linear operations on all polarimetric elements
including linear, circular, and elliptical components across the 4×4
polarimetric Mueller matrix. This shows that complete polariza-
tion sensing combined with the spatial epipolar scanning enables
effective descattering.

10.3 Untangling Multi-Bounce Light Transport
The light transport in a complex scene featuring diverse materi-
als can include multiple interreflection between individual scene
surface points. In conventional intensity images, the superposition
of this multi-bounce transport results in complex diffusion and
specular caustics that are challenging to analyze with conventional
intensity images. We demonstrate that adding spatio-polarimetric
and temporal-polarimetric separation resolves this ambiguity. Fig-
ure 14 shows that we can decouple interreflections between the
specular coins, diffuse floor, specular disco ball, and colored diffuse
planes. By exploiting the complicated spatio-polarimetric transport
response, we separate the specular interreflections between the
coins and diffuse interreflection between the colored diffuse planes
with the disco ball. This can be explained by the fact that specular
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Fig. 14. Spatio-polarimetric Imaging: (a) & (f) We untangle complex reflections between a specular disco ball and diffuse planes using our spatio-polarimetric
imaging approach. (b) Epipolar and (g) non-epipolar spatial imaging partially separates direct and indirect reflections between the objects [O’Toole et al.
2012]. Our epipolar polarimetric probing (c) isolates the remaining specular reflection on the diffuse planes (

∑
𝑡 T(𝑠, 𝑠′𝑒 , 0, 1, 𝑡 )), (d) removes the specular

reflection (
∑

𝑡 T(𝑠, 𝑠′𝑒 , 2, 1, 𝑡 )), (e) and captures the diffuse direct interreflections between the red and blue planes as revealed by the changed colors of the
planes (−∑

𝑡 T(𝑠, 𝑠′𝑒 , 3, 3, 𝑡 )). Our polarimetric non-epipolar imaging provides further decomposition of the indirect reflections, allowing us to untangle (h)
the reflection from the planes and the disco ball only to the floor (−∑

𝑡 T(𝑠, 𝑠′𝑛, 1, 0, 𝑡 )), (i) & (j) the reflections with different directions from the disco ball
to the planes (

∑
𝑡 T(𝑠, 𝑠′𝑛, 0, 2, 𝑡 ) and −∑

𝑡 T(𝑠, 𝑠′𝑛, 0, 2, 𝑡 )). Temporal-polarimetric imaging: (a) & (b) Conventional photography integrates along the time
dimension, capturing the steady-state equilibrium of light transport. (c) & (f) Transient imaging captures the temporal dimension, revealing light in flight. Our
temporal-polarimetric probing further decomposes this temporal transport depending on material properties, effectively distinguishing (d) & (g) the diffuse
transient reflections as T(𝑠, 𝑠, 3, 3, 𝑡1) and (e) & (h) specular transient reflections from metallic surfaces as T(𝑠, 𝑠, 3, 3, 𝑡2) .

interreflection often flips the circular polarization, while diffuse
interreflection is encoded in the linear polarization. Also, we sepa-
rate reflections from the statue/lion and the mirror with specular
and diffuse decomposition. This fine-grained decomposition of light
transport is enabled by our joint analysis of spatial and polarimetric
light transport.

10.4 Breaking Metamerism with Polarization
The proposed polarized light transport analysis in the temporal
and spatial dimensions allows us to resolve metamerism. Conven-
tional cameras integrate over large regions of the spectral irradiance,
which can make objects with different reflectance appear identical
as a result of this integration. Acquiring polarimetric light transport

allows us to resolve this ambiguity without having to acquire hy-
perspectral data with high spectral resolution. Figure 15 validates
that the proposed polarimetric analysis allows us to identify dif-
ferent materials for various objects including fake/real fruits and
flowers by discovering scattering that are “hidden” in conventional
and spatial captures. Here we utilize the epipolar spatial dimen-
sion with 45 degree linear-polarization maintaining component,
−∑

𝑡 T (𝑠, 𝑠 ′𝑒 , 2, 2, 𝑡), where 𝑠 and 𝑠 ′𝑒 are the pairs of pixels in the
camera and the projector within the same epipolar plane. In this
tensor slice, the plastic fake objects of fruits and flowers have low
intensity because the captured light returns from the direct surface
reflection from the surface paint. In constrast, the real organic mate-
rials present rich subsurface scattering revealing its unique organic
material structure.
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Fig. 15. The proposed spatio-polarimetric imaging approach allows us to
resolve metamerism observed in (a) real and fake fruits and flowers. (b) &
(c) Conventional spatial epipolar and non-epipolar imaging methods cannot
identify the subtle difference between the real and the fake. (d) Our spatio-
polarimetric imaging reveals that the fake plastic objects show minimal
subsurface scattering. The right apple, right pear, and the bottom flowers
are fake objects. These objects contain low-intensity polarimetric scattering
effects as shown in the epipolar 45-degree linear-polarization component
−∑

𝑡 T(𝑠, 𝑠′𝑒 , 2, 2, 𝑡 ) .

11 DISCUSSION
In this work, we develop a method for capturing a light transport
tensor decomposed into its spatial, temporal, and polarimetric di-
mensions. This comes at the cost of sequential acquisition and re-
duced light efficiency. We partly mitigated the light efficiency issue
in our spatio-polarimetric imaging prototype by spatially binning
2×2 pixels, resulting in an effective pixel pitch of 12.9𝜇m. Departing
from sequential acquisition and developing photon-efficient capture
are exciting areas of future research. In particular, one potential
direction that we envision is to combine the proposed method with
liquid crystal retarders which could substantially reduce capture
time, possible even below a minute. Our current implementation
of the polarimetric reconstruction requires 12 sec. and 0.3 sec. to
process the spatio-polarimetric and the temporal-polarimetric data,
respectively. Accelerating the per-pixel reconstruction which is
separable on a modern GPU could unlock real-time capture and
reconstruction in the future. Combining the learned principal com-
ponents of polarimetric transport and polarimetric reconstruction is
another exciting direction which could facilitate robust reconstruc-
tion with fewer captures. Energy-efficient spatial probing [O’Toole
et al. 2015] is further exciting direction for future research.

12 CONCLUSION
We propose a computational light transport imaging method that
allows, for the first time, to capture full polarization information
along with temporal and spatial resolution. Our approach hinges on

a novel tensor-based light transport theory that jointly models tem-
poral, spatial and polarimetric dimensions. We analyze the low-rank
polarimetric embeddings and propose a data-driven ellipsometry
that learns to exploit this low-rank structure. We instantiate our ap-
proach with two imaging systems for coaxial temporal-polarimetric
imaging and spatio-polarimetric imaging. The proposed polarimet-
ric probing method provides in-depth analysis on material and
geometry characteristics of a scene, enabling unprecedented de-
composition of temporal-polarimetric and spatio-polarimetric light
transport. We validate the proposed method with five applications:
reconstruction of shape in the presence of subsurface scattering,
seeing through scattering media, analyzing multiple light-bounces,
untangling metamerism, and analyzing crystal birefringence. We
outperform existing methods for all applications. We envision that
the proposed method will inspire broad applications in computer
graphics, vision, and beyond.
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