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Abstract

Conventional intensity cameras recover objects in the di-
rect line-of-sight of the camera, whereas occluded scene
parts are considered lost in this process. Non-line-of-
sight imaging (NLOS) aims at recovering these occluded
objects by analyzing their indirect reflections on visible
scene surfaces. Existing NLOS methods temporally probe
the indirect light transport to unmix light paths based on
their travel time, which mandates specialized instrumenta-
tion that suffers from low photon efficiency, high cost, and
mechanical scanning. We depart from temporal probing
and demonstrate steady-state NLOS imaging using conven-
tional intensity sensors and continuous illumination. In-
stead of assuming perfectly isotropic scattering, the pro-
posed method exploits directionality in the hidden surface
reflectance, resulting in (small) spatial variation of their
indirect reflections for varying illumination. To tackle the
shape-dependence of these variations, we propose a train-
able architecture which learns to map diffuse indirect re-
flections to scene reflectance using only synthetic training
data. Relying on consumer color image sensors, with high
fill factor, high quantum efficiency and low read-out noise,
we demonstrate high-fidelity color NLOS imaging for scene
configurations tackled before with picosecond time resolu-
tion.

1. Introduction

Recovering objects from conventional monocular im-
agery represents a central challenge in computer vision,
with a large body of work on sensing techniques using
controlled illumination with spatial [50, 42] or temporal
coding [32, 24, 19, 39], multi-view reconstruction method-
s [18], sensing via coded optics [47], and recently learned
reconstruction methods using single-view monocular im-
ages [49, 11, 16]. While these sensing methods drive
applications across domains, including autonomous vehi-
cles, robotics, augmented reality, and dataset acquisition
for scene understanding [52], they only recover objects in
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Figure 1: We demonstrate that it is possible to image occluded
objects outside the direct line-of-sight using continuous illumina-
tion and conventional cameras, without temporal sampling. We
sparsely scan a diffuse wall with a beam of white light and recon-
struct “hidden” objects only from spatial variations in steady-state
indirect reflections.

the direct line-of-sight of the camera. This is because ob-
jects outside the line-of-sight only contribute to a measure-
ment through indirect reflections via visible diffuse object
surfaces. These reflections are extremely weak due to the
multiple scattering, and they lose (most) angular informa-
tion on the diffuse scene surface (as opposed to a mirror
surface in the scene). NLOS imaging aims at recovering
objects outside a camera’s line-of-sight from these indirect
light transport components.

To tackle the lack of angular resolution, a number of N-
LOS approaches have been described that temporally probe
the light-transport in the scene, thereby unmixing light path
contributions by their optical path length [1, 30, 36, 43] and
effectively trading angular with temporal resolution. To ac-
quire temporally resolved images of light transport, exist-
ing methods either directly sample the temporal impulse re-
sponse of the scene by recording the temporal echoes of
laser pulses [54, 43, 17, 7, 53, 3, 40], or they use amplitude-
coded illumination and time-of-flight sensors [21, 26, 25].

1



While amplitude coding approaches suffer from low tempo-
ral resolution due to sensor demodulation bandwidth limi-
tations [32] and the corresponding ill-posed inverse prob-
lem [19], direct probing methods achieve high temporal
resolution already in the acquisition phase, but in turn re-
quire ultra-short pulsed laser illumination and detectors
with < 10 ps temporal resolution for macroscopic scenes.
This mandates instrumentation with high temporal resolu-
tion, that suffers from severe practical limitations including
low photon efficiency, large measurement volumes, high-
resolution timing electronics, excessive cost and monochro-
matic acquisition. Early streak-camera setups [54] hence re-
quire hours of acquisition time, and, while emerging single
photon avalance diode (SPAD) detectors [7, 40] are sensi-
tive to individual photons, they are in fact photon-inefficient
(diffuse experiments in [40]) due to very low fill factors and
pileup distortions at higher pulse power. To overcome this
issue without excessive integration times, recent approach-
es [40, 20] restrict the scene to retro-reflective material sur-
faces, which eliminates quadratic falloff from these sur-
faces, but effectively also constrains practical use to a single
object class.

In this work, we demonstrate that it is possible to im-
age objects outside of the direct line-of-sight using conven-
tional intensity sensors and continuous illumination, with-
out temporal coding. In contrast to previous methods, that
assume perfectly isotropic reflectance, the proposed method
exploits directionality of the hidden object’s reflectance, re-
sulting in spatial variation of the indirect reflections for
varying illumination. To handle the shape-dependence of
these variations, we learn a deep model trained using a train-
ing corpus of simulated indirect renderings. By relying on
consumer color image sensors, with high fill factor, high
quantum efficiency and low read-out noise, we demonstrate
full-color NLOS imaging at fast imaging rates and in setup
scenarios identical to those tackled by recent pulsed systems
with picosecond resolution.

Specifically, we make the following contributions:

• We formulate an image formation model for steady-
state NLOS imaging and an efficient implementation
without ray-tracing. Based on this model, we derive
an optimization method for the special case of planar
scenes with known reflectance.

• We propose a learnable architecture for steady-state N-
LOS imaging for representative object classes.

• We validate the proposed method in simulation, and
experimentally using setup and scene specifications i-
dentical to the ones used in previous time-resolved
methods. We demonstrate that the method generalizes
across objects with different reflectance and shapes.

• We introduce a synthetic training set for steady-state

NLOS imaging. The dataset and models will be pub-
lished for full reproducibility.

2. Related Work
Transient Imaging Kirmani et. al [30] first proposed the
concept of recovering “hidden” objects outside a camera’s
direct line-of-sight using temporally resolved light transport
measurements in which short pulses of light are captured
“in flight” before the global transport reaches a steady s-
tate. These transient measurements are the temporal im-
pulse response of light transport in the scene. Abram-
son [1] first demonstrated a holographic capture system for
transient imaging, and Velten et al. [55] showed the first
experimental NLOS imaging results using a femto-second
laser and streak camera system. Since these seminal work-
s, a growing body of work has been exploring transient
imaging with a focus on enabling improved NLOS imag-
ing [43, 36, 56, 17, 21, 19, 7, 38].

Impulse Non-Line-of-Sight-Imaging A major line of re-
search [43, 54, 17, 40, 53, 3, 45, 41, 58] proposes to ac-
quire transient images directly, by sending pulses of light
into the scene and capturing the response with detectors ca-
pable of high temporal sampling. While the streak camera
setup from Velten et al. [55] allows for temporal precision
of< 10 ps, corresponding to a path length of 3 mm, the high
instrumentation cost and sensitivity has sparked work on s-
ingle photon avalanche diodes (SPADs) as a detector alter-
native [7, 41]. Recently, O’Toole et al. [41] propose scanned
SPAD capture setup that allows for computational efficien-
cy by modeling transport as a shift-invariant convolution.
Although SPAD detectors can offer comparable resolution
< 10 ps [37], they typically suffer from low fill factors typ-
ically around a few percent [44] and low spatial resolution
in the kilo-pixel range [35]. Compared to ubiquitous inten-
sity image sensors with > 10 megapixel resolution, current
SPAD sensors are still five orders of magnitude more costly,
and two orders of magnitude less photon-efficient.

Modulated and Coherent Non-Line-of-Sight-Imaging
As an alternative to impulse-based acquisition, correlation
time-of-flight setups have been proposed [19, 25, 21, 26]
which encode travel-time indirectly in a sequence of phase
measurements. While correlation time-of-flight cameras are
readily available, e.g. Microsoft’s Kinect One, their ap-
plication to transient imaging is limited due to amplitude
modulation bandwidths around 100 MHz, and hence tem-
poral resolution in the nanosecond range. A further line
of work [29, 28] explores using correlations in the carri-
er wave itself, instead of amplitude modulation. While this
approach allows for single-shot NLOS captures, it is limited
to scenes at microsopic scales [28].

Tracking and Classification Most similar to the proposed



method are recent approaches that use conventional inten-
sity measurements for NLOS vision tasks [31, 8, 9, 5]. Al-
though not requiring temporal resolution, these existing ap-
proaches are restricted to coarse localization and classifica-
tion to to a limited extent, in contrast to full imaging and
geometry reconstruction applications.

3. Image Formation Model
Non-line-of-sight imaging methods recover object prop-

erties outside the direct line-of-sight from third-order
bounces. Typically, a diffuse wall patch in the direct line-of-
sight is illuminated, where the light then scatters and partial-
ly reaches a hidden object outside the direct line-of-sight.
At the object surface, the scattered light is reflected back to
the visible wall where it may be measured. In contrast to
existing methods that rely on temporally resolved transport,
the proposed method uses stationary third-bounce transport,
i.e. without time information, to recover reflectance and ge-
ometry of the hidden scene objects.

3.1. Stationary Light Transport

Specializing the Rendering Equation [27] to non-line-of-
sight imaging, we model the radiance L at a position w on
the wall as

L(w) =

∫
Ω

ρ (x− l,w − x) (nx· (x− l))
1

r2
xw

1

r2
xl

L(l)dx

+ δ (‖l−w‖)L(l),
(1)

with x,nx the position and corresponding normal on the
object surface Ω, l being a given beam position on the
wall, and ρ denoting the bi-directional reflectance distri-
bution function (BRDF). This image formation model as-
sumes three indirect bounces, with the distance function r
modeling intensity falloff between input positions, and one
direct bounce, when l and w are identical in the Dirac delta
function δ(·), and it ignores occlusions in the scene outside
the line-of-sight. We model the BRDF with a diffuse and
specular term as

ρ (ωi, ωo) = αd ρd (ωi, ωo) + αs ρs (ωi, ωo) (2)

The diffuse component ρd models light scattering, re-
sulting in almost orientation-independent low-pass reflec-
tions without temporally coded illumination. In con-
trast, the specular reflectance component ρs contributes
high-frequency specular highlights, i.e. mirror-reflections
blurred by a specular lobe. These two components are
mixed with a diffuse albedo αd and specular albedo αs.
While the spatial and color distributions of these two albe-
do components can vary, they are often correlated for ob-
jects composed of different materials, changing only at the
boundaries of materials on the same surface. Although the

proposed method is not restricted to a specific BRDF mod-
el, we adopt a Phong model [46] in the following.

3.2. Sensor Model

We use a conventional color camera in this work. We
model the raw sensor readings with the Poisson-Gaussian
noise model from Foi et al. [15, 14] as samples

b ∼ 1

κ
P
(∫

T

∫
W

∫
ΩA

L(w) dω dw dt
κ

E

)
+ N (0, σ2),

(3)
where we integrate Eq. (1) over the solid angle ΩA of the
camera’s aperture, over spatial position W that the given
pixel maps to, and exposure time T , resulting in the incident
photons when divided by the photon energy E. The sensor
measurement b at the given pixel is then modeled with the
parameters κ > 0 and σ > 0 in a Poisson and Gaussian
distribution, respectively, accurately reflecting the effects of
analog gain, quantum efficiency and readout noise. For no-
tational brevity, we have not included sub-sampling on the
color filter array of the sensor.

4. Inverse Indirect Transport for Planar Scenes
In this section, we address the special case of planar ob-

jects. Assuming planar scenes in the hidden volume al-
lows us to recover reflectance and 3D geometry from in-
direct reflections. Moreover, in this case, we can formu-
late the corresponding inverse problem using efficient opti-
mization methods with analytic gradients. In the remainder
of this paper, we assume that the shape and reflectance of
the directly visible scene parts are known, i.e. the visible
wall area. The proposed hardware setup allows for high-
frequency spatially coded illumination, and hence the wal-
l geometry can be estimated using established structured-
light methods [50]. Illuminating a patch l on the visible
wall, a hidden planar scene surface produces a diffuse low-
frequency reflection component, encoding the projected po-
sition independently of the orientation [31], and higher-
frequency specular reflection components of the blurred
specular albedo mapped to orientation-dependent positions
on the wall. Assuming a single point light source at l on the
wall, see Fig. 2, the specular direction at a plane point p is
the mirror direction r = (p− l)− 2((p− l) · n)n with the
plane normal being n. The center of the specular lobe c on
the wall is the mirror point of l, i.e. the intersection of the
reflected ray in direction r with the wall. Conversely, if we
detect a specular lobe around c in a measurement, we can
solve for the corresponding plane point as

p(v,n) = c + ((v−c) · n)

(
n− v− l− ((c− l) · n)n

n · (2v − c− l)

)
,

(4)
that is a function of the planar surface represented by its
normal n and a point v on the plane. Eq. (4) follows imme-



diately from the constraint that the orthogonal projections
of the points l and c onto the plane result in equal triangles
with p and the respective point, see Supplemental Materi-
al for a detailed derivation. The plane has three degrees of
freedom (DOF), which we parametrize

n(θ, φ) =

cos(θ) sin(φ)
sin(θ) sin(φ)

cos(θ)

 , v(ν) = ~o+ ν

0
0
1

 (5)

Expressing the normals in spherical coordinates ensures
unit-length normals without explicit constraints. The plane
position is here modeled as z-axis offset from the volume
origin ~o. With this parametrization we can estimate the
specular albedo αs and plane geometry θ, φ, ν. Specifi-
cally, we sequentially illuminate the wall in N spots uni-
formly sampled on the visible wall area and acquire a cap-
ture of the wall for each of the illumination points. Nex-
t, we extract sparse features and perform feature match-
ing between the capture bt with the most detected fea-
tures and all other captures b{1,...,N}\t. We use SIFT fea-
tures [34] and RANSAC [13] matching. For for every fea-
ture f ∈ {1, . . . , F}, this results is a set of matched posi-
tions cfi with i ∈ Ψf , and Ψf being here the set of images
with matches for feature f . We select the top F̃ features,
with descending number of matches, and solve for the plane
geometry by minimizing the re-projection distance on the
plane as

θ∗, φ∗, ν∗ = argmin
θ,φ,ν

F̃∑
f=1

∑
i∈Ψf

∥∥∥pfi (v,n)− pf
∥∥∥2

2

with pf =
1

|Ψf |
∑
i∈Ψf

pfi (v,n),

(6)

where we use the notational shortcut pfi (v,n) for the plane
point from Eq. 4 with reflected point cfi and laser point
li. With this objective, we solve for consensus between the
re-projected points on the plane for all features. The vari-
able pf represents here the mean position of all reprojected
points for a given feature f . We solve the optimization prob-
lem from Eq. (6) using limited-memory BFGS [33] which is
a highly efficient quasi-Newton method. The analytic gra-
dient of the least-squares objective from Eq. (6), i.e. the
partials w.r.t. θ, φ, ν, are derived in the Supplemental Ma-
terial. Given the planar geometry estimate θ∗, φ∗, ν∗, we
estimate homography mappings Hi between every image
plane i and the reprojected plane bounds. Specifically, we
re-project the four image plane corners for measurement bi
on the plane using Eq. 4 with laser position li and reflection
points as the four image plane corners. Given the homo-
graphies, we estimate the plane reflectance as the following
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Figure 2: Indirect reflection on planar surface. A virtual source
l on the diffuse wall indirectly illuminates p on a planar scene
surface with n and position v. Depending on the surface BRDF,
some light will be scattered back diffusely (uniformly in gray),
retro-reflected back around l (red lobe), and specularly reflected in
direction r to a visible point c.

maximum likelihood estimation problem

argmin
x

−
N∑
i=1

log
(
p(bi|WHiK

β
Hi

x)
)

+ ΓTV (x)

subject to 0 ≤ x
(7)

which is a linear inverse problem with p(bi|WHiK
β
Hi

x)
as the likelihood of observing a measurements bi given a
specular reflectance x on the plane, and ΓTV (x) as total
variation (TV) [51] prior on the specular reflectance itself.
We follow [12, 38] and assume a Poissonian-Gaussian like-
lihood term p and adopt their variant of the Alternating Di-
rection Method of Multipliers (ADMM) [6] to solve the re-
sulting linear inverse problem. While the solver method is
established and described in detail in the Supplemental Ma-
terial, our linear forward operator WHi

Kβ
Hi

is the main
difference in the proposed approach. This forward opera-
tor consists of the spatially varying convolution matrix K
which blurs the specular reflectance based on the angular
falloff β and distance to the wall (encoded by the homog-
raphy), and a subsequent warping matrix W which warp-
s plane coordinates to the image plane and resamples the
blurred specular reflectance coefficients using bi-linear in-
terpolation. Although the proposed method is general, we
assume a Gaussian spectral falloff with known standard de-
viation β. Note that the warping and falloff operators are
only linear once the plane geometry is known.

5. Learning Inverse Indirect Illumination
In this section, we describe a trainable network and loss

functions that allow us to recover occluded objects with ar-
bitrary shape from intensity images. In contrast to planar
geometries with only three DOF, arbitrary objects can have
complex shapes with orders of magnitudes more parame-
ters, i.e. for non-parametric surfaces three DOF per surface
patch. To tackle this reconstruction challenge, we rely on



Figure 3: Experimental geometry and albedo reconstructions for the special case of planar objects, captured with the protoype from
Sec. 7.2 and in setup geometry from [41]. We demonstrate reconstructions for three different surface materials. The first row shows an
object with diamond grade retroreflective surface coating as they are found on number plates and high-quality street signs, identical to the
objects in [41], which surprisingly contain faint specular components visible in the measurements (please zoom into electronic version of
this document). The second and third row show a conventionally painted road sign and an engineering-grade street sign. The proposed
method runs at around two seconds including capture and reconstruction and achieves high resolution results without temporal sampling.

strong priors on scene semantics which recent deep neural
networks have been shown to encode efficiently [4, 48].

Input and Latent Parametrization In the proposed cap-
ture setup, we project individual beams of light on the d-
iffuse wall and capture the intensity image that is formed
by steady-state global illumination in the scene. In gener-
al, projecting light beams to different positions on the wall
results in different observations which we dub indirect re-
flection maps, i.e. indirect component of the image on the
wall without the direct reflection. Each map contains in-
formation about the object shape and normal information in
specific direction if the BRDF is angle-dependent. Note that
this is not only the case for highly specular BRDFs, but al-
so for lambertian BRDFs due to foreshortening and varying
albedo. Hence, by changing the beam position we acquire
variational information about shape and reflectance.

Assuming locally smooth object surfaces, we sample the
available wall area uniformly in a 5 × 5 grid and acquire
multiple indirect reflection maps. We stack all the captured
images, forming a h × w × (5 · 5 · 3) dimension tensor
as network input. The virtual source position is a further
important information that may be provided to the network.
However, since we use uniform deterministic sampling, we

found that the model learns this structured information, in
contrast to random source sampling.

We use the orthogonal view of the scene as our ground
truth latent variable, as if the camera had been placed in the
center of the visible wall in wall normal direction and with
ambient illumination present. Given the stack of indirect
reflection maps, the proposed network is trained to estimate
the corresponding orthogonal view into the hidden scene.

Network Architecture We propose a variant of the U-Net
architecture [48] as our network backbone structure, shown
in Fig. 4. It contains a 8 layers encoder and decoder. Each
encoder layer reduces the image size by a factor of two in
each dimension and doubles the feature channel. This s-
caling is repeated until we retrieve a 1024 dimension laten-
t vector. In corresponding convolution and deconvolution
layer pairs with the same size, we concatenate them to learn
residual information.

Loss functions We use a multi-scale `2 loss function

Vmulti−scale =
∑
k

γk‖ik − ok‖2, (8)
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Figure 4: Learning NLOS imaging for arbitrary scene geometries and reflectance. We propose an encoder-decoder architecture that takes
as input a stack of 5 × 5 synthetic indirect reflection measurements uniformly sampled on the diffuse wall. Here we show 4 examples
of these 25 indirect reflection maps. The inset indicates the projected light beam position. The network outputs an orthogonal projection
of the unknown scene as latent parametrization (c). We use a variant of the U-Net [48] architecture (b) which predicts these projections at
three scales.
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Figure 5: Training set rendering. Top row: (a) The radiance at
a pixel c is the integral over the hemisphere of incoming indirect
radiance, see Eq. (1). We uniformly sample the unit hemisphere
(b-d), render each sample direction si using direct rendering with
orthographical projection, and accumulate the sample views. Bot-
tom row: (e) Diffuse character with albedo sampled from MNIST.
(f), (g) and (h) 5 × 5, 10 × 10, and 100 × 100 directional samples.

where i is the predicted network output and o is the ground-
truth orthogonal image. Here, k represents different scales
and γk is the corresponding weight of that layer. With fea-
ture map at k-the layer, we adopt an extra one deconvolution
layer to convert the feature to an estimate at the target res-
olution. We predict 64 × 64, 128 × 128 and 256 × 256
ground truth images and set the weights γk as 0.6, 0.8 and
1.0. See the Supplemental Material for training details.

6. Training Datasets

The proposed deep model requires a large training set to
represent objects with arbitrary shapes, orientations, loca-
tions and reflectance. While localization tasks for known
objects [8, 9] may only require small datasets, that could
be acquired experimentally, handling unknowns scenes re-
quires sampling a large combinatorial space, which we tack-
le by synthetic data generation. Although more practical
than experimental acquisition, ray-traced rendering of in-
direct reflections still requires minutes per scene [23, 22],
and, for 5 min per measurement [22], a training set of
100,000 images would require one year of render time.

Instead, we propose a novel pipeline for indirect third-
bounce simulations using direct rendering. As shown in
Fig. 5, a given wall pixel c integrates light over the hemi-
sphere of incoming light directions, see Eq. (1). We sam-
ple the unit hemisphere to estimate this integral, render-
ing each sample direction using direct rendering with or-
thographical projection, and finally accumulating the sam-
pled views. Hardware-accelerated OpenGL allows for mi-
crosecond render times for a single view direction. We syn-
thesize a full third-bounce measurement in 0.1 seconds for
10000 hemisphere samples, which is more than 600× faster
than [22], see Supplement Material. We render the training
data adopting the setup geometry from [41]. Fig. 6 shows
examples for hidden objects from the following classes.

MNIST Digits A number of recent works capture character-
shaped validation objects [54, 19, 7, 41]. We represent this
object class by placing MNIST digits on a plane, with ran-
domly sampled rotations and shifts. We also sample specu-
lar coefficients in [0, 512] with a Phong [46] BRDF to repre-
sent different materials. We generate 20000 examples with
albedo randomly sampled from MNIST.

ShapeNet Models We synthesis measurements from
ShapeNet [57] to represent more complex objects. We s-
elect the representative classes ’car’, ’pillow’, ’laptop’ and
’chair’, and train models for each class. Each class contains
hundreds of models, and we render 20000 examples with
random location, orientation, and reflectance as above.

Human Models Finally, we synthesize data for human
models with non-rigid, varying body shapes and poses.
We sample these models from the SCAPE [2] dataset and
implement realistic appearance variation using the cloth-
ing samples from [10]. We generate 18000 examples with
location-orientation sampling as above.

7. Evaluation

In this section, we validate the proposed methods in sim-
ulation and using experimental measurements.
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Figure 6: Qualitative results on synthetic data (including sensor
noise simulation). (a)(b) We show two examples of 25 rendered
indirect reflection maps. (c) Unknown scene (orthogonal projec-
tion). (d)(e) Reconstruction by 5 × 5 and 1 × 1 indirect reflection
maps, respectively.

Beam Samples MNIST Car Pillow Laptop Chair Human

5 × 5 24.0 26.3 26.7 25.9 22.5 25.5

3 × 3 22.5 25.9 25.9 24.8 22.3 25.3
1 × 1 21.4 25.9 24.8 24.6 22.1 25.0

Table 1: Reconstruction performance PSNR [dB] for decreasing
virtual source sampling and varying object class. While the re-
construction performance drops significantly when reducing the
source sampling, it does not completely fail even for a single
source position. In this case, the method the does not provide ac-
curate shape, but only rough location information, see Fig. 6.

7.1. Analysis

We first assess the proposed network model, which run-
s at 32 FPS reconstruction rates, on unseen synthetic da-
ta from MNIST digits, ShapeNet, and the Human dataset.
Fig. 6 shows two examples of indirect reflection maps and
their corresponding light positions. We simulate Poissian-
Gaussian noise σ = 0.05 and κ = 1/0.03 according to
Eq. (3), calibrated for our experimental setup. The qualita-
tive results in Fig. 6 show that the proposed model can pre-
cisely localize objects and recover accurate reflectance for
large objects. Although recovery for smaller objects with
diffuse reflectance becomes an extremely challenging task,
our method still recovers coarse object geometry and re-
flectance. Table 1 shows a quantitative evaluation of the
reconstruction performance for different sampling pattern-
s. While denser beam sampling on the wall results in higher
recovery performance, even a single sampling position does
provide enough information to perform recovery. However,
Fig. 6 shows that fine geometry is lost in this case and only

Figure 7: Prototype RGB laser source showing the path of the
light, that ends in a dual-axis galvo. Top view: variable neutral
density (ND) filters and one analog modulation is used to control
the individual power of lasers. Long focal lenses combination and
several irises reduce the beam diameter. Front view: only the white
light path is shown. The camera is placed right next to the galvo.

rough location and shape can be recovered.

7.2. Experimental Setup

To illuminate a hidden scene, we require a high-power,
steerable and narrow white light source shown in Fig. 7.
Unfortunately, these goals are challenging to achieve with
wide sources like diodes (following from Gaussian beam
considerations). We built a high-intensity collimated RG-
B light beam with three continuous 200 mW lasers of d-
ifferent wavelengths collinearized with two dichroic mir-
rors. Inexpensive modules with similar specifications are al-
so available in a very small footprint as so-called RGB laser-
s. The wavelengths are chosen to correspond roughly to the
maximums of the three-color sensor of our high-quantum-
efficiency Allied Vision Prosilica GT 1930C camera (out-
side to the right of the Fig.). White balance is achieved by
adjusting the power of each laser. Through the combina-
tion of several irises and lenses, the diameter of the beam
is reduced to less than 5 mm, which is fed into a Thorlab-
s GVS102 dual-axis galvo. For each laser spot we acquire
a single 50 ms exposure, leading to a full capture time of
around 1.25 s for 5 × 5 spots. Please see the Supplemental
Material for additional details.

7.3. Experimental Validation.

Fig. 3 shows three planar reconstruction examples ac-
quired using the described experimental setup. Surprising-
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Figure 8: Non-line-of-sight reconstructions (orthogonal projections) from the proposed learned model for the setup geometry from [41].
We demonstrate that the model can recover projected location on the wall and reflectance of fully diffuse scene objects such as the three
diffuse letters on the left side. The scene objects are cutouts from diffuse foam-board material. The measurements have been contrast-
normalized and the light position has been cropped to visualize the very low-signal diffuse component. The reconstructions on the right
show captured scenes of more significantly smaller, more complex objects. For these challenging cases, the proposed method recovers
rough shape, reflectance and projected position.

ly, even high-grade retroreflective surface coatings as they
are found on number plates and high-quality street signs (al-
so identical to the objects in [41]), contain faint specular
components visible in the measurements. The proposed op-
timization method achieves high quality reflectance and ge-
ometry recovery at almost interactive reconstruction times
of about one second. While the dominating retroreflective
component is returned to the virtual source position, a resid-
ual diffuse component is still present and appears as a halo-
like artefact in the reconstruction. This diffuse halo is more
apparent for the painted road sign, but still does not prohib-
it us to recover high-quality geometry and reflectance for
these planar objects without temporal coding.

Fig. 8 shows reconstruction results for diffuse object-
s without requiring planar scene geometry. We demon-
strate that the learned network, trained entirely on synthetic
data, generalizes to experimental captures. The character-
shaped objects on the left are cutouts of diffuse white foam
boards, comparable to the validation scenes used in tran-
sient method [19, 7, 41]. The proposed data-driven method
accurately recovers shape and location on the wall for these
large characters from their diffuse indirect reflections. For
the the smaller complex objects on the right, the diffuse
reflections are substantially dimmer, but the proposed ap-
proach still recovers rough shape and position. Note that
the mannequin figurine is only 3 cm in width and still re-
covered by the learned reconstruction method.

Finally, we demonstrate that the proposed method can
also be applied to depth recovery of non-planar occluded
scenes. Using the same network architecture as before, but
with depth maps now as labels, the resulting model can re-
cover reasonable object depth, which we validate in Fig. 9
for both synthetic and experimental measurements.

8. Conclusion
We have demonstrated that it is possible to image object-

s outside of the direct line-of-sight using conventional RG-

(a) (b) (c) (d)
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Figure 9: Learning Hidden Geometry Reconstruction. The pro-
posed method allows not only for albedo recovery, but also geom-
etry reconstruction from steady-state indirect reflections. In (a,b),
we show depth recovery of hidden scenes. From top to bottom:
side and top view photographs of the hidden scene, and recon-
structed depth map in meters. In (c,d) we show simulated results.
From top to bottom: orthogonal view of hidden scene, ground truth
depth of hidden scene, and reconstructed depth.

B cameras and continuous illumination, without temporal
coding. Relying on spatial variations in indirect reflections,
we show high-quality NLOS geometry and reflectance re-
covery for planar scenes and a learned architecture which
handles the shape-dependence of these variations. We have
validated the proposed steady-state NLOS imaging method
in simulation and experimentally.

Promising directions for future research include the re-
duction of the laser spot size using single-model laser sys-
tems and achromatic optics, and mechanical occlusion be-
fore the lens system to discard the strong direct component
along with lens flare. A further exciting opportunity are
multiple inter-reflections in the hidden scene which may al-



low to conceptually turn every scene surface into a sensor.
Relying on consumer color image sensors in our prototype
system, the proposed method makes a first step towards this
vision by achieving full-color non-line-of-sight imaging at
fast imaging rates and in scenarios identical to those target-
ed by recent pulsed systems with picosecond resolution.
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