
Neural Scene Graphs for Dynamic Scenes

Supplementary Material

Julian Ost1,3 Fahim Mannan1 Nils Thuerey3 Julian Knodt2 Felix Heide1,2

1Algolux 2Princeton University 3Technical University of Munich

In this supplemental document, we present additional details and results for the methods presented in the main text. Specifi-
cally, we present

• Neural Radiance Fields (NeRF) [4], which our representation nodes are based on 1.

• Point sampling from efficient ray-plane and ray-box intersections 2.

• Implementation details on ray sampling and the model architecture 3.

• Additional experiments, results and ablation study 4.

• A study and comparison on the complexity of neural scene graphs 5.

1. Background on Neural Radiance Fields

Several scene graph node representations, as described in the main paper, are based on Neural Radiance Fields (NeRF) by
Mildenhall et al. [4]. We review NeRF as a successful approach for learning static scene representations from a collection of
images, under the assumption of consistency between view points. In NeRF, scenes are modeled by a continuous, volumetric
scene function Fθ : (x,d) → (c, σ), approximated using a multilayer perceptron (MLP), which encodes the scene in its
weights. Inputs to the volumetric scene approximation function are a position in Euclidean space x = (x, y, z) and a unit
vector viewing direction d = (dx, dy, dz) which map to a volumetric density σ and RGB color c = (r, g, b). The architecture
for the MLP can be decomposed into two sets of linear layers, the first of which is described in Eq. (1) and takes the position
x and maps it to a density, σ. The model’s second set of linear layers maps the viewing direction d concatenated with the
output feature vector of the first component to a color c, as in Eq. (2). This MLP’s architecture ensures consistency of the
encoded scene across camera views by having the volumetric density depend only on the 3D position, and varying color with
viewing direction.

[y(t), σ(t)] = Fθ1(γx(r(t))) (1)
c(t,d) = Fθ2(γd(d),y(t)) (2)

Experiments [4, 6] have shown that learning functions which map from low dimensional problem spaces to high-frequency
features can be improved significantly by adding Fourier feature mappings. Therefore, it is beneficial to apply this feature
encoding to all low dimensional inputs like 3D positions and directions. The original NeRF methodology used positional
encodings, used in many natural language processing tasks, but has worse performance. Fourier encodings reduce the training
time as compared to positional encoding and are used liberally for inputs to representation models.

The synthesized views are rendered by tracing rays r(t) of a pinhole camera model through the described volumetric scene
representation. With NeRF, the pixel value is approximated using volumetric integration between a near and far distance along
each ray, tn and tf , using the equation r(t) = o + td to sample at equal distances along the ray. The following integral is
then used to compute transmitted color from the scene along each ray

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (3)

1

where T (t) = exp(−
∫ t

tn

σ(r(s))ds, (4)

with T (t) in Eq. (4) as the accumulated transmittance along a ray from the near bound tn to t. Here, σ(t) and c(t) are the
density and color at the 3D coordinate r(t), respectively.

Ĉ(r) =

N∑
i=1

Ti(αi)ci, where

Ti = exp(−
i−1∑
j=1

σiδi) and αi = 1− exp(−σiδi).
(5)

The continuous rendering functions (3) and (4) are approximated with numerical quadrature as in Eq. (5). To make the
MLP more generalizable and prevent overfitting to one set of discrete points, samples are generated randomly between tn
and t. This ensures a smoother, continuous representation despite it being evaluated at a fixed set of discrete points at each
training step.

The function is optimized given some distance between two sampling points, δi = ti+1 − ti, over α, denoting the value
used for alpha compositing. In addition to α, the equation for Ĉ is differentiable with respect to the outputs (c, σ), therefore
it can be optimized with respect to a ground truth pixel color C. The rendering loss can be expressed as

L =
∑
r∈R

[∣∣∣∣∣∣Ĉ(r)− C(r)∣∣∣∣∣∣2
2

]
. (6)

2. Sampling Points

The rendering pipeline introduced in the main paper uses discrete quadrature points along a ray, evaluated at all scene
graph nodes a ray intersects. Departing from previous neural rendering methods with implicit representation models that
rely on efficient sampling through iterative steps, such as ray-marching [5] or importance sampling [4], we rely on the scene
graph structure to sample points efficiently in a single step. It is necessary to deviate from the proposed methodology, since
the scene is sparsely covered with dynamic nodes, while the static node fully covers the rendered image. In the following,
we describe the computational differences in sampling strategies in ray coordinates at the static and the dynamic nodes.

2.1. Ray-Plane Intersection

The background model, which represents all non-moving, static parts of a scene, is stored on sparse planes to efficiently
model static components. To get a consistent view, these fixed planes are defined from a non-moving reference pose. That
pose is chosen as one of the initial camera poses TWc,0 from the training dataset. We use OpenGL [8] coordinate conventions
and select the initial camera as the only pose with no other camera located on the side of it’s negative z-axis.
The first background plane is defined by a point p located at dn on the negative z-axis and its normal n is the negative z-axis
of TWc,0. All further planes are uniformly distributed between dn and df along the normal of the first plane.
Sampling points are generated for each ray r = o + td, by calculating an intersection of the ray and each plane in ray
coordinates t with

t =
(o− p) · n

d · n
. (7)

In our experiments, we use Ns = 6 static planes to represent the background in scenes with little to no view movement. For
scenes with significant movement in the camera pose, especially in the plane’s normal direction, we use 10 planes to account
for large perspective shifts in planes near the camera. The distance dn is set to 0.5 and df is set to a value between 100
meters and 150 meters, depending on a scene’s depth and object distribution, such that occlusion and view interpolation can
be handled accordingly.

2

Figure 1: Valid sampling points along a ray between the entrance and exit points to,0 and to,Nd
of a ray and the AABB of

object o for Nd = 2.

2.2. Ray-Box Intersection

As described in the main paper, all valid sampling points from the dynamic nodes are given in the local frame of the object
hit, Fo and are scaled by So, the inverse dimension of the bounding box enclosing the model. The boxes are now defined
in this local frame as an axis-aligned bounding box (AABB) with a minimum bound [−1,−1,−1] and a maximum bound
[1, 1, 1]. For each ray r, we transform its origin o and direction d into each local frame {Fo}

Nobj

o=1 with

po = SoT
w
o p, (8)

following the edges of the scene graph from W to the scaled dynamic frames Fo. After the rays are defined in the same
reference frame as the unit scaled AABB, we can compute all ray-box intersections and entry and exit points to,0 and to,Nd

locally. For each intersected node, we sample equidistant quadrature points t between to,0 and to,Nd
, such that x = r(t) with

xo ∈ [1,−1]3.
We found that Nd = 7 equidistant points t per ray and object node are enough to represent dynamic objects accurately

while maintaining short rendering times, see ablation study in this document. As mentioned in the main paper, this set of
points is defined as

{{ti}
Ns+mjNd

i=1 }j = {{tp}Ns
p=1 ∪ {{ti,k}

Nd
i=1}

mj

k=1}j (9)

for each ray with mj intersecting boxes.

3. Implementation Details

Latent Ray Balancing The optimizer back-propagates through the rendering pipeline to each trainable node in L and F
intersecting with the rays in a batch R, and, without compensation naturally leads to an imbalance in learning rates between
objects intersected more frequently. In a ray batch, each latent object descriptor is represented once per bounding box inter-
section with a ray in the set. Similarly, the representation networks of object types are considered once per each intersection
with a node of that type. We found that a training set with an unbalanced number of intersection points with each node is not
sufficient to allow optimizing over all representations jointly.

To mitigate the imbalance, we introduce a pre-processing strategy for the training set. Given all rays from all scene
captures, we estimate the number of hits for each object by a ray using the ray-box intersection algorithm from the rendering
pipeline. For classes less represented in this process by the maximum number of hits on a single representation node Fθc , we
replicate the rays hitting this node, such that it matches the maximum number of hits on any single class. We repeat this step
for all object nodes in each class. With this procedure, we ensure that each latent object descriptor and representation model
is almost equally represented in the training set.

Model Architecture Details For the background model and all dynamic models, our first stage uses 8 fully-connected layers
and the second stage uses 4 fully-connected layers, departing from the original implementation, which uses a single fully
connected layer in the second stage. All layers have a hidden size of 256.

The inputs to the static model are exactly the same as for NeRF [4], which is reviewed in Sec. 1. The inputs consist of
a 3D point given in Cartesian coordinates x = x, y, z to the first stage and a 3D direction with d = dx, dy, dz as input
to the second. We use a Fourier feature mapping, which increases training speed for low dimensional features such as 3D
coordinates learning high dimensional feature spaces as is described by Tancik et al. [6]. The 3D location x is mapped with
a Fourier encoding at k = 10 frequencies for

γ(p) = [..., sin(2kπp), cos(2kπp), ...] for k = 0, ...,K − 1, (10)

3

Representation Model First Stage Fbckg,1

Layer Input
Name Note Size

Input Local Position + Fourier 3 + 60
layer1 Fully Connected ReLU 256
layer2 Fully Connected ReLU 256
layer3 Fully Connected ReLU 256
layer4 Fully Connected ReLU + Skip 256
layer5 Fully Connected ReLU 256
layer6 Fully Connected ReLU 256
layer7 Fully Connected ReLU 256
PrevOut, Density Fully Connected ReLU 256

Representation Model Second Stage Fbckg,2

Layer Input
Name Note Size

Input Direction + Fourier+PrevOut 3 + 24 + 256
second1 Fully Connected ReLU 256
second2 Fully Connected ReLU 256
second3 Fully Connected ReLU 256
RGB Fully Connected ReLU 256

Figure 2: Static Model Architecture. The static representation model is implemented as a two staged multilayer perceptron.
A positional encoded spatial point is the only input to the first stage. 8 fully-connected layers form the first stage, that outputs
a density value and an intermediate feature vector of size 256. The 4 layer deep second stage outputs a color value.

Representation Model First Stage Fc,1

Layer Input
Name Note Size

Input Local Position + Fourier 3 + 60
+ Latent + 256

layer1 Fully Connected ReLU 256
layer2 Fully Connected ReLU 256
layer3 Fully Connected ReLU 256
layer4 Fully Connected ReLU + Skip 256
layer5 Fully Connected ReLU 256
layer6 Fully Connected ReLU 256
layer7 Fully Connected ReLU 256
PrevOut, Density Fully Connected ReLU 256

Representation Model Second Stage Fc,2

Layer Input
Name Note Size

Input Direction + Fourier 3 + 24
+ Position + Fourier + PrevOut + 3 + 24 + 256

second1 Fully Connected ReLU 256
second2 Fully Connected ReLU 256
second3 Fully Connected ReLU 256
RGB Fully Connected ReLU 256

Figure 3: Dynamic Model Architecture. The dynamic representation models are implemented as two staged multilayer
perceptrons just like the static model. A positional encoded spatial point and a latent object code are input to the first stage
and a positional encoded ray direction and a positional encoded object position are concatenated with the intermediate feature
vector, which form the input to the second stage.

resulting in a length 63 input vector to the first stage. The Fourier encoding for the direction uses 4 frequencies and the
encoded vector is concatenated with the output feature vector y(x) of size 256, resulting in a input vector of length 283 to
the second stage.

The dynamic model departs from the static model in the inputs passed to both stages. The latent object code lo ∈ R256

is concatenated with the encoded location and the input to the first stage. For the second stage, the object pose p is Fourier
encoded at 4 frequencies, and concatenated with y(x) and γy(y).

4. Additional Experiments
We use Ns = 6 planes and Nd = 7 object sampling points, and scene-specific far planes at df , for all our experiments.

Only Ns is changed for scenes to evenly learn representations from sequences with bigger movement of the ego camera,
as described in subsection 2.1. The bounding box dimensions so are scaled to include the shadows of the object. Each
network F θbckg

and F θc follows the previously detailed architecture and consists of eight fully connected layers with a skip
connection from the input to the fourth layer to compute density, σ, and four fully connected layers to compute color. We
assign a latent vector of size 256 to each node to represent the specific object class. We add an additional Fourier encoding of
size 10 for γx and 4 for the viewing direction and object pose. Finally, we train the scene graph using the Adam optimizer [3]

4

with a linear learning rate decay.
In the following sections, we present additional results that further validate the proposed method and an ablation study on our
design and sampling choices. In addition, we encourage the reader to view our supplementary video, which shows additional
results and better illustrates dynamic context.

4.1. Additional Results

Virtual KITTI Experiments Besides the neural scene graphs that we present in the main paper, we applied our method to
the Virtual KITTI 2 data set [1], a synthetic automotive data set mimicking the captured Data of the KITTI data set [2]. The
renderings in Fig. 4 show that the method is also applicable to synthetic video data. There is no difference between synthetic
and real data in how we apply the proposed method and we present additional decomposition and reconstruction results on
the same scene in the supplementary video.

Figure 4: Renderings from Novel Scene Graphs. Randomly sampled scene graphs using the nodes of a scene from Virtual
KITTI2 [1] demonstrates the neural scene graph method applied to synthetic data.

Novel Scene Graphs

Figure 5: Randomly sampled scene graphs, in addition to the renderings presented in the main paper.

5

View Interpolation In the main paper, we presented alternating views for a camera movement perpendicular to the back-
ground planes. In Fig. 6 we demonstrate that our method is also capable of rendering novel views in proximity to the training
camera poses, similar to the majority of state-of-the-art methods. We note that only two views from a narrow-baseline
stereo-pair were used for training.

Left Camera Quarter Distance

Three Quarter Distance Right Camera

Figure 6: Demonstration of view interpolation of the camera position. We translate the camera pose from the left camera to
the right camera of the stereo camera setup from a KITTI sequence [2].

4.2. Ablation Studyies

We perform an ablation study on the sampling parameters Nd and Ns, the addition of location input to the second layer
and latent code on a scene from KITTI [2].

Ns = 2 Ns = 4 Ns = 7 Ns = 16

R
ec

on
-

st
ru

ct
io

n
O

cc
lu

de
d

O
bj

ec
t

Figure 7: We vary the number of static background planes Ns and compare qualitative results. In the bottom row, we focus
on an object occluded by a static part of the scene, which should be represented by the background.

Ns 2 4 7 16 32
PSNR ↑ 18.51 26.84 26.78 26.36 25.30
SSIM ↑ 0.633 0.812 0.806 0.798 0.771
LPIPS ↓ 0.389 0.172 0.186 0.189 0.203

Table 1: We evaluate different plane sampling settings Ns for reconstructing a scene with the image quality metrics PSNR,
SSIM [7] and LPIPS [9].

Background Sampling For quantitative results on the effect of the sampling Ns see Tab. 1 and for a qualitative comparison
see Fig. 7. The best reconstruction quality can be achieved for Ns = 4 and Ns = 6. Despite Ns = 4 giving slightly better
results, it fails to properly recover complex occlusion, such as the orange car behind the traffic sign in Fig. 7. The image

6

quality metrics also show that more planes do not favor dynamic scenes, instead they add more noise to the background
representation from the dynamic objects in the scene. When only reconstructing static parts of the scene on a near and a far
plane, Ns = 2, the model fails to recover some parts of the scene completely. The qualitative results in the figure show black
spots and overlapping traffic lights. The occlusions that could not be handled by more planes seem to be modeled by the two
planes but looking at the decomposed scene in Fig. 8 we can clearly see that the traffic sign and parts of the background are
projected to the dynamic node.

(a) Rendering of all objects with Ns = 2. The occluding traffic
signs and other parts of the background are projected to the dy-
namic node.

(b) Zoomed in rendering of objects with Ns = 7. The occluding
traffic sign is handled by the static radiance fields. Distant objects
present another challenge to our method.

Figure 8: Detailed comparison for sample density Ns = 2 and Ns = 7 on the same frame.

Object Sampling We present quantitative results for different values of the object sampling Nd in Tab. 2. The results only
show marginal differences in all image quality metrics. The reconstruction task for the moving object gives no strong cue
as to which setting is best for Nd. We assume that the scene graph structure and our rendering pipeline that reconstructs
an object through ray-casting lets the models project on fewer samples if forced, and the sampling density does not have a
striking effect.

Nd = 1 Nd = 2 Nd = 3 Nd = 5 Nd = 7 Nd = 9

Figure 9: 7.5 deg rotation of objects around their own axes for different sampling parameters Nd.

Nd 1 2 3 5 7 9
PSNR ↑ 26.84 26.53 26.82 26.89 26.66 26.85
SSIM ↑ 0.815 0.806 0.813 0.814 0.806 0.813
LPIPS ↓ 0.171 0.189 0.173 0.169 0.186 0.172

Table 2: We quantitatively evaluate different object sampling point settings Nd on the reconstruction task.

Analyzing the metrics for reconstructed frames with dynamic objects, the model does clearly not prefer any specific
sampling parameter setting. Therefore, we also show further qualitative results in Fig. 9 for novel views of objects, in which
we rotate each object 7.5 deg around its own axes. ForNd = 1, we see a distorted image of the original object at that location,
as would be expected from rotating a single plane inside a box. Setting Nd = 2, we see that two samples are not enough to
encode any volumetric information within the representation network. Only minor differences, such as noise, artifacts from
the pavement and different color shifts can be observed for more than three sampling points. We settled with Nd = 7, which
has been reliable across scenes and objects, without adding significant sampling time.

The parameter Nd shows a trade-off between efficiency and quality. Pairing our method with advanced sampling tech-
niques could allow for larger transformations without adding a vast amount of sampling points. Across all experiments shown
in the paper, the chosen set of parameters delivered the most robust results without adding significant cost.

7

Pose Input We compare results from the model that we present in the main paper and a variation without an additional
location input po to the second stage. The location input is necessary to represent the color of an object at each location in
the scene and untangle the influence of global, environmental lighting from an object’s material properties. In Fig. 10 we
present objects, that we rotate and translate randomly from their training location. We can see that without a global location
input the color is darker and less detailed. We note that it does not completely fail and the differences are marginal for small
deviations.

Without the object location input. With the object location input.

Figure 10: Comparison of different objects with and without the object’s location po as an input to the second stage of the
representation model.

Latent Code As explained in the main paper, we introduce latent codes lo for each object o to benefit from similarities of
objects from the same class c in their shared representation function Fθc . In Fig. 11 we show reconstruction results for the
same scene that we trained with a unique representation model Fθo for each object and with a shared representation Fθc . We
can observe that the shared model benefits from similarities in the shape and is able to recover each object without substantial
artefacts, as in the neural scene graph without latent codes. Moreover, the models that do not share their weights across a
class, are hardly able to represent distant object’s shapes, when compared to the approach presented in the main paper. The
shared model helps representing similar shapes and model discontinuities better, and reducing artifacts.

(a) No latent code and an unique radiance field Fθo for each object. (b) Shared representations Fθc with latent codes lo for each object.

Figure 11: Comparison of object renderings with and without latent codes and shared neural radiance fields.

5. Complexity
The efficiency of the proposed method is evaluated by comparing the number of evaluations needed to render a scene (and

ray-space gradients) at training and test time.

Method Points Per Ray Ray Passes Run Time per Pixel [sec]
SRN [5] 1 10 6.2 ×10−6
NeRF [4] 64 and 128 2 9.9 ×10−5
Ours 6 + nobj 7 1 5.9 ×10−6 - 1.5 ×10−5

Table 3: A complexity comparison among different methodologies. Run time per pixel is calculated as the total rendering
time for a single frame divided by the amount of rays traced. The run time for our method is given as a range, for rays which
intersect 0 to 5 objects. For this comparison, we have chosen the same parameters as in the above qualitative comparison.

While SRN [5] and NeRF [4] have a fixed complexity, defined by the number of rays and desired quality, i.e, the number
of ray marching steps or sampling points, the complexity of the proposed method depends on the number of objects a ray
intersects with. In Tab. 3, we show that our method achieves comparable rendering times to state-of-the-art methods on less

8

complex scenes and improves substantially on complex scenes over NeRF [4], as the proposed scene graph structure lifts
the requirement on importance sampling. Specifically, by combining the proposed multi-plane sampling approach for the
background node, using the intersection points with dynamic nodes, and by sharing object models across multiple scene
graph leaf nodes, we effectively reduce the number of required sampling points per ray.

6. 3D Object Detection
In the main document we briefly described the novel application of 3D object detection via inverse rendering using the

proposed neural scene graphs. Here, we expand on those details and describe specifics of this approach. For all scenes, we
first train a neural scene graph using our method that accurately reconstructs the graph.

Ground Truth Boxes on Observed Image Best Fit after a Fixed Number of Steps Fit Boxes on Observed Image

Figure 12: 3D Object Detection via Inverse Rendering. For the observed image on the left, the 3D object detection results in
the rendering presented in the middle after a fixed number of iteration steps. The poses and dimensions for all objects from
the corresponding scene graph are drawn as 3D bounding boxes on the right.

Given an observed image I, which was not trained on, we detect objects by fitting the scene graph S by minimizing the
`1 image loss between the synthesized image and the sample.

min
S

(‖I − Î(S)‖) (11)

We first render the static node and calculate the pixel difference d to the observed image. This is done for subsampled
images at a lower resolution, to avoid local minima due to noisy deviations in the background. We then narrow the 3D search
space for poses, using the image difference, restricting the search space to the volume hit by rays from pixels with a difference
|d| > |µ|+ασ, with α = 0.95 as a manually chosen significance threshold. In Fig. 13 we present an example where all pixels
with a difference above this threshold are gray. We further restrict positions to be within the near and far planes. Finally, we
assume a 2D drivable plane for our specific automotive scenarios, further reducing the search space. In many datasets, such
an assumption is likely since the positions of objects are constrained to be on some 2D plane.

Rendered static node Search Space

Figure 13: Initialization of the search space for object detection. The poses in the first optimization step are initialized to a
derived search space, calculated from the difference of the static node and the observed image.

In this search space, we sample n anchors points uniformly. From all anchor points, edges for scene graphs are sampled.
The latent nodes of the graphs are randomly generated from the latent codes training distribution and assigned to the object
models. We then select the best 10 graphs, using the `1 image loss. Given the top graphs, we iteratively optimize those by
applying stochastic gradient descent for 250 iteration. The scene graphs in each step are calculated by modifying the pose
and dimensions from the previously selected graphs inside the search space. Additionally, the latent code is optimized using
[3], propagating the fixed scene graph to the latent nodes. After the last iteration, we select the top set of graphs again and
use the edges of the scene graph that minimize the loss.

The presented approach is currently not competitive with traditional learning-based detection approaches but highlights
how a learned and structured scene representation may be beneficial in other applications in the future.

9

References
[1] Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual kitti 2, 2020. 5
[2] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In

Conference on Computer Vision and Pattern Recognition (CVPR), 2012. 5, 6
[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2015. 4, 9
[4] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes

as neural radiance fields for view synthesis, 2020. 1, 2, 3, 8, 9
[5] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Continuous 3d-structure-aware neural

scene representations. In Advances in Neural Information Processing Systems, 2019. 2, 8
[6] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi,

Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains, 2020. 1, 3
[7] Z. Wang, Eero Simoncelli, and Alan Bovik. Multiscale structural similarity for image quality assessment. volume 2, pages 1398 –

1402 Vol.2, 12 2003. 6
[8] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL programming guide: the official guide to learning OpenGL,

version 1.2. Addison-Wesley Longman Publishing Co., Inc., 1999. 2
[9] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a

perceptual metric. In CVPR, 2018. 6

10

